Research Article

Screening and in Silico Functional Analysis of MiRNAs Associated with Acute Myeloid Leukemia Relapse

Author(s): Ali Amini Fard, Hamzeh Rahimi, Zinat Shams and Pegah Ghoraeian*

Volume 11, Issue 3, 2022

Published on: 29 September, 2022

Page: [227 - 244] Pages: 18

DOI: 10.2174/2211536611666220511160502

Price: $65

conference banner
Abstract

Background: Hematologic malignancies are among fatal diseases with different subtypes. Acute myeloid leukemia (AML) is a subtype showing a high invasion rate to different tissues.

Objective: AML patients, even after treatment, show an increased rate of recurrence, and this relapsed profile of AML has turned this malignancy into big challenges in the medical scope.

Methods: In the current study, we aimed to investigate hub-genes and potential signaling pathways in AML recurrence. Two expression profiles of genes and non-coding RNAs were extracted from the Gene Expression Omnibus (GEO) database. Target genes of identified miRNAs were predicted through bioinformatics tools. GO and KEGG pathway enrichment analyses were conducted to discover common target genes and differentially expressed genes. Protein‐protein interaction (PPI) network was constructed and visualized through the STRING online database and Cytoscape software, respectively. Hub-genes of constructed PPI were found through the CytoHubba plugin of Cytoscape software.

Results: As a result, 109 differentially expressed genes and 45 differentially expressed miRNAs were found, and the top enriched pathways were immune response, xhemokine activity, immune System, and plasma membrane. The hub-genes were TNF, IL6, TLR4, VEGFA, PTPRC, TLR7, TLR1, CD44, CASP1, and CD68.

Conclusion: The present investigation based on the in silico analysis and microarray GEO databases may provide a novel understanding of the mechanisms related to AML relapse.

Keywords: Acute myeloid leukemia, bioinformatics, microrna, protein‐protein interaction, cancer, hematologic malignancies.

Graphical Abstract
[1]
Jennings CD, Foon KA. Recent advances in flow cytometry: Application to the diagnosis of hematologic malignancy. Blood 1997; 90(8): 2863-92.
[http://dx.doi.org/10.1182/blood.V90.8.2863] [PMID: 9376567]
[2]
Padró T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95(8): 2637-44.
[http://dx.doi.org/10.1182/blood.V95.8.2637] [PMID: 10753845]
[3]
Deschler B, Lübbert M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006; 107(9): 2099-107.
[http://dx.doi.org/10.1002/cncr.22233] [PMID: 17019734]
[4]
Wong RS, Cheong S-K. Leukaemic stem cells: Drug resistance, metastasis and therapeutic implications. Malays J Pathol 2012; 34(2): 77-88.
[PMID: 23424769]
[5]
Lyu X, Xin Y, Mi R, et al. Overexpression of Wilms tumor 1 gene as a negative prognostic indicator in acute myeloid leukemia. PLoS One 2014; 9(3): e92470.
[http://dx.doi.org/10.1371/journal.pone.0092470] [PMID: 24667279]
[6]
Eden T. Aetiology of childhood leukaemia. Cancer Treat Rev 2010; 36(4): 286-97.
[http://dx.doi.org/10.1016/j.ctrv.2010.02.004] [PMID: 20223594]
[7]
Ferrara F, D’Arco AM, De Simone M, Mele G, Califano C, Pocali B. Fludarabine and cytarabine as continuous sequential infusion for elder-ly patients with acute myeloid leukemia. Haematologica 2005; 90(6): 776-84.
[8]
Shlush LI, Mitchell A. AML evolution from preleukemia to leukemia and relapse. Best Pract Res Clin Haematol 2015; 28(2-3): 81-9.
[http://dx.doi.org/10.1016/j.beha.2015.10.004] [PMID: 26590763]
[9]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[10]
Nana-Sinkam SP, Croce CM. MicroRNA dysregulation in cancer: Opportunities for the development of microRNA-based drugs. IDrugs 2010; 13(12): 843-6.
[11]
Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 2011; 9(1): 34.
[http://dx.doi.org/10.1186/1741-7007-9-34] [PMID: 21627854]
[12]
Clough E, Barrett T. The gene expression omnibus database. In: Mathé E, Davis S, Eds. Statistical genomics methods in molecular biology. New York, NY: Humana Press 2016; pp. 93-110.
[13]
Smyth GK. Limma: Linear models for microarray data. In: gentleman r, carey vj, huber w, irizarry ra, dudoit s, Eds. bioinformatics and computational biology solutions using r and bioconductor statistics for biology and health. New York, NY: Springer 2005; pp. 397-420.
[http://dx.doi.org/10.1007/0-387-29362-0_23]
[14]
Rao Y, Lee Y, Jarjoura D, et al. A comparison of normalization techniques for microRNA microarray data. Stat Appl Genet Mol Biol 2008; 7(1): e22.
[http://dx.doi.org/10.2202/1544-6115.1287] [PMID: 18673291]
[15]
Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004; 5(10): R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[16]
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R. The multiMiR R package and database: Integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 2014; 42(17): e133.
[17]
Timalsina P, Charles K, Mondal AM. STRING PPI score to characterize protein subnetwork biomarkers for human diseases and pathways. In: 2014 IEEE International Conference on Bioinformatics and Bioengineering. 2014 Nov 10-12; Boca Raton, FL, USA.
[http://dx.doi.org/10.1109/BIBE.2014.46]
[18]
Saito R, Smoot ME, Ono K, et al. A travel guide to Cytoscape plugins. Nat Methods 2012; 9(11): 1069-76.
[http://dx.doi.org/10.1038/nmeth.2212] [PMID: 23132118]
[19]
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: Identifying hub objects and sub-networks from complex interac-tome. BMC Syst Biol 2014; 8(4) (Suppl. 4): S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[20]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[21]
Fonseka P, Pathan M, Chitti SV, Kang T, Mathivanan S. FunRich enables enrichment analysis of OMICs datasets. J Mol Biol 2021; 433(11): 166747.
[http://dx.doi.org/10.1016/j.jmb.2020.166747] [PMID: 33310018]
[22]
Staber PB, Linkesch W, Zauner D, et al. Common alterations in gene expression and increased proliferation in recurrent acute myeloid leu-kemia. Oncogene 2004; 23(4): 894-904.
[http://dx.doi.org/10.1038/sj.onc.1207192] [PMID: 14749762]
[23]
Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf Fusion 2019; 50: 71-91.
[http://dx.doi.org/10.1016/j.inffus.2018.09.012] [PMID: 30467459]
[24]
Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. J Biochem Mol Toxicol 2012; 26(2): 79-86.
[http://dx.doi.org/10.1002/jbt.20412] [PMID: 22162084]
[25]
Hsu SH, Wang B, Kota J, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122(8): 2871-83.
[http://dx.doi.org/10.1172/JCI63539] [PMID: 22820288]
[26]
Zhao J-J, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 2009; 25(1): 13-20.
[http://dx.doi.org/10.1007/s00381-008-0701-x] [PMID: 18818933]
[27]
Volk A, Li J, Xin J, et al. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014; 211(6): 1093-108.
[http://dx.doi.org/10.1084/jem.20130990] [PMID: 24842373]
[28]
Kagoya Y, Yoshimi A, Kataoka K, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest 2014; 124(2): 528-42.
[http://dx.doi.org/10.1172/JCI68101] [PMID: 24382349]
[29]
Inoue K, Sugiyama H, Ogawa H, et al. Expression of the interleukin-6 (IL-6), IL-6 receptor, and gp130 genes in acute leukemia. Blood 1994; 84(8): 2672-80.
[30]
Zhang TY, Dutta R, Benard B, Zhao F, Yin R, Majeti R. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leu-kemia. Sci Transl Med 2020; 12(538): eaax5104.
[http://dx.doi.org/10.1126/scitranslmed.aax5104] [PMID: 32269167]
[31]
Dix D, Cellot S, Price V, et al. Association between corticosteroids and infection, sepsis, and infectious death in pediatric acute myeloid leukemia (AML): Results from the Canadian infections in AML research group. Clin Infect Dis 2012; 55(12): 1608-14.
[http://dx.doi.org/10.1093/cid/cis774] [PMID: 22955431]
[32]
Medvedev AE. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interferon Cytokine Res 2013; 33(9): 467-84.
[http://dx.doi.org/10.1089/jir.2012.0140] [PMID: 23675778]
[33]
Schnetzke U, Spies-Weisshart B, Yomade O, et al. Polymorphisms of Toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes Immun 2015; 16(1): 83-8.
[http://dx.doi.org/10.1038/gene.2014.67] [PMID: 25427560]
[34]
Lu Y, Liu J, Liu Y, et al. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochem Biophys Res Commun 2015; 464(2): 541-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.002] [PMID: 26159925]
[35]
Brenner AK, Bruserud Ø. Functional toll-like receptors (TLRs) are expressed by a majority of primary human acute myeloid leukemia cells and inducibility of the TLR signaling pathway is associated with a more favorable phenotype. Cancers (Basel) 2019; 11(7): 973.
[http://dx.doi.org/10.3390/cancers11070973] [PMID: 31336716]
[36]
Eriksson M, Peña P, Chapellier M, et al. Toll-like receptor 1 is a candidate therapeutic target in acute myeloid leukemia. Blood 2014; 124(21): 5782.
[http://dx.doi.org/10.1182/blood.V124.21.5782.5782]
[37]
Ghannadan M, Wimazal F, Simonitsch I, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with acute myeloid leukemia. Correlation between VEGF expression and the FAB category. Am J Clin Pathol 2003; 119(5): 663-71.
[http://dx.doi.org/10.1309/331QX7AXKWFJFKXM] [PMID: 12760284]
[38]
Padró T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16(7): 1302-10.
[http://dx.doi.org/10.1038/sj.leu.2402534] [PMID: 12094254]
[39]
Fu J, Fu J, Chen X, Zhang Y, Gu H, Bai Y. CD147 and VEGF co-expression predicts prognosis in patients with acute myeloid leukemia. Jpn J Clin Oncol 2010; 40(11): 1046-52.
[http://dx.doi.org/10.1093/jjco/hyq098] [PMID: 20558462]
[40]
Patel S, Yang J, Kashef G, et al. Prognostic significance of VEGF receptor I and II expression in patients with acute myeloid leukemia. J Clin Oncol 2004; 22(14) (Suppl.): 9623.
[http://dx.doi.org/10.1200/jco.2004.22.90140.9623]
[41]
Yamamoto K, Yakushijin K, Kurata K, et al. Loss of CD45 expression at relapse of acute myeloid leukemia. Rinsho Ketsueki 2017; 58(8): 938-41.
[PMID: 28883278]
[42]
Guo L, Chen L, Wang H. CD45 correlates with adverse risk stratification, decreased treatment response and unfavorable survival profiles in elderly acute myeloid leukemia patients. Cancer Biomark 2018; 23(3): 455-63.
[http://dx.doi.org/10.3233/CBM-181602] [PMID: 30347598]
[43]
Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med 2018; 379(24): 2330-41.
[http://dx.doi.org/10.1056/NEJMoa1808777] [PMID: 30380364]
[44]
Merle M, Fischbacher D, Liepert A, et al. Serum chemokine-release profiles in AML-patients might contribute to predict the clinical course of the disease. Immunol Invest 2020; 49(4): 365-85.
[http://dx.doi.org/10.1080/08820139.2019.1661429] [PMID: 31535582]
[45]
Vadakekolathu J, Minden MD, Hood T, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med 2020; 12(546): eaaz0463.
[http://dx.doi.org/10.1126/scitranslmed.aaz0463] [PMID: 32493790]
[46]
Zampini M, Bisio V, Leszl A, et al. A three-miRNA-based expression signature at diagnosis can predict occurrence of relapse in children with t(8;21) RUNX1-RUNX1T1 acute myeloid leukaemia. Br J Haematol 2018; 183(2): 298-301.
[http://dx.doi.org/10.1111/bjh.14950] [PMID: 28961307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy