Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Potential Inhibitors for Beta-Lactamase in Methicillin- Resistant Staphylococcus aureus from Flavonoids Using a Computational Drug Discovery Approach

Author(s): Amirreza Abdollahian, Maryam Hazhirkamal, Mohammad Taheri, Fatemeh Nouri* and Amir Taherkhani*

Volume 20, Issue 8, 2023

Published on: 22 August, 2022

Page: [1086 - 1097] Pages: 12

DOI: 10.2174/1570180819666220610112231

Price: $65

conference banner
Abstract

Background: Staphylococcus aureus (S. aureus) is a Gram-positive bacterium causing a wide range of human infections, leading to life-threatening invasive disorders, hospitalization, and mortality. Producing β-lactamase enzymes in S. aureus is one of the main mechanisms of the pathogen that makes the bacteria resistant to beta-lactam antibiotics, resulting in methicillin-resistant S. aureus (MRSA) strains. Therefore, it is crucial to identify novel β-lactamase inhibitors to combat infections caused by MRSA strains.

Methods: In silico virtual screening approach was executed to evaluate the binding affinity of several natural flavonoids to the MRSA β-lactamase active site. After that, the stability of interactions between top inhibitors and the residues incorporated inside the β-lactamase was examined by molecular dynamics (MD) simulation. Moreover, the most connected amino acid within the catalytic domain of the enzyme was determined.

Results: Rutin, isoquercitrin, nicotiflorin, quercetin-3-rhamnoside, vicenin-2, quercitrin, and orientin demonstrated a salient binding affinity with the β-lactamase active site (ΔG binding < −10 kcal/mol). Interestingly, the inhibition constant value (Ki) for rutin was estimated at the picomolar scale. The docked poses of these compounds were demonstrated to be stable. Moreover, Gln237 was revealed to be the most crucial residue involved in ligand binding.

Conclusion: Rutin, isoquercitrin, nicotiflorin, quercetin-3-rhamnoside, vicenin-2, quercitrin, and orientin may be potent inhibitors of β-lactamase and may be helpful for the treatment of several invasive infections caused by MRSA strains. However, experimental studies are needed in the future to validate our findings.

Keywords: Antibiotic, β-lactamase, flavonoid, infections, inhibitor, methicillin-resistant Staphylococcus aureus.

Graphical Abstract
[1]
Bouiller, K.; Bertrand, X.; Hocquet, D.; Chirouze, C. Human infection of methicillin-susceptible Staphylococcus aureus CC398: A review. Microorganisms, 2020, 8(11)
[http://dx.doi.org/10.3390/microorganisms8111737] [PMID: 33167581]
[2]
Grema, H.A.; Geidam, Y.A.; Gadzama, G.B.; Ameh, J.A.; Suleiman, A. Methicillin resistant Staphylococcus aureus (MRSA): A review. Adv. Anim. Vet. Sci., 2015, 3, 79-98.
[http://dx.doi.org/10.14737/journal.aavs/2015/3.2.79.98]
[3]
Park, B.; Liu, G.Y. Staphylococcus aureus and Hyper-IgE Syndrome. Int. J. Mol. Sci., 2020, 21(23)
[http://dx.doi.org/10.3390/ijms21239152] [PMID: 33271763]
[4]
Sergelidis, D.; Angelidis, A.S. Methicillin-resistant Staphylococcus aureus: A controversial food-borne pathogen. Lett. Appl. Microbiol., 2017, 64(6), 409-418.
[http://dx.doi.org/10.1111/lam.12735] [PMID: 28304109]
[5]
Archer, G.L. Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis., 1998, 26(5), 1179-1181.
[http://dx.doi.org/10.1086/520289] [PMID: 9597249]
[6]
Chew, Y.L.; Mahadi, A.M.; Wong, K.M.; Goh, J.K. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complement. Altern. Med., 2018, 18(1), 70.
[http://dx.doi.org/10.1186/s12906-018-2137-5] [PMID: 29463252]
[7]
Aslam, A.; Gajdács, M.; Zin, C.S.; Ab Rahman, N.S.; Ahmed, S.I.; Zafar, M.Z.; Jamshed, S. Evidence of the practice of self-medication with antibiotics among the lay public in low-and middle-income countries: A scoping review. Antibiotics (Basel), 2020, 9(9), 597.
[http://dx.doi.org/10.3390/antibiotics9090597] [PMID: 32932630]
[8]
Elboshra, M.M.E.; Hamedelnil, Y.F.; Moglad, E.H.; Altayb, H.N. Prevalence and characterization of virulence genes among methicillin-resistant Staphylococcus aureus isolated from Sudanese patients in Khartoum state. New Microbes New Infect., 2020, 38, 100784.
[http://dx.doi.org/10.1016/j.nmni.2020.100784] [PMID: 33194210]
[9]
Treakle, A.M.; Thom, K.A.; Furuno, J.P.; Strauss, S.M.; Harris, A.D.; Perencevich, E.N. Bacterial contamination of health care workers’ white coats. Am. J. Infect. Control, 2009, 37(2), 101-105.
[http://dx.doi.org/10.1016/j.ajic.2008.03.009] [PMID: 18834751]
[10]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[11]
Denny, B.J.; Lambert, P.A.; West, P.W. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. FEMS Microbiol. Lett., 2002, 208(1), 21-24.
[PMID: 11934488]
[12]
Appelbaum, P.C. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin. Infect. Dis., 2007, 45(Suppl. 3), S165-S170.
[http://dx.doi.org/10.1086/519474] [PMID: 17712742]
[13]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[14]
Liscano, Y.; Amú, A.; González, A.; Oñate-Garzón, J.; Salamanca, C.H. In silico characterization of the interaction between the PBP2a “Decoy” protein of resistant Staphylococcus aureus and the monomeric units of eudragit E-100 and Poly(Maleic Acid-alt-Octadecene) polymers. Polymers (Basel), 2021, 13(14)
[http://dx.doi.org/10.3390/polym13142320] [PMID: 34301077]
[15]
Kumar, P. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. BMC Chem., 2020, 14(1), 17.
[http://dx.doi.org/10.1186/s13065-020-00669-3] [PMID: 32190843]
[16]
Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother., 2014, 58(4), 1835-1846.
[http://dx.doi.org/10.1128/AAC.00826-13] [PMID: 24379206]
[17]
Toussaint, K.A.; Gallagher, J.C. β-lactam/β-lactamase inhibitor combinations: From then to now. Ann. Pharmacother., 2015, 49(1), 86-98.
[http://dx.doi.org/10.1177/1060028014556652] [PMID: 25361682]
[18]
Docquier, J-D.; Mangani, S. An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat., 2018, 36, 13-29.
[http://dx.doi.org/10.1016/j.drup.2017.11.002] [PMID: 29499835]
[19]
Organization, W.H. WHO treatment guidelines for drug-resistant tuberculosis; World Health Organization, 2016.
[20]
Moglad, E.H. Loranthus acaciae: Alternative medicine for β-lactamase producer and methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci., 2021, 28(3), 1835-1839.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.029] [PMID: 33732069]
[21]
Freire-Moran, L.; Aronsson, B.; Manz, C.; Gyssens, I.C.; So, A.D.; Monnet, D.L.; Cars, O. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist. Updat., 2011, 14(2), 118-124.
[http://dx.doi.org/10.1016/j.drup.2011.02.003] [PMID: 21435939]
[22]
Nouri, F.; Karami, P.; Zarei, O.; Kosari, F.; Alikhani, M.Y.; Zandkarimi, E.; Rezazadeh Zarandi, E.; Taheri, M. Prevalence of common nosocomial infections and evaluation of antibiotic resistance patterns in patients with secondary infections in Hamadan, Iran. Infect. Drug Resist., 2020, 13, 2365-2374.
[http://dx.doi.org/10.2147/IDR.S259252] [PMID: 32765011]
[23]
Ling, Y.; Chen, J.; Guo, Q.; Cai, Y.; Zhao, W.; Zhao, G. Detection of mobile genetic elements in multidrug-resistant Klebsiella pneumoniae. Zhonghua Yi Yuan Gan Ran Xue Za Zhi, 2010, 20, 1208-1211.
[24]
Hazhirkamal, M.; Zarei, O.; Movahedi, M.; Karami, P.; Shokoohizadeh, L.; Taheri, M. Molecular typing, biofilm production, and detection of carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolated from different infection sites using ERIC-PCR in Hamadan, west of Iran. BMC Pharmacol. Toxicol., 2021, 22(1), 32.
[http://dx.doi.org/10.1186/s40360-021-00504-y] [PMID: 34103078]
[25]
Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol., 2020, 246, 112158.
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[26]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21
[27]
Thakur, P.; Chawla, R.; Narula, A.; Goel, R.; Arora, R.; Sharma, R.K. In vitro bactericidal activity of Berberis aristata extract against clinical isolates of carbapenem-resistant Escherichia coli. J. Complement. Integr. Med., 2016, 13(3), 229-237.
[http://dx.doi.org/10.1515/jcim-2015-0066] [PMID: 27101558]
[28]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[29]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[30]
Gontijo, V.S.; Dos Santos, M.H.; Viegas, C., Jr Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini Rev. Med. Chem., 2017, 17(10), 834-862.
[http://dx.doi.org/10.2174/1389557517666161104130026] [PMID: 27823559]
[31]
Abeysinghe, D.T.; Kumara, K.A.H.; Kaushalya, K.A.D.; Chandrika, U.G.; Alwis, D.D.D.H. Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 2021, 7(7), e07449.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07449] [PMID: 34286127]
[32]
Taherkhani, A.Sh.M.; Orangi, A.; Jalalvand, A.; Khamverdi, Z. In silico study of some natural anthraquinones on matrix metalloproteinase inhibition. Res J Pharmacogn, 2021, 8, 37-51.
[33]
Edziri, H.; Haddad, O.; Saidana, D.; Chouchen, S.; Skhiri, F.; Mastouri, M.; Flamini, G. Ruscus hypophyllum L. extracts: Chemical composition, antioxidant, anticoagulant, and antimicrobial activity against a wide range of sensitive and multi-resistant bacteria. Environ. Sci. Pollut. Res. Int., 2020, 27(14), 17063-17071.
[http://dx.doi.org/10.1007/s11356-020-08159-8] [PMID: 32146666]
[34]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[35]
Chen, C.C.; Herzberg, O. Inhibition of β-lactamase by clavulanate. Trapped intermediates in cryocrystallographic studies. J. Mol. Biol., 1992, 224(4), 1103-1113.
[http://dx.doi.org/10.1016/0022-2836(92)90472-V] [PMID: 1569569]
[36]
Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 2009, 30(Suppl. 1), S162-S173.
[http://dx.doi.org/10.1002/elps.200900140] [PMID: 19517507]
[37]
Letourneau, A.; Calderwood, S. Combination beta-lactamase inhibitors, carbapenems, and monobactams.UpToDate, Waltham, MA; , 2020.
[38]
Laxmi, D.; Priyadarshy, S. HyperChem 6.03. Biotech Software & Internet Report: The Computer Software Journal for Scientists, 2002, 3, 5-9.
[http://dx.doi.org/10.1089/152791602317250351]
[39]
Morris, G. M.; Huey, R.; Olson, A. J. Using autodock for ligandreceptor docking. Curr. Protoc. Bioinform., 2008, 24, 8-14.
[http://dx.doi.org/10.1002/0471250953.bi0814s24]
[40]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[41]
Faiza, M. DrugQuest: Tool for drug-associated queries. Bioinformatics Review, 2016, 2, 9-13.
[42]
Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P-L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to Cytoscape plugins. Nat. Methods, 2012, 9(11), 1069-1076.
[http://dx.doi.org/10.1038/nmeth.2212] [PMID: 23132118]
[43]
Amin, M.U.; Khurram, M.; Khattak, B.; Khan, J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern. Med., 2015, 15, 59.
[http://dx.doi.org/10.1186/s12906-015-0580-0] [PMID: 25879586]
[44]
Soberón, J.R.; Sgariglia, M.A.; Sampietro, D.A.; Quiroga, E.N.; Sierra, M.G.; Vattuone, M.A. Purification and identification of antibacterial phenolics from Tripodanthus acutifolius leaves. J. Appl. Microbiol., 2010, 108(5), 1757-1768.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04579.x] [PMID: 19922598]
[45]
Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int., 2020, 133, 109128.
[http://dx.doi.org/10.1016/j.foodres.2020.109128] [PMID: 32466943]
[46]
Rattanajarasroj, S.; Unchern, S. Comparable attenuation of Abeta(25-35)-induced neurotoxicity by quercitrin and 17β-estradiol in cultured rat hippocampal neurons. Neurochem. Res., 2010, 35(8), 1196-1205.
[http://dx.doi.org/10.1007/s11064-010-0175-6] [PMID: 20473637]
[47]
Rodríguez-Pérez, C.; Quirantes-Piné, R.; Uberos, J.; Jiménez-Sánchez, C.; Peña, A.; Segura-Carretero, A. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli. Food Funct., 2016, 7(3), 1564-1573.
[http://dx.doi.org/10.1039/C5FO01441G] [PMID: 26902395]
[48]
Muhammad, A.A.; Arulselvan, P.; Cheah, P.S.; Abas, F.; Fakurazi, S. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Des. Devel. Ther., 2016, 10, 1715-1730.
[http://dx.doi.org/10.2147/DDDT.S96968] [PMID: 27307703]
[49]
Can, T.H.; Tufekci, E.F.; Altunoglu, Y.C.; Baloglu, M.C.; Llorent-Martínez, E.J.; Stefanucci, A.; Mollica, A.; Cichelli, A.; Zengin, G. Chemical characterization, computational analysis and biological views on Daphne gnidioides Jaub. & Spach extracts: Can a new raw material be provided for biopharmaceutical applications? Comput. Biol. Chem., 2020, 87, 107273.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107273] [PMID: 32516631]
[50]
Wang, X.; He, S.; Yuan, L.; Deng, H.; Zhang, Z. Synthesis, structure characterization, and antioxidant and antibacterial activity study of iso-orientin-zinc complex. J. Agric. Food Chem., 2021, 69(13), 3952-3964.
[http://dx.doi.org/10.1021/acs.jafc.0c06337] [PMID: 33764779]
[51]
Grundmann, O.; Wang, J.; McGregor, G.P.; Butterweck, V. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med., 2008, 74(15), 1769-1773.
[http://dx.doi.org/10.1055/s-0028-1088322] [PMID: 19006051]
[52]
Satyamitra, M.; Mantena, S.; Nair, C.; Chandna, S.; Dwarakanath, B. The antioxidant flavonoids, orientin and vicenin enhance repair of radiation-induced damage. SAJPP, 2014, 1, 1.
[53]
Sun, J.; Yue, Y.; Tang, F.; Guo, X. Simultaneous HPTLC analysis of flavonoids in the leaves of three different species of bamboo. JPC-J Planar Chromat., 2010, 23, 40-45.
[http://dx.doi.org/10.1556/JPC.23.2010.1.7]
[54]
Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med., 2019, 9(1)
[http://dx.doi.org/10.3390/jcm9010109] [PMID: 31906141]
[55]
Moradkhani, S.; Farmani, A.; Saidijam, M.; Taherkhani, A. COVID-19: Docking-based virtual screening and molecular dynamics study to identify potential SARS-CoV-2 spike protein inhibitors from plant-based phenolic compounds. Acta Virol., 2021, 65(3), 288-302.
[http://dx.doi.org/10.4149/av_2021_308] [PMID: 34565157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy