Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances in Biomedical Applications of Biogenic Nanomaterials

Author(s): Devidas S. Bhagat, Wasudeo B. Gurnule*, Gurvinder S. Bumbrah, Pankaj Koinkar* and Pooja A. Chawla

Volume 24, Issue 1, 2023

Published on: 22 August, 2022

Page: [86 - 100] Pages: 15

DOI: 10.2174/1389201023666220513101628

Price: $65

conference banner
Abstract

The synthesis of biogenic nanoparticles from readily available natural resources may have large demand in numerous fields including pharmaceuticals and medicine. The biogenic nanoparticles catch the attention of the scientific community due to their low cytotoxicity and biocompatibility. Chemical, physical, and greener methods are used for the synthesis of biogenic nanoparticles. Researchers used eco-friendly and nontoxic approaches in the synthesis of this nanoparticle. This nanomaterial-based medicine plays a vital role in the management of public health, including earlier detection of disease, therapeutics candidates in the treatment of cancer. Biogenic nanocomposites are environmentally benign candidates that include fabrication of various composites, detoxification, and act as a catalyst in the biodegradation process. In this review article, we emphasize the recently reported methods used for synthesis, summarizing their biomedical applications and commercial and environmentally benign applications. Synthetic strategies include greener, chemical, physical, and biogenic methods and their role in surface modifiers involves various biomedical, commercial, and environmental-related applications. Moreover, we glimpse existing status, key contests, and future perspectives.

Keywords: Biogenic nanocomposite, biomedical applications, biosynthesis, ecofriendly, mechanism, nanotechnology.

Graphical Abstract
[1]
Singh, N.B.; B.H., Susan M.A.; Guin, M. Applications of green synthesized nanomaterials in water remediation. Curr. Pharm. Biotechnol., 2021, 22(6), 733-761.
[http://dx.doi.org/10.2174/1389201021666201027160029] [PMID: 33109041]
[2]
Verma, N.; Kumar, N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater. Sci. Eng., 2019, 5(3), 1170-1188.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01092] [PMID: 33405638]
[3]
Das, S.; Bhardwaj, A.B.; Pandey, L.M. Functionalized biogenic nanoparticles for use in emerging biomedical applications: A review. Curr. Nanomater., 2021, 6(2), 119-139.
[4]
Seabra, N.D. Biogenic synthesized Ag/Au nanoparticles: Production, characterization, and applications. Curr. Nanosci., 2018, 14(2), 82-94.
[5]
Suravajhala, R.; Bhagat, M.; Malik, M.B. Emerging toxicity aspects of silver nanoparticles: An overview. Curr. Nanomater., 2020, 5(2), 158-164.
[http://dx.doi.org/10.2174/2468187310999200712184531]
[6]
Abd Elkodous, M.; El-Sayyad, G.S.; Abdelrahman, I.Y.; El-Bastawisy, H.S.; Mohamed, A.E.; Mosallam, F.M.; Nasser, H.A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; El-Batal, A.I. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B Biointerfaces, 2019, 180, 411-428.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.008] [PMID: 31085460]
[7]
Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of AgNPs using Carica papaya peel extract and evaluation of its antioxidant and antimi-crobial activities. Ecotoxicol. Environ. Saf., 2016, 134(Pt 2), 467-473.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.021] [PMID: 27156649]
[8]
Hemlata, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 2020, 5(10), 5520-5528.
[http://dx.doi.org/10.1021/acsomega.0c00155] [PMID: 32201844]
[9]
Abu-Tahon, M.A.; Ghareib, M.; Abdallah, W.E. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using As-pergillus flavus and their cytotoxic and catalytic activities. Process Biochem., 2020, 95, 1-11.
[http://dx.doi.org/10.1016/j.procbio.2020.04.015]
[10]
Sharma, B.; Purkayastha, D.D.; Hazra, S.; Thajamanbi, M.; Bhattacharjee, C.R.; Ghosh, N.N.; Rout, J. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst. Eng., 2014, 37(12), 2559-2565.
[http://dx.doi.org/10.1007/s00449-014-1233-2] [PMID: 24942533]
[11]
Oza, G.; Calzadilla-Avila, A.I.; Reyes-Calderón, A.; Anna, K.K.; Ramírez-Bon, R.; Tapia-Ramirez, J.; Sharma, A. PH-dependent biosynthe-sis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Appl. Nanosci., 2020, 10(2), 541-550.
[http://dx.doi.org/10.1007/s13204-019-01159-2]
[12]
Sun, Y.; Wang, S.; Zheng, J. Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-An in-vitro toxicity study towards central nervous system. J. Photochem. Photobiol. B, 2019, 194, 1-5.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.02.008] [PMID: 30897398]
[13]
Senthilkumar, S.; Rajendran, A. Biosynthesis of TiO2 nanoparticles using Justicia gendarussa leaves for photocatalytic and toxicity stud-ies. Res. Chem. Intermed., 2018, 44(10), 5923-5940.
[http://dx.doi.org/10.1007/s11164-018-3464-3]
[14]
Karunakaran, G.; Jagathambal, M.; Kumar, G.S.; Kolesnikov, E. Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. J. Miner. Met. Mater. Soc., 2020, 72(3), 1264-1272.
[http://dx.doi.org/10.1007/s11837-020-04007-9]
[15]
Mahendiran, D.; Subash, G.; Arumai Selvan, D.; Rehana, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Biosynthesis of Zinc Oxide nanopar-ticles using plant extracts of aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bionanoscience, 2017, 7(3), 530-545.
[http://dx.doi.org/10.1007/s12668-017-0418-y]
[16]
Kuppusamy, P.; Ilavenil, S.; Srigopalram, S.; Kim, D.H.; Govindan, N.; Maniam, G.P.; Yusoff, M.M.; Choi, K.C. Synthesis of bimetallic nanoparticles (Au–Ag alloy) using Commelina nudiflora L. plant extract and study its on oral pathogenic bacteria. J. Inorg. Organomet. Polym. Mater., 2017, 27(2), 562-568.
[http://dx.doi.org/10.1007/s10904-017-0498-8]
[17]
Vilas, V.; Philip, D.; Mathew, J. Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. J. Mol. Liq., 2016, 221, 179-189.
[http://dx.doi.org/10.1016/j.molliq.2016.05.066]
[18]
Sati, S.C.; Kour, G.; Bartwal, A.S.; Sati, M.D. Biosynthesis of metal nanoparticles from leaves of Ficus palmata and evaluation of their anti-inflammatory and anti-diabetic activities. Biochemistry, 2020, 59(33), 3019-3025.
[http://dx.doi.org/10.1021/acs.biochem.0c00388] [PMID: 32794692]
[19]
Rodrigues, M.C.; Rolim, W.R.; Viana, M.M.; Souza, T.R.; Gonçalves, F.; Tanaka, C.J.; Bueno-Silva, B.; Seabra, A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J. Dent., 2020, 96, 103327.
[http://dx.doi.org/10.1016/j.jdent.2020.103327] [PMID: 32229160]
[20]
Udawatte, N.; Lee, M.; Kim, J.; Lee, D. Well-defined Au/ZnO nanoparticle composites exhibiting enhanced photocatalytic activities. ACS Appl. Mater. Interfaces, 2011, 3(11), 4531-4538.
[http://dx.doi.org/10.1021/am201221x] [PMID: 22029573]
[21]
Datta, A.; Porkovich, A.J.; Kumar, P.; Nikoulis, G.; Kioseoglou, J.; Sasaki, T.; Steinhauer, S.; Grammatikopoulos, P.; Sowwan, M. Single nanoparticle activities in ensemble: A study on Pd cluster nanoportals for electrochemical oxygen evolution reaction. J. Phys. Chem. C, 2019, 123(43), 26124-26135.
[http://dx.doi.org/10.1021/acs.jpcc.9b07824]
[22]
Halder, M.; Islam, M.M.; Ansari, Z.; Ahammed, S.; Sen, K.; Islam, S.M. Biogenic Nano-CuO-catalyzed facile C–N cross-coupling reac-tions: Scope and mechanism. ACS Sustain. Chem.& Eng., 2017, 5(1), 648-657.
[http://dx.doi.org/10.1021/acssuschemeng.6b02013]
[23]
He, X.; Sathishkumar, G.; Gopinath, K.; Zhang, K.; Lu, Z.; Li, C.; Kang, E.T.; Xu, L. One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens. Chem. Eng. J., 2021, 421, 130005.
[http://dx.doi.org/10.1016/j.cej.2021.130005]
[24]
Xiong, L.; Zhang, X.; Huang, Y.X.; Liu, W.J.; Chen, Y.L.; Yu, S.S.; Hu, X.; Cheng, L.; Liu, D.F.; Yu, H.Q. Biogenic synthesis of Pd-based nanoparticles with enhanced catalytic activity. ACS Appl. Nano Mater., 2018, 1(4), 1467-1475.
[http://dx.doi.org/10.1021/acsanm.7b00322]
[25]
Skheel, A.Z.; Jaduaa, M.H.; Abd, A.N. Green synthesis of cadmium oxide nanoparticles for biomedical applications (antibacterial, and anticancer activities). Mater. Today Proc., 2021, 45, 5793-5799.
[http://dx.doi.org/10.1016/j.matpr.2021.03.168]
[26]
Jayaramudu, T.; Varaprasad, K.; Pyarasani, R.D.; Reddy, K.K.; Akbari-Fakhrabadi, A.; Carrasco-Sánchez, V.; Amalraj, J. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application. Carbohydr. Polym., 2021, 254, 117302.
[http://dx.doi.org/10.1016/j.carbpol.2020.117302] [PMID: 33357869]
[27]
Sharma, R.K.; Ghose, R. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int., 2015, 41(1)(1, Part B), 967-975.
[http://dx.doi.org/10.1016/j.ceramint.2014.09.016]
[28]
Ravindra, S.; Mulaba-Bafubiandi, A.F.; Rajinikanth, V.; Varaprasad, K.; Narayana Reddy, N.; Mohana Raju, K. Development and charac-terization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. J. Inorg. Organomet. Polym. Mater., 2012, 22(6), 1254-1262.
[http://dx.doi.org/10.1007/s10904-012-9734-4]
[29]
Sukumar, U.K.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett., 2013, 3(1), 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[30]
Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M.P. Zirconium Oxide (ZrO2) Nanoparticles from antibacterial activity to cyto-toxicity: A next-generation of multifunctional nanoparticles. Mater. Today Commun., 2021, 26, 102156.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102156]
[31]
Chauhan, P.; Mahajan, S.; Prasad, G.B. Preparation and characterization of CS-ZnO-NC nanoparticles for imparting anti-diabetic activities in experimental diabetes. J. Drug Deliv. Sci. Technol., 2019, 52, 738-747.
[http://dx.doi.org/10.1016/j.jddst.2019.05.020]
[32]
Antonoglou, O.; Lafazanis, K.; Mourdikoudis, S.; Vourlias, G.; Lialiaris, T.; Pantazaki, A.; Dendrinou-Samara, C. Biological relevance of CuFeO2 nanoparticles: Antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. Mater. Sci. Eng. C, 2019, 99, 264-274.
[http://dx.doi.org/10.1016/j.msec.2019.01.112] [PMID: 30889700]
[33]
Podder, S.; Chanda, D.; Mukhopadhyay, A.K.; De, A.; Das, B.; Samanta, A.; Hardy, J.G.; Ghosh, C.K. Effect of morphology and concen-tration on crossover between antioxidant and pro-oxidant activity of MgO nanostructures. Inorg. Chem., 2018, 57(20), 12727-12739.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01938] [PMID: 30281293]
[34]
Wang, L.; Li, Y.; Wang, Y.; Kong, W.; Lu, Q.; Liu, X.; Zhang, D.; Qu, L. Chlorine-doped graphene quantum dots with enhanced anti- and pro-oxidant properties. ACS Appl. Mater. Interfaces, 2019, 11(24), 21822-21829.
[http://dx.doi.org/10.1021/acsami.9b03194] [PMID: 31119931]
[35]
Loo, C.Y.; Rohanizadeh, R.; Young, P.M.; Traini, D.; Cavaliere, R.; Whitchurch, C.B.; Lee, W.H. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem., 2016, 64(12), 2513-2522.
[http://dx.doi.org/10.1021/acs.jafc.5b04559] [PMID: 26595817]
[36]
Heinemann, M.G.; Rosa, C.H.; Rosa, G.R.; Dias, D. Biogenic synthesis of gold and silver nanoparticles used in environmental applica-tions: A review. Trends Environ. Anal. Chem., 2021, 30, e00129.
[37]
Balasubramanian, S.; Kala, S.M.J.; Pushparaj, T.L. Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J. Drug Deliv. Sci. Technol., 2020, 57, 101620.
[http://dx.doi.org/10.1016/j.jddst.2020.101620]
[38]
Zuo, W.; Shahriari, M.; Shahriari, M.; Javadi, M.; Mohebi, H.; Abbasi, N.; Ghaneialvar, H. Synthesis and application of Au NPs-chitosan nanocomposite in the treatment of acute myeloid leukemia in vitro and in vivo. Arab. J. Chem., 2021, 14(2), 102929.
[http://dx.doi.org/10.1016/j.arabjc.2020.102929]
[39]
Chowdhury, R.; Mollick, M.M.R.; Biswas, Y.; Chattopadhyay, D.; Rashid, M.H. Biogenic synthesis of shape-tunable Au-Pd alloy nano-particles with enhanced catalytic activities. J. Alloys Compd., 2018, 763, 399-408.
[http://dx.doi.org/10.1016/j.jallcom.2018.05.343]
[40]
Alam, M.N.; Das, S.; Batuta, S.; Roy, N.; Chatterjee, A.; Mandal, D.; Begum, N.A. Murraya koenegii spreng. leaf extract: An efficient green multifunctional agent for the controlled synthesis of Au nanoparticles. ACS Sustain. Chem.& Eng., 2014, 2(4), 652-664.
[http://dx.doi.org/10.1021/sc400562w]
[41]
Arvindganth, R.; Kathiravan, G. Biogenic synthesis of gold nanoparticle from Enicostema axillare and their in vitro cytotoxicity study against MCF-7 cell line. Bionanoscience, 2019, 9(4), 839-847.
[http://dx.doi.org/10.1007/s12668-019-00656-6]
[42]
Sadhasivam, S.; Shanmugam, P.; Veerapandian, M.; Subbiah, R.; Yun, K. Biogenic synthesis of multidimensional gold nanoparticles as-sisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals, 2012, 25(2), 351-360.
[http://dx.doi.org/10.1007/s10534-011-9506-6] [PMID: 22069027]
[43]
Lee, S.Y.; Krishnamurthy, S.; Cho, C.W.; Yun, Y.S. Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustain. Chem.& Eng., 2016, 4(5), 2651-2659.
[http://dx.doi.org/10.1021/acssuschemeng.6b00161]
[44]
Khan, M.I.; Behera, S.K.; Paul, P.; Das, B.; Suar, M.; Jayabalan, R.; Fawcett, D.; Poinern, G.E.J.; Tripathy, S.K.; Mishra, A. Biogenic Au@ZnO core-shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency. Med. Microbiol. Immunol., 2019, 208(5), 609-629.
[http://dx.doi.org/10.1007/s00430-018-0564-z] [PMID: 30291475]
[45]
Kumari, R.; Barsainya, M.; Singh, D.P. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeru-ginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. Int., 2017, 24(5), 4645-4654.
[http://dx.doi.org/10.1007/s11356-016-8170-3] [PMID: 27966085]
[46]
Dutta, T.; Chattopadhyay, A.P.; Ghosh, N.N.; Khatua, S.; Acharya, K.; Kundu, S.; Mitra, D.; Das, M. Biogenic silver nanoparticle synthe-sis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chem. Pap., 2020, 74(11), 4089-4101.
[http://dx.doi.org/10.1007/s11696-020-01216-z]
[47]
Ontong, J.C.; Singh, S.; Nwabor, O.F.; Chusri, S.; Voravuthikunchai, S.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol. Lett., 2020, 42(12), 2653-2664.
[http://dx.doi.org/10.1007/s10529-020-02971-5] [PMID: 32683522]
[48]
Akwu, N.A.; Naidoo, Y.; Singh, M.; Nundkumar, N.; Daniels, A.; Lin, J. Two temperatures biogenic synthesis of silver nanoparticles from Grewia lasiocarpa E. Mey. Ex Harv. leaf and stem bark extracts: Characterization and applications. Bionanoscience, 2021, 11(1), 142-158.
[http://dx.doi.org/10.1007/s12668-020-00812-3]
[49]
Sarathi Kannan, D.; Mahboob, S.; Al-Ghanim, K.A.; Venkatachalam, P. Antibacterial, antibiofilm and photocatalytic activities of biogenic silver nanoparticles from Ludwigia octovalvis. J. Cluster Sci., 2021, 32(2), 255-264.
[http://dx.doi.org/10.1007/s10876-020-01784-w]
[50]
Naidu, K.S.B.; Murugan, N.; Adam, J.K. Biogenic synthesis of silver nanoparticles from Avicennia marina seed extract and its antibacterial potential. Bionanoscience, 2019, 9(2), 266-273.
[http://dx.doi.org/10.1007/s12668-019-00612-4]
[51]
Mohanta, Y.K.; Panda, S.K.; Biswas, K.; Tamang, A.; Bandyopadhyay, J.; De, D.; Mohanta, D.; Bastia, A.K. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol., 2016, 10(6), 438-444.
[52]
Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Taghavi Fardood, S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci. Mater. Electron., 2018, 29(4), 2806-2814.
[http://dx.doi.org/10.1007/s10854-017-8209-3]
[53]
Liu, H.; Zhong, L.; Yun, K.; Samal, M. Synthesis, characterization, and antibacterial properties of silver nanoparticles-graphene and gra-phene oxide composites. Biotechnol. Bioprocess Eng., 2016, 21(1), 1-18.
[http://dx.doi.org/10.1007/s12257-015-0733-5]
[54]
Subbiah, K.S.; Beedu, S.R. Biogenic synthesis of biopolymer-based Ag-Au bimetallic nanoparticle constructs and their anti-proliferative assessment. IET Nanobiotechnol., 2018, 12(8), 1047-1055.
[55]
Al-Radadi, N.S. Green biosynthesis of flaxseed gold nanoparticles (Au-NPs) as potent anti-cancer agent against breast cancer cells. J. Saudi Chem. Soc., 2021, 25(6), 101243.
[http://dx.doi.org/10.1016/j.jscs.2021.101243]
[56]
Veeramani, S.; Narayanan, A.P.; Yuvaraj, K.; Sivaramakrishnan, R.; Pugazhendhi, A.; Rishivarathan, I.; Jose, S.P.; Ilangovan, R. Nigella sativa flavonoids surface coated gold NPs (Au-NPs) enhancing antioxidant and anti-diabetic activity. Process Biochem., 2021.
[57]
Pandiyan, N.; Murugesan, B.; Arumugam, M.; Sonamuthu, J.; Samayanan, S.; Mahalingam, S. Biogenic approach for the synthesis of Ag-Au doped RuO2 nanoparticles in BMIM-PF6 ionic liquid medium: Structural characterization and its biocidal activity against pathogenic bacteria and HeLa cancerous cells. J. Mol. Liq., 2020, 312, 113245.
[http://dx.doi.org/10.1016/j.molliq.2020.113245]
[58]
Jiang, X.; Wang, Z.; Zhang, X.; Jiang, G.; Peng, Y.; Xu, S.; Cao, M.; Dai, X.; Liu, Z.; Ma, J. Enhanced photocatalytic activity of biosynthe-sized Au-Ag/TiO2 catalyst by removing excess anchored biomolecules. J. Nanopart. Res., 2019, 21(10), 211.
[http://dx.doi.org/10.1007/s11051-019-4622-2]
[59]
Ahmad, H.; Venugopal, K.; Bhat, A.H.; Kavitha, K.; Ramanan, A.; Rajagopal, K.; Srinivasan, R.; Manikandan, E. Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm. Res., 2020, 37(12), 246.
[http://dx.doi.org/10.1007/s11095-020-02966-x] [PMID: 33215292]
[60]
Mahmoud, N.M.R.; Mohamed, H.I.; Ahmed, S.B.; Akhtar, S. Efficient biosynthesis of CuO nanoparticles with potential cytotoxic activity. Chem. Pap., 2020, 74(9), 2825-2835.
[http://dx.doi.org/10.1007/s11696-020-01120-6]
[61]
Singh, J.; Kumar, V.; Kim, K.H.; Rawat, M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious poten-tial for photocatalytic degradation of dyes. Environ. Res., 2019, 177, 108569.
[http://dx.doi.org/10.1016/j.envres.2019.108569] [PMID: 31352301]
[62]
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of Copper Oxide Nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci., 2014, 4(5), 571-576.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[63]
Sepasgozar, S.M.E.; Mohseni, S.; Feizyzadeh, B.; Morsali, A. Green synthesis of zinc oxide and copper oxide nanoparticles using Achillea nobilis extract and evaluating their antioxidant and antibacterial properties. Bull. Mater. Sci., 2021, 44(2), 129.
[http://dx.doi.org/10.1007/s12034-021-02419-0]
[64]
Ali, S.G.; Ansari, M.A.; Jamal, Q.M.S.; Almatroudi, A.; Alzohairy, M.A.; Alomary, M.N.; Rehman, S.; Mahadevamurthy, M.; Jalal, M.; Khan, H.M.; Adil, S.F.; Khan, M.; Al-Warthan, A. Butea monosperma seed extract mediated biosynthesis of ZnO NPs and their antibacte-rial, antibiofilm and anti-quorum sensing potentialities. Arab. J. Chem., 2021, 14(4), 103044.
[http://dx.doi.org/10.1016/j.arabjc.2021.103044]
[65]
Fouda, A.; Salem, S.S.; Wassel, A.R.; Hamza, M.F.; Shaheen, T.I. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon, 2020, 6(9), e04896.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04896] [PMID: 32995606]
[66]
Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Ranjan, S.; Kalaiselvi, V.; Dasgupta, N.; Chen, J.; Durán-Lara, E.F. Biogenic preparation and characterization of ZnO nanoparticles from natural polysaccharide Azadirachta indica L. (neem gum) and its clinical implications. J. Cluster Sci., 2020, 32(4), 983-993.
[http://dx.doi.org/10.1007/s10876-020-01863-y]
[67]
Narendhran, S.; Sivaraj, R. Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull. Mater. Sci., 2016, 39(1), 1-5.
[http://dx.doi.org/10.1007/s12034-015-1136-0]
[68]
Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci., 2020, 10(1), 305-315.
[http://dx.doi.org/10.1007/s13204-019-01099-x]
[69]
Sriramulu, M.; Sumathi, S. Photo catalytic, antimicrobial and antifungal activity of biogenic iron oxide nanoparticles synthesised using Aegle marmelos extracts. J. Inorg. Organomet. Polym. Mater., 2021, 31(4), 1738-1744.
[http://dx.doi.org/10.1007/s10904-020-01812-2]
[70]
Ting, A.S.Y.; Chin, J.E. Biogenic synthesis of iron nanoparticles from apple peel extracts for decolorization of malachite green dye. Water Air Soil Pollut., 2020, 231(6), 278.
[http://dx.doi.org/10.1007/s11270-020-04658-z]
[71]
Dhandapani, K.; Venugopal, K.; Kumar, J.V. Ecofriendly and green synthesis of carbon nanoparticles from rice bran: Characterization and identification using image processing technique. Int. J. Plast. Technol., 2019, 23(1), 56-66.
[http://dx.doi.org/10.1007/s12588-019-09240-9]
[72]
Dhanush, C.; Sethuraman, M.G. Independent hydrothermal synthesis of the undoped, nitrogen, boron and sulphur doped biogenic carbon nanodots and their potential application in the catalytic chemo-reduction of alizarine yellow R Azo Dye. Spectrochim. Acta Part A Mol. Bi-omol. Spectrosc, 2021, 260, 119920.
[73]
Arul, V.; Chandrasekaran, P.; Sivaraman, G.; Sethuraman, M.G. Efficient green synthesis of N,B Co-doped bright fluorescent carbon nan-odots and their electrocatalytic and bio-imaging applications. Diamond Related Materials, 2021, 116, 108437.
[http://dx.doi.org/10.1016/j.diamond.2021.108437]
[74]
Athinarayanan, J.; Periasamy, V.S.; Alshatwi, A.A. Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Mater. Sci. Eng. C, 2020, 117, 111313.
[http://dx.doi.org/10.1016/j.msec.2020.111313] [PMID: 32919673]
[75]
Subhapriya, S.; Gomathipriya, P. Green synthesis of Titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog., 2018, 116, 215-220.
[http://dx.doi.org/10.1016/j.micpath.2018.01.027] [PMID: 29366863]
[76]
Fall, A.; Ngom, I.; Bakayoko, M.; Sylla, N.F.; Elsayed Ahmed Mohamed, H.; Jadvi, K.; Kaviyarasu, K.; Ngom, B.D. Biosynthesis of TiO2 nanoparticles by using natural extract of Citrus sinensis. Mater. Today Proc., 2021, 36, 349-356.
[http://dx.doi.org/10.1016/j.matpr.2020.04.131]
[77]
Zhang, Y.; Liu, N.; Wang, W.; Sun, J.; Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng., 2020, 14(6), 103.
[http://dx.doi.org/10.1007/s11783-020-1282-5]
[78]
Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Jayaseelan, C.; Bagavan, A.; Kirthi, A.V.; Kamaraj, C.; Zahir, A.A.; Elango, G. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res., 2012, 111(6), 2329-2337.
[http://dx.doi.org/10.1007/s00436-011-2676-x] [PMID: 21987105]
[79]
Veisi, H.; Tamoradi, T.; Karmakar, B.; Mohammadi, P.; Hemmati, S. In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Mater. Sci. Eng. C, 2019, 104, 109919.
[http://dx.doi.org/10.1016/j.msec.2019.109919] [PMID: 31499980]
[80]
Sivamaruthi, B.S.; Ramkumar, V.S.; Archunan, G.; Chaiyasut, C.; Suganthy, N. Biogenic synthesis of silver palladium bimetallic nanopar-ticles from fruit extract of Terminalia chebula – in vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol., 2019, 51, 139-151.
[http://dx.doi.org/10.1016/j.jddst.2019.02.024]
[81]
Rajakumar, G.; Rahuman, A.A.; Chung, I-M.; Kirthi, A.V.; Marimuthu, S.; Anbarasan, K. Antiplasmodial activity of eco-friendly synthe-sized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol. Res., 2015, 114(4), 1397-1406.
[http://dx.doi.org/10.1007/s00436-015-4318-1] [PMID: 25653029]
[82]
Song, J.Y.; Kwon, E.Y.; Kim, B.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng., 2010, 33(1), 159-164.
[http://dx.doi.org/10.1007/s00449-009-0373-2] [PMID: 19701776]
[83]
Syed, A.; Ahmad, A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2012, 97, 27-31.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.026] [PMID: 22580481]
[84]
Gupta, K.; Chundawat, T.S. Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, poten-tial antimicrobial, antioxidant and photocatalytic activities. Mater. Res. Express, 2019, 6(10), 1050d6.
[http://dx.doi.org/10.1088/2053-1591/ab4219]
[85]
Ashengroph, M.; Khaledi, A.; Bolbanabad, E.M. Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis chr05 and its antibacterial activity. Process Biochem., 2020, 89, 63-70.
[http://dx.doi.org/10.1016/j.procbio.2019.10.028]
[86]
Shivashankarappa, A.; Sanjay, K.R. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Braz. J. Microbiol., 2020, 51(3), 939-948.
[http://dx.doi.org/10.1007/s42770-020-00238-9] [PMID: 32067210]
[87]
Bai, H.; Zhang, Z.; Guo, Y.; Jia, W. Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res. Lett., 2009, 4(7), 717-723.
[http://dx.doi.org/10.1007/s11671-009-9303-0] [PMID: 20596372]
[88]
Torres, S.K.; Campos, V.L.; León, C.G.; Rodríguez-Llamazares, S.M.; Rojas, S.M.; González, M.; Smith, C.; Mondaca, M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res., 2012, 14(11), 1236.
[http://dx.doi.org/10.1007/s11051-012-1236-3]
[89]
Tripathi, R.M.; Hameed, P.; Rao, R.P.; Shrivastava, N.; Mittal, J.; Mohapatra, S. Biosynthesis of highly stable fluorescent selenium nano-particles and the evaluation of their photocatalytic degradation of dye. Bionanoscience, 2020, 10(2), 389-396.
[http://dx.doi.org/10.1007/s12668-020-00718-0]
[90]
Srivastava, N.; Mukhopadhyay, M. Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J. Cluster Sci., 2015, 26(5), 1473-1482.
[http://dx.doi.org/10.1007/s10876-014-0833-y]
[91]
Feroze, N.; Arshad, B.; Younas, M.; Afridi, M.I.; Saqib, S.; Ayaz, A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc. Res. Tech., 2020, 83(1), 72-80.
[http://dx.doi.org/10.1002/jemt.23390] [PMID: 31617656]
[92]
Rajamma, R.; Gopalakrishnan Nair, S. Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET Nanobiotechnol., 2020, 14(9), 833-838.
[93]
Esfanddarani, H.M.; Kajani, A.A.; Bordbar, A.K. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and in-vestigation of their antibacterial activity. IET Nanobiotechnol., 2018, 12(4), 412-416.
[94]
Bilesky-José, N.; Maruyama, C.; Germano-Costa, T.; Campos, E.; Carvalho, L.; Grillo, R.; Fraceto, L.F.; de Lima, R. Biogenic α-Fe2O3 nanoparticles enhance the biological activity of Trichoderma against the plant pathogen Sclerotinia sclerotiorum. ACS Sustain. Chem.& Eng., 2021, 9(4), 1669-1683.
[http://dx.doi.org/10.1021/acssuschemeng.0c07349]
[95]
Wypij, M.; Czarnecka, J.; Dahm, H.; Rai, M.; Golinska, P. Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J. Basic Microbiol., 2017, 57(9), 793-800.
[http://dx.doi.org/10.1002/jobm.201700121] [PMID: 28670763]
[96]
Issam, N.; Naceur, D.; Nechi, G.; Maatalah, S.; Zribi, K.; Mhadhbi, H. Green synthesised ZnO nanoparticles mediated by Olea europaea leaf extract and their antifungal activity against Botrytis cinerea infecting faba bean plants. Arch. Phytopathol. Pflanzenschutz, 2021, 0(0), 1-23.
[http://dx.doi.org/10.1080/03235408.2021.1889859]
[97]
Akpomie, K.G.; Ghosh, S.; Gryzenhout, M.; Conradie, J. Ananas comosus peel–mediated green synthesized magnetite nanoparticles and their antifungal activity against four filamentous fungal strains. Biomass Convers. Biorefin., 2021, 1-12.
[http://dx.doi.org/10.1007/s13399-021-01515-9]
[98]
Baygar, T.; Ugur, A. Biosynthesis of silver nanoparticles by Streptomyces griseorubens isolated from soil and their antioxidant activity. IET Nanobiotechnol., 2017, 11(3), 286-291.
[99]
Muthukumar, H.; Matheswaran, M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem.& Eng., 2015, 3(12), 3149-3156.
[http://dx.doi.org/10.1021/acssuschemeng.5b00722]
[100]
Kora, A.J. Tree gum stabilised selenium nanoparticles: Characterisation and antioxidant activity. IET Nanobiotechnol., 2018, 12(5), 658-662.
[101]
Lingaraju, K.; Raja Naika, H.; Manjunath, K.; Basavaraj, R.B.; Nagabhushana, H.; Nagaraju, G.; Suresh, D. Biogenic synthesis of zinc ox-ide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci., 2016, 6(5), 703-710.
[http://dx.doi.org/10.1007/s13204-015-0487-6]
[102]
Giri, V.P.; Pandey, S.; Kumari, M.; Paswan, S.K.; Tripathi, A.; Srivastava, M.; Rao, C.V.; Katiyar, R.; Nautiyal, C.S.; Mishra, A. Biogenic silver nanoparticles as a more efficient contrivance for wound healing acceleration than common antiseptic medicine. FEMS Microbiol. Lett., 2019, 366(16), fnz201.
[http://dx.doi.org/10.1093/femsle/fnz201] [PMID: 31580434]
[103]
Ovais, M.; Ahmad, I.; Khalil, A.T.; Mukherjee, S.; Javed, R.; Ayaz, M.; Raza, A.; Shinwari, Z.K. Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Appl. Microbiol. Biotechnol., 2018, 102(10), 4305-4318.
[http://dx.doi.org/10.1007/s00253-018-8939-z] [PMID: 29589095]
[104]
Akhtar, M.J.; Ahamed, M.; Kumar, S.; Khan, M.M.; Ahmad, J.; Alrokayan, S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine, 2012, 7, 845-857.
[http://dx.doi.org/10.2147/IJN.S29129] [PMID: 22393286]
[105]
Sivaraj, R.; Rahman, P.K.; Rajiv, P.; Salam, H.A.; Venckatesh, R. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 133, 178-181.
[106]
Gowdhami, B.; Jaabir, M.; Archunan, G.; Suganthy, N. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater. Sci. Eng. C, 2019, 103, 109840.
[http://dx.doi.org/10.1016/j.msec.2019.109840] [PMID: 31349511]
[107]
Hussain, A.; Oves, M.; Alajmi, M.F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M.T.; El-Seedif, H.R.; Ali, I. Biogenesis of ZnO nanopar-ticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Advances, 2019, 9(27), 15357-15369.
[http://dx.doi.org/10.1039/C9RA01659G]
[108]
Ahmar Rauf, M.; Oves, M.; Ur Rehman, F.; Rauf Khan, A.; Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother., 2019, 116, 108983.
[http://dx.doi.org/10.1016/j.biopha.2019.108983] [PMID: 31125822]
[109]
El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira Platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials, 2021, 11(1), 95.
[http://dx.doi.org/10.3390/nano11010095] [PMID: 33406606]
[110]
Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; Maaza, M. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B, 2017, 167, 282-289.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.013] [PMID: 28110253]
[111]
Ahn, E.Y.; Jin, H.; Park, Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater. Sci. Eng. C, 2019, 101, 204-216.
[http://dx.doi.org/10.1016/j.msec.2019.03.095] [PMID: 31029313]
[112]
Bin-Jumah, M.; Al-Abdan, M.; Albasher, G.; Alarifi, S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int. J. Nanomedicine, 2020, 15, 1537-1548.
[http://dx.doi.org/10.2147/IJN.S239861] [PMID: 32210550]
[113]
Korkmaz, N.; Ceylan, Y.; Hamid, A.; Karadag, A.; Bulbul, A.S.; Aftab, M.N.; Cevik, O.; Sen, F. Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. J. Drug Deliv. Sci. Technol., 2020, 59, 101864.
[http://dx.doi.org/10.1016/j.jddst.2020.101864]
[114]
Dharmaraj, D.; Krishnamoorthy, M.; Rajendran, K.; Karuppiah, K.; Annamalai, J.; Durairaj, K.R.; Santhiyagu, P.; Ethiraj, K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J. Drug Deliv. Sci. Technol., 2021, 61, 102111.
[http://dx.doi.org/10.1016/j.jddst.2020.102111]
[115]
Rajan, A.; Vilas, V.; Philip, D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J. Mol. Liq., 2015, 212, 331-339.
[http://dx.doi.org/10.1016/j.molliq.2015.09.013]
[116]
Khan, A.U.; Yuan, Q.; Wei, Y.; Khan, S.U.; Tahir, K.; Khan, Z.U.H.; Ahmad, A.; Ali, F.; Ali, S.; Nazir, S. Longan fruit juice mediated synthesis of uniformly dispersed Spherical aunps: Cytotoxicity against human breast cancer cell line MCF-7, Antioxidant and Fluorescent Properties. RSC Advances, 2016, 6(28), 23775-23782.
[http://dx.doi.org/10.1039/C5RA27100B]
[117]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep., 2014, 4, 42-49.
[http://dx.doi.org/10.1016/j.btre.2014.08.002] [PMID: 28626661]
[118]
Castro-Aceituno, V.; Abbai, R.; Moon, S.S.; Ahn, S.; Mathiyalagan, R.; Kim, Y.J.; Kim, Y.J.; Yang, D.C. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung can-cer cell line. Biomed. Pharmacother., 2017, 93, 995-1003.
[http://dx.doi.org/10.1016/j.biopha.2017.07.040] [PMID: 28724260]
[119]
Wiesenthal, A.; Hunter, L.; Wang, S.; Wickliffe, J.; Wilkerson, M. Nanoparticles: small and mighty. Int. J. Dermatol., 2011, 50(3), 247-254.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04815.x] [PMID: 21342155]
[120]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[121]
Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Seabra, A.B. Green tea extract mediated bio-genic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci., 2019, 463, 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[122]
Gopinath, V.; Priyadarshini, S.; Loke, M.F.; Arunkumar, J.; Marsili, E. MubarakAli, D.; Velusamy, P.; Vadivelu, J. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem., 2017, 10(8), 1107-1117.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.011]
[123]
Składanowski, M.; Golinska, P.; Rudnicka, K.; Dahm, H.; Rai, M. Evaluation of cytotoxicity, immune compatibility and antibacterial activ-ity of biogenic silver nanoparticles. Med. Microbiol. Immunol., 2016, 205(6), 603-613.
[http://dx.doi.org/10.1007/s00430-016-0477-7] [PMID: 27620485]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy