Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Alterations in mRNA Expression Levels of Tight Junction Proteins in the Blood Cells of Smokers with or without COPD

Author(s): Sadiya Bi Shaikh, Mahesh Manjunath Gouda, Irfan Khandhal, Tanyeem Rahman, Ashwini Shetty and Yashodhar Prabhakar Bhandary*

Volume 23, Issue 3, 2023

Published on: 21 October, 2022

Page: [389 - 395] Pages: 7

DOI: 10.2174/1871530322666220531121609

Price: $65

conference banner
Abstract

Aim: This study aimed to assess the role of Tight junction proteins (TJPs) and claudins in smokers with and without COPD compared to healthy individuals.

Background: Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disease, including various inflammatory mediators. The prime etiological element in the development of COPD is cigarette smoking. The lung airway epithelium comprises beneficial immunological barriers to draw in insults, such as environmental particulates, cigarette smoke, etc. Tight junctions (TJ) connected by transmembrane proteins determine epithelial permeability. Cigarette smoke is indicated to defect TJ integrity. The possible involvement of the airway epithelium in the pathogenesis of COPD has recently become apparent; however, its detailed mechanisms remain elusive. The integrity of airway epithelium is crucial for airway homeostasis; defective airway barrier activity contributes to COPD.

Objective: In the present study, the objective was to investigate mRNA expression levels of TJP’s like TJP-1, TJP-2, TJP-3, Tight junction-associated proteins-1, claudin-1, claudin-3, claudin-4, claudin-7, claudin-10, claudin-15, claudin-19, and claudin-25 from blood samples of smokers with COPD and compared them with smokers without COPD and healthy individuals.

Methods: The mRNA expressions were evaluated by the quantitative PCR method.

Results: The gene expressions of these TJPs were significantly down-regulated, specifically in COPD patients with a history of smoking (Smokers with COPD). Besides, FEV% was also established for these patients. Similarly, smokers with COPD showed a significant increase in the expression levels of transcription factors, like ZEB-1, ZEB-2, PDGFA, and HDGF, compared to COPD patients without a history of smoking (smokers without COPD) and the healthy subjects.

Conclusion: In conclusion, cigarette smoke disrupts TJ of the human airway epithelium, and the transcriptional factors counteract this smoke-induced COPD. Thus, TJPs may serve as protective elements for airway epithelial homeostasis during COPD.

Keywords: Chronic obstructive pulmonary disease (COPD), Tight junction proteins (TJPs), claudins, cigarette smoke, mRNA expressions, PCR method.

Graphical Abstract
[1]
Heijink, I.H.; Noordhoek, J.A.; Timens, W.; van Oosterhout, A.J.; Postma, D.S. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2014, 189(11), 1439-1442.
[http://dx.doi.org/10.1164/rccm.201311-1982LE] [PMID: 24881942]
[2]
Tatsuta, M.; Kan-O, K.; Ishii, Y.; Yamamoto, N.; Ogawa, T.; Fukuyama, S.; Ogawa, A.; Fujita, A.; Nakanishi, Y.; Matsumoto, K. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: Protective role of cathelicidin LL-37. Respir. Res., 2019, 20(1), 251.
[http://dx.doi.org/10.1186/s12931-019-1226-4] [PMID: 31706310]
[3]
Thorley, A.J.; Tetley, T.D. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2007, 2(4), 409-428.
[PMID: 18268916]
[4]
Holgate, S.T. Epithelium dysfunction in asthma. J. Allergy Clin. Immunol., 2007, 120(6), 1233-1244.
[http://dx.doi.org/10.1016/j.jaci.2007.10.025] [PMID: 18073119]
[5]
Rezaee, F.; Georas, S.N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol., 2014, 50(5), 857-869.
[http://dx.doi.org/10.1165/rcmb.2013-0541RT] [PMID: 24467704]
[6]
Roscioli, E.; Hamon, R.; Lester, S.E.; Jersmann, H.P.A.; Reynolds, P.N.; Hodge, S. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD. Respir. Res., 2018, 19(1), 234.
[http://dx.doi.org/10.1186/s12931-018-0945-2] [PMID: 30486816]
[7]
Milara, J.; Peiró, T.; Serrano, A.; Cortijo, J. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax, 2013, 68(5), 410-420.
[http://dx.doi.org/10.1136/thoraxjnl-2012-201761] [PMID: 23299965]
[8]
Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 157-169.
[http://dx.doi.org/10.1165/rcmb.2017-0200TR] [PMID: 28933915]
[9]
Nishida, K.; Brune, K.A.; Putcha, N.; Mandke, P.; O’Neal, W.K.; Shade, D.; Srivastava, V.; Wang, M.; Lam, H.; An, S.S.; Drummond, M.B.; Hansel, N.N.; Robinson, D.N.; Sidhaye, V.K. Cigarette smoke disrupts monolayer integrity by altering epithelial cell-cell adhesion and cortical tension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(3), L581-L591.
[http://dx.doi.org/10.1152/ajplung.00074.2017] [PMID: 28642260]
[10]
Heijink, I.H.; Brandenburg, S.M.; Postma, D.S.; van Oosterhout, A.J. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. Eur. Respir. J., 2012, 39(2), 419-428.
[http://dx.doi.org/10.1183/09031936.00193810] [PMID: 21778164]
[11]
De Matteis, S.; Canale, M.; Verlicchi, A.; Bronte, G.; Delmonte, A.; Crinò, L.; Martinelli, G.; Ulivi, P. Advances in molecular mechanisms and immunotherapy involving the immune cell-promoted epithelial-to-mesenchymal transition in lung cancer. J. Oncol., 2019, 2019, 7475364.
[http://dx.doi.org/10.1155/2019/7475364] [PMID: 31531020]
[12]
Schamberger, A.C.; Mise, N.; Jia, J.; Genoyer, E.; Yildirim, A.O.; Meiners, S.; Eickelberg, O. Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β. Am. J. Respir. Cell Mol. Biol., 2014, 50(6), 1040-1052.
[http://dx.doi.org/10.1165/rcmb.2013-0090OC] [PMID: 24358952]
[13]
Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2015. Available from: http://goldcopd.org/ [cited 2015 Dec 15].
[14]
Gouda, M.M.; Shaikh, S.B.; Chengappa, D.; Kandhal, I.; Shetty, A.; Bhandary, Y. Changes in the expression level of IL-17A and p53-fibrinolytic system in smokers with or without COPD. Mol. Biol. Rep., 2018, 45(6), 2835-2841.
[http://dx.doi.org/10.1007/s11033-018-4398-y] [PMID: 30250995]
[15]
Carlier, F.M.; de Fays, C.; Pilette, C. Epithelial barrier dysfunction in chronic respiratory diseases. Front. Physiol., 2021, 12, 691227.
[http://dx.doi.org/10.3389/fphys.2021.691227] [PMID: 34248677]
[16]
Caramori, G.; Casolari, P.; Adcock, I. Role of transcription factors in the pathogenesis of asthma and COPD. Cell Commun. Adhes., 2013, 20(1-2), 21-40.
[http://dx.doi.org/10.3109/15419061.2013.775257] [PMID: 23472830]
[17]
Hayashi, S.; Matsuno, Y.; Tsunoda, Y.; Sakurai, H.; Kiwamoto, T.; Morishima, Y.; Ishii, Y.; Yoh, K.; Takahashi, S.; Hizawa, N. Transcription factor T-bet attenuates the development of elastase-induced emphysema in mice. Am. J. Respir. Cell Mol. Biol., 2019, 61(4), 525-536.
[http://dx.doi.org/10.1165/rcmb.2018-0109OC] [PMID: 30965014]
[18]
Wittekindt, O.H. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch., 2017, 469(1), 135-147.
[http://dx.doi.org/10.1007/s00424-016-1917-3] [PMID: 27921210]
[19]
Schlingmann, B.; Molina, S.A.; Koval, M. Claudins: Gatekeepers of lung epithelial function. Dev. Biol., 2015, 42, 47-57.
[http://dx.doi.org/10.1016/j.semcdb.2015.04.009] [PMID: 25951797]
[20]
Heijink, I.H.; Jonker, M.R.; de Vries, M.; van Oosterhout, A.J.; Telenga, E.; Ten Hacken, N.H.; Postma, D.S.; van den Berge, M. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier. Respir. Res., 2016, 17(1), 2.
[http://dx.doi.org/10.1186/s12931-015-0318-z] [PMID: 26739349]
[21]
Sözener, Z.C.; Cevhertas, L.; Nadeau, K.; Akdis, M.; Akdis, C.A. Environmental factors in epithelial barrier dysfunction. J. Allergy Clin. Immunol., 2020, 145, 1517-1528.
[22]
He, S.; Xie, L.; Lu, J.; Sun, S. Characteristics and potential role of M2 macrophages in COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 3029-3039.
[http://dx.doi.org/10.2147/COPD.S147144] [PMID: 29089751]
[23]
Sun, J.; Gu, X.; Wu, N.; Zhang, P.; Liu, Y.; Jiang, S. Human antigen R enhances the epithelial-mesenchymal transition via regulation of ZEB-1 in the human airway epithelium. Respir. Res., 2018, 19(1), 109.
[http://dx.doi.org/10.1186/s12931-018-0805-0] [PMID: 29866111]
[24]
Jang, J.H.; Chand, H.S.; Bruse, S.; Doyle-Eisele, M.; Royer, C.; McDonald, J.; Qualls, C.; Klingelhutz, A.J.; Lin, Y.; Mallampalli, R.; Tesfaigzi, Y.; Nyunoya, T. Connective tissue growth factor promotes pulmonary epithelial cell senescence and is associated with COPD severity. COPD, 2017, 14(2), 228-237.
[http://dx.doi.org/10.1080/15412555.2016.1262340] [PMID: 28026993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy