Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Berberine: Is it a Promising Agent for Mental Disorders Treatment?

Author(s): Mehran Shayganfard*

Volume 16, Issue 3, 2023

Published on: 07 September, 2022

Article ID: e090522204493 Pages: 14

DOI: 10.2174/1874467215666220509213122

Price: $65

Open Access Journals Promotions 2
Abstract

Effective and better-tolerated agents for the treatment of most of psychiatric disorders are one of the main challenges. Recently, anti-inflammatory, antioxidants and neuroprotective agents as adjuvant therapy have been shown to be able to play a role against the degenerative mechanisms commonly related to psychiatric conditions. Berberine, a biologically active alkaloid derived from various plants, represents many pharmacological impacts, such as antimicrobial, antidiabetic, anticancer, antioxidant and anti-inflammatory activities. This compound also protects neurons and improves the survival, growth and action of nerve cells due to its high potential for crossing the blood-brain barrier. Ample evidence reported that berberine had been associated with CNS-related disorders, including Alzheimer's, cerebral ischemia, mental depression, schizophrenia and anxiety. Thus, in this review, we aimed to indicate the effectiveness of berberine on mental disorders

Keywords: Berberine, anxiety, depression, schizophrenia, Alzheimer’s disease, neurodegenerative disease.

Graphical Abstract
[1]
Jamilian, H.; Amirani, E.; Milajerdi, A.; Kolahdooz, F.; Mirzaei, H.; Zaroudi, M.; Ghaderi, A.; Asemi, Z. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109651.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109651] [PMID: 31095994]
[2]
Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320.
[http://dx.doi.org/10.1016/j.nut.2015.09.003] [PMID: 26706022]
[3]
Kaufmann, F.N.; Gazal, M.; Bastos, C.R.; Kaster, M.P.; Ghisleni, G. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. Eur. J. Pharmacol., 2016, 784, 192-198.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.026] [PMID: 27235294]
[4]
Asher, G.N.; Gerkin, J.; Gaynes, B.N. Complementary therapies for mental health disorders. Med. Clin. North Am., 2017, 101(5), 847-864.
[http://dx.doi.org/10.1016/j.mcna.2017.04.004] [PMID: 28802467]
[5]
Hashimoto, K. Abnormalities in the brain-immune system in psychotic disorders: from pathogenesis to prevention. Eur. Arch. Psychiatry Clin. Neurosci., 2017, 267(5), 365-367.
[http://dx.doi.org/10.1007/s00406-017-0814-x] [PMID: 28593328]
[6]
Han, Q.Q.; Shen, T.T.; Wang, F.; Wu, P.F.; Chen, J.G. Preventive and therapeutic potential of vitamin c in mental disorders. Curr. Med. Sci., 2018, 38(1), 1-10.
[http://dx.doi.org/10.1007/s11596-018-1840-2] [PMID: 30074145]
[7]
Berberine. livertox: clinical and research information on druginduced liver injury; national institute of diabetes and digestive and kidney diseases: bethesda, MD, 2012.
[8]
Dziedzic, A.; Wojtyczka, R.D.; Kubina, R. Inhibition of oral streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds. Molecules, 2015, 20(8), 13705-13724.
[http://dx.doi.org/10.3390/molecules200813705] [PMID: 26225951]
[9]
Wojtyczka, R.D.; Dziedzic, A. Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 2014, 19(5), 6583-6596.
[http://dx.doi.org/10.3390/molecules19056583] [PMID: 24858093]
[10]
Harikumar, K.B.; Kuttan, G.; Kuttan, R. Inhibition of progression of erythroleukemia induced by Friend virus in BALB/c mice by natural products-berberine, curcumin and picroliv. J. Exp. Ther. Oncol., 2008, 7(4), 275-284.
[PMID: 19227007]
[11]
Schmeller, T.; Latz-Brüning, B.; Wink, M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry, 1997, 44(2), 257-266.
[http://dx.doi.org/10.1016/S0031-9422(96)00545-6] [PMID: 9004542]
[12]
Zeng, X.; Zeng, X. Relationship between the clinical effects of berberine on severe congestive heart failure and its concentration in plasma studied by HPLC. Biomed. Chromatogr., 1999, 13(7), 442-444.
[http://dx.doi.org/10.1002/(SICI)1099-0801(199911)13:7<442::AID-BMC908>3.0.CO;2-A] [PMID: 10534753]
[13]
Ghareeb, D.A.; Khalil, S.; Hafez, H.S.; Bajorath, J.; Ahmed, H.E.; Sarhan, E. Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 361847.
[http://dx.doi.org/10.1155/2015/361847]
[14]
Dong, H.; Zhao, Y.; Zhao, L.; Lu, F. The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med., 2013, 79(6), 437-446.
[http://dx.doi.org/10.1055/s-0032-1328321] [PMID: 23512497]
[15]
Meng, S.; Wang, L.S.; Huang, Z.Q.; Zhou, Q.; Sun, Y.G.; Cao, J.T.; Li, Y.G.; Wang, C.Q. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 406-411.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05670.x] [PMID: 22220931]
[16]
Asbaghi, O.; Ghanbari, N.; Shekari, M. Reiner, Ž.; Amirani, E.; Hallajzadeh, J.; Mirsafaei, L.; Asemi, Z. The effect of berberine supplementation on obesity parameters, inflammation and liver function enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN, 2020, 38, 43-49.
[http://dx.doi.org/10.1016/j.clnesp.2020.04.010] [PMID: 32690176]
[17]
Pu, Z.; Sun, Y.; Jiang, H.; Hou, Q.; Yan, H.; Wen, H.; Li, G. Effects of berberine on gut microbiota in patients with mild metabolic disorders induced by olanzapine. Am. J. Chin. Med., 2021, 49(8), 1949-1963.
[http://dx.doi.org/10.1142/S0192415X21500920] [PMID: 34961418]
[18]
Chan, M.; Qin, Z.; Man, S.C.; Lam, M.; Lai, W.H.; Ng, R.M.K. Adjunctive berberine reduces antipsychotic-associated weight gain and metabolic syndrome in patients with schizophrenia: a randomized controlled trial. Psychiatry Clin. Neurosci., 2022, 76(3), 77-85.
[PMID: 34931749]
[19]
Qiu, Y.; Li, M.; Zhang, Y.; Liu, Y.; Zhao, Y.; Zhang, J.; Jia, Q.; Li, J. Berberine treatment for weight gain in patients with schizophrenia by regulating leptin rather than adiponectin. Asian J. Psychiatr., 2022, 67, 102896.
[http://dx.doi.org/10.1016/j.ajp.2021.102896] [PMID: 34773803]
[20]
Hallajzadeh, J.; Maleki Dana, P.; Mobini, M.; Asemi, Z.; Mansournia, M.A.; Sharifi, M.; Yousefi, B. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med. Oncol., 2020, 37(6), 49.
[http://dx.doi.org/10.1007/s12032-020-01367-9] [PMID: 32303850]
[21]
Asemi, Z.; Behnam, M.; Pourattar, M.A.; Mirzaei, H.; Razavi, Z.S.; Tamtaji, O.R. Therapeutic potential of berberine in the treatment of glioma: insights into its regulatory mechanisms. Cell. Mol. Neurobiol., 2021, 41(6), 1195-1201.
[PMID: 32557203]
[22]
Li, H.; He, C.; Wang, J.; Li, X.; Yang, Z.; Sun, X.; Fang, L.; Liu, N. Berberine activates peroxisome proliferator-activated receptor gamma to increase atherosclerotic plaque stability in Apoe-/- mice with hyperhomocysteinemia. J. Diabetes Investig., 2016, 7(6), 824-832.
[http://dx.doi.org/10.1111/jdi.12516] [PMID: 27181586]
[23]
Jin, Y.; Khadka, D.B.; Cho, W.J. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin. Ther. Pat., 2016, 26(2), 229-243.
[http://dx.doi.org/10.1517/13543776.2016.1118060] [PMID: 26610159]
[24]
Xiao, D.; Liu, Z.; Zhang, S.; Zhou, M.; He, F.; Zou, M.; Peng, J.; Xie, X.; Liu, Y.; Peng, D. Berberine derivatives with different pharmacological activities via structural modifications. Mini Rev. Med. Chem., 2018, 18(17), 1424-1441.
[http://dx.doi.org/10.2174/1389557517666170321103139] [PMID: 28325147]
[25]
Fan, J.; Zhang, K.; Jin, Y.; Li, B.; Gao, S.; Zhu, J.; Cui, R. Pharmacological effects of berberine on mood disorders. J. Cell. Mol. Med., 2019, 23(1), 21-28.
[http://dx.doi.org/10.1111/jcmm.13930] [PMID: 30450823]
[26]
Kysenius, K.; Huttunen, H.J. Stress-induced upregulation of VLDL receptor alters Wnt-signaling in neurons. Exp. Cell Res., 2016, 340(2), 238-247.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.001] [PMID: 26751967]
[27]
Tang, Q.L.; Lai, M.L.; Zhong, Y.F.; Wang, A.M.; Su, J.K.; Zhang, M.Q. Antinociceptive effect of berberine on visceral hypersensitivity in rats. World J. Gastroenterol., 2013, 19(28), 4582-4589.
[http://dx.doi.org/10.3748/wjg.v19.i28.4582] [PMID: 23901236]
[28]
Javadi, B.; Sahebkar, A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol. Res., 2017, 124, 34-42.
[http://dx.doi.org/10.1016/j.phrs.2017.07.022] [PMID: 28757189]
[29]
Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23, 736-744.
[http://dx.doi.org/10.1016/j.phymed.2016.03.013]
[30]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[31]
Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem., 2017, 140, 331-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.020] [PMID: 28987600]
[32]
Kulkarni, S.K.; Dhir, A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res., 2010, 24(3), 317-324.
[http://dx.doi.org/10.1002/ptr.2968] [PMID: 19998323]
[33]
Shan, W.J.; Huang, L.; Zhou, Q.; Meng, F.C.; Li, X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem., 2011, 46(12), 5885-5893.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.051] [PMID: 22019228]
[34]
Küpeli, E. Koşar, M.; Yeşilada, E.; Hüsnü, K.; Başer, C. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci., 2002, 72(6), 645-657.
[http://dx.doi.org/10.1016/S0024-3205(02)02200-2] [PMID: 12467905]
[35]
Shamsa, F.; Ahmadiani, A.; Khosrokhavar, R. Antihistaminic and anticholinergic activity of barberry fruit (Berberis vulgaris) in the guinea-pig ileum. J. Ethnopharmacol., 1999, 64(2), 161-166.
[http://dx.doi.org/10.1016/S0378-8741(98)00122-6] [PMID: 10197751]
[36]
Zha, W.; Liang, G.; Xiao, J.; Studer, E.J.; Hylemon, P.B.; Pandak, W.M., Jr; Wang, G.; Li, X.; Zhou, H. Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages. PLoS One, 2010, 5(2), e9069.
[http://dx.doi.org/10.1371/journal.pone.0009069] [PMID: 20161729]
[37]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[38]
Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I. Berberine, an epiphany against cancer. Molecules, 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[39]
Di Pierro, F.; Villanova, N.; Agostini, F.; Marzocchi, R.; Soverini, V.; Marchesini, G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab. Syndr. Obes., 2012, 5, 213-217.
[http://dx.doi.org/10.2147/DMSO.S33718] [PMID: 22924000]
[40]
Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[41]
Hussien, H.M.; Abd-Elmegied, A.; Ghareeb, D.A.; Hafez, H.S.; Ahmed, H.E.A.; El-Moneam, N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol., 2018, 111, 432-444.
[http://dx.doi.org/10.1016/j.fct.2017.11.025]
[42]
Kim, M.; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[43]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on huntington’s disease transgenic mouse model. PLoS One, 2015, 10(7), e0134142.
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[44]
Fan, D.; Liu, L.; Wu, Z.; Cao, M. Combating neurodegenerative diseases with the plant alkaloid berberine: molecular mechanisms and therapeutic potential. Curr. Neuropharmacol., 2019, 17(6), 563-579.
[http://dx.doi.org/10.2174/1570159X16666180419141613] [PMID: 29676231]
[45]
Sadraie, S.; Kiasalari, Z.; Razavian, M.; Azimi, S.; Sedighnejad, L.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: insights into underlying molecular mechanisms. Metab. Brain Dis., 2019, 34(1), 245-255.
[http://dx.doi.org/10.1007/s11011-018-0349-5] [PMID: 30456649]
[46]
Ahmed, T.; Gilani, A.U.; Abdollahi, M.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep., 2015, 67, 970-979.
[http://dx.doi.org/10.1016/j.pharep.2015.03.002]
[47]
Benaissa, F.; Mohseni-Rad, H.; Rahimi-Moghaddam, P.; Mahmoudian, M. Berberine reduces the hypoxic-ischemic insult in rat pup brain. Acta Physiol. Hung., 2009, 96(2), 213-220.
[http://dx.doi.org/10.1556/APhysiol.96.2009.2.6] [PMID: 19457765]
[48]
Lin, T.Y.; Lin, Y.W.; Lu, C.W.; Huang, S.K.; Wang, S.J. Berberine inhibits the release of glutamate in nerve terminals from rat cerebral cortex. PLoS One, 2013, 8(6), e67215.
[http://dx.doi.org/10.1371/journal.pone.0067215] [PMID: 23840629]
[49]
Li, S.; Wu, C.; Chen, J.; Lu, P.; Chen, C.; Fu, M.; Fang, J.; Gao, J.; Zhu, L.; Liang, R.; Shen, X.; Yang, H. An effective solution to discover synergistic drugs for anti-cerebral ischemia from traditional Chinese medicinal formulae. PLoS One, 2013, 8(11), e78902.
[http://dx.doi.org/10.1371/journal.pone.0078902] [PMID: 24236065]
[50]
Mak, S.; Luk, W.W.; Cui, W.; Hu, S.; Tsim, K.W.; Han, Y. Synergistic inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J. Mol. Neurosci., 2014, 53, 511-516.
[http://dx.doi.org/10.1007/s12031-014-0288-5]
[51]
Kim, M.H.; Kim, S.H.; Yang, W.M. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease. Planta Med., 2014, 80(15), 1249-1258.
[http://dx.doi.org/10.1055/s-0034-1383038] [PMID: 25210998]
[52]
Zou, H.; Long, J.; Zhang, Q.; Zhao, H.; Bian, B.; Wang, Y.; Zhang, J.; Zhao, H.; Wang, L. Induced cortical neurogenesis after focal cerebral ischemia--Three active components from Huang-Lian-Jie-Du Decoction. J. Ethnopharmacol., 2016, 178, 115-124.
[http://dx.doi.org/10.1016/j.jep.2015.12.001] [PMID: 26657578]
[53]
Rabbani, G.H.; Butler, T.; Knight, J.; Sanyal, S.C.; Alam, K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J. Infect. Dis., 1987, 155(5), 979-984.
[http://dx.doi.org/10.1093/infdis/155.5.979] [PMID: 3549923]
[54]
Cernáková. M.; Kost’álová, D.; Kettmann, V.; Plodová, M.; Tóَth, J.; Drímal, J. Potential antimutagenic activity of berberine, a constituent of Mahonia aquifolium. BMC Complement. Altern. Med., 2002, 2(1), 2.
[http://dx.doi.org/10.1186/1472-6882-2-2] [PMID: 11943071]
[55]
Sabir, M.; Bhide, N.K. Study of some pharmacological actions of berberine. Indian J. Physiol. Pharmacol., 1971, 15(3), 111-132.
[PMID: 4109503]
[56]
Li, R. Indigenous identity and traditional medicine: Pharmacy at the crossroads. Can. Pharm. J., 2017, 150(5), 279-281.
[http://dx.doi.org/10.1177/1715163517725020] [PMID: 28894496]
[57]
Jahnke, G.D.; Price, C.J.; Marr, M.C.; Myers, C.B.; George, J.D. Developmental toxicity evaluation of berberine in rats and mice. Birth Defects Res. B Dev. Reprod. Toxicol., 2006, 77(3), 195-206.
[http://dx.doi.org/10.1002/bdrb.20075] [PMID: 16634078]
[58]
Chan, E. Displacement of bilirubin from albumin by berberine. Biol. Neonate, 1993, 63(4), 201-208.
[http://dx.doi.org/10.1159/000243932] [PMID: 8513024]
[59]
Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S. Šmejkal, K.; Malaník, M.; Sychrová, A.; Barreca, D.; Ziberna, L.; Mahomoodally, M.F.; Zengin, G.; Xu, S.; Nabavi, S.M.; Shen, A.Z. Berberine in Cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics, 2019, 9(7), 1923-1951.
[http://dx.doi.org/10.7150/thno.30787] [PMID: 31037148]
[60]
Chang, W.; Chen, L.; Hatch, G.M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem. Cell Biol., 2015, 93, 479-486.
[61]
Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21.
[http://dx.doi.org/10.3389/fmolb.2018.00021] [PMID: 29616225]
[62]
Ďuračková, Z. Some current insights into oxidative stress. Physiol. Res., 2010, 59(4), 459-469.
[http://dx.doi.org/10.33549/physiolres.931844] [PMID: 19929132]
[63]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[64]
Ménard, C.; Hodes, G.E.; Russo, S.J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 2016, 321, 138-162.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.053] [PMID: 26037806]
[65]
Carr, G.V.; Lucki, I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl.), 2011, 213(2-3), 265-287.
[http://dx.doi.org/10.1007/s00213-010-2097-z] [PMID: 21107537]
[66]
Maletic, V.; Robinson, M.; Oakes, T.; Iyengar, S.; Ball, S.G.; Russell, J. Neurobiology of depression: an integrated view of key findings. Int. J. Clin. Pract., 2007, 61(12), 2030-2040.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01602.x] [PMID: 17944926]
[67]
Matthes, S.; Mosienko, V.; Bashammakh, S.; Alenina, N.; Bader, M. Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology, 2010, 85(2), 95-109.
[http://dx.doi.org/10.1159/000279322] [PMID: 20130443]
[68]
Maes, M.; Bosmans, E.; Suy, E.; Vandervorst, C.; De Jonckheere, C.; Raus, J. Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology, 1991, 24(3), 115-120.
[http://dx.doi.org/10.1159/000119472] [PMID: 2135065]
[69]
Maes, M.; Smith, R.; Scharpe, S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 1995, 20(2), 111-116.
[http://dx.doi.org/10.1016/0306-4530(94)00066-J] [PMID: 7899532]
[70]
Scapagnini, G.; Davinelli, S.; Drago, F.; De Lorenzo, A.; Oriani, G. Antioxidants as antidepressants: fact or fiction? CNS Drugs, 2012, 26(6), 477-490.
[http://dx.doi.org/10.2165/11633190-000000000-00000] [PMID: 22668245]
[71]
Motivala, S.J.; Sarfatti, A.; Olmos, L.; Irwin, M.R. Inflammatory markers and sleep disturbance in major depression. Psychosom. Med., 2005, 67(2), 187-194.
[http://dx.doi.org/10.1097/01.psy.0000149259.72488.09] [PMID: 15784782]
[72]
Gardner, A.; Boles, R.G. Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 730-743.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.030] [PMID: 20691744]
[73]
Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuroendocrinol. Lett., 2009, 30(4), 462-469.
[PMID: 20010493]
[74]
Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuroendocrinol. Lett., 2011, 32(2), 133-140.
[PMID: 21552194]
[75]
Herken, H.; Gurel, A.; Selek, S.; Armutcu, F.; Ozen, M.E.; Bulut, M.; Kap, O.; Yumru, M.; Savas, H.A.; Akyol, O. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch. Med. Res., 2007, 38(2), 247-252.
[http://dx.doi.org/10.1016/j.arcmed.2006.10.005] [PMID: 17227736]
[76]
Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J. Affect. Disord., 2010, 125(1-3), 287-294.
[http://dx.doi.org/10.1016/j.jad.2009.12.014] [PMID: 20083310]
[77]
Forlenza, M.J.; Miller, G.E. Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom. Med., 2006, 68(1), 1-7.
[http://dx.doi.org/10.1097/01.psy.0000195780.37277.2a] [PMID: 16449405]
[78]
Owens, D.G.; Miller, P.; Lawrie, S.M.; Johnstone, E.C. Pathogenesis of schizophrenia: a psychopathological perspective. Br. J. Psychiatry, 2005, 186(5), 386-393.
[http://dx.doi.org/10.1192/bjp.186.5.386] [PMID: 15863742]
[79]
Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: overview and treatment options. P.T, 2014, 39, 638-645.
[80]
Do, K.Q. Schizophrenia: genes, environment and neurodevelopment. Rev. Med. Suisse, 2013, 9, 4-7.
[81]
Mahadik, S.P.; Mukherjee, S. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr. Res., 1996, 19(1), 1-17.
[http://dx.doi.org/10.1016/0920-9964(95)00049-6] [PMID: 9147491]
[82]
Monin, A.; Baumann, P.S.; Griffa, A.; Xin, L.; Mekle, R.; Fournier, M.; Butticaz, C.; Klaey, M.; Cabungcal, J.H.; Steullet, P.; Ferrari, C.; Cuenod, M.; Gruetter, R.; Thiran, J.P.; Hagmann, P.; Conus, P.; Do, K.Q. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol. Psychiatry, 2015, 20(7), 827-838.
[http://dx.doi.org/10.1038/mp.2014.88] [PMID: 25155877]
[83]
Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry, 2019, 19(1), 77.
[http://dx.doi.org/10.1186/s12888-019-2059-x] [PMID: 30791895]
[84]
Dietrich-Muszalska, A.; Olas, B. Isoprostenes as indicators of oxidative stress in schizophrenia. World J. Biol. Psychiatry, 2009, 10, 27-33.
[http://dx.doi.org/10.1080/15622970701361263]
[85]
Reddy, R.; Keshavan, M.; Yao, J.K. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr. Res., 2003, 62(3), 205-212.
[http://dx.doi.org/10.1016/S0920-9964(02)00407-3] [PMID: 12837516]
[86]
Morrow, J.D. The isoprostanes - unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Curr. Pharm. Des., 2006, 12(8), 895-902.
[http://dx.doi.org/10.2174/138161206776055985] [PMID: 16533158]
[87]
Jorgensen, A.; Broedbaek, K.; Fink-Jensen, A.; Knorr, U.; Greisen Soendergaard, M.; Henriksen, T.; Weimann, A.; Jepsen, P.; Lykkesfeldt, J.; Poulsen, H.E.; Balslev Jorgensen, M. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia. Psychiatry Res., 2013, 209(3), 417-423.
[http://dx.doi.org/10.1016/j.psychres.2013.01.033] [PMID: 23465294]
[88]
Swerdlow, R.H. Pathogenesis of Alzheimer’s disease. Clin. Interv. Aging, 2007, 2(3), 347-359.
[PMID: 18044185]
[89]
Goedert, M. Neurodegeneration. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ tau, and α-synuclein. Science, 2015, 349(6248), 1255555.
[http://dx.doi.org/10.1126/science.1255555] [PMID: 26250687]
[90]
Chen, J.X.; Yan, S.S. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis., 2010, 20(Suppl. 2), S569-S578.
[http://dx.doi.org/10.3233/JAD-2010-100357] [PMID: 20463403]
[91]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19(R1), R12-R20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[92]
De Strooper, B.; Woodgett, J. Alzheimer’s disease: Mental plaque removal. Nature, 2003, 423(6938), 392-393.
[http://dx.doi.org/10.1038/423392a] [PMID: 12761533]
[93]
Phiel, C.J.; Wilson, C.A.; Lee, V.M.; Klein, P.S. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature, 2003, 423(6938), 435-439.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[94]
Hernández. F.; Avila, J. The role of glycogen synthase kinase 3 in the early stages of Alzheimers’ disease. FEBS Lett., 2008, 582(28), 3848-3854.
[http://dx.doi.org/10.1016/j.febslet.2008.10.026] [PMID: 18955053]
[95]
Bossy-Wetzel, E.; Schwarzenbacher, R.; Lipton, S.A. Molecular pathways to neurodegeneration. Nat. Med., 2004, 10(S7), S2-S9.
[http://dx.doi.org/10.1038/nm1067] [PMID: 15272266]
[96]
Ji, K.; Akgul, G.; Wollmuth, L.P.; Tsirka, S.E. Microglia actively regulate the number of functional synapses. PLoS One, 2013, 8(2), e56293.
[http://dx.doi.org/10.1371/journal.pone.0056293] [PMID: 23393609]
[97]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[98]
Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[99]
Xu, F.; Yang, J.; Meng, B.; Zheng, J.W.; Liao, Q.; Chen, J.P.; Chen, X.W. The effect of berberine on ameliorating chronic inflammatory pain and depression. Zhonghua Yi Xue Za Zhi, 2018, 98(14), 1103-1108.
[PMID: 29690724]
[100]
Liu, Y.M.; Niu, L.; Wang, L.L.; Bai, L.; Fang, X.Y.; Li, Y.C.; Yi, L.T. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice. Brain Res. Bull., 2017, 134, 220-227.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.008] [PMID: 28842306]
[101]
Shen, J.D.; Ma, L.G.; Hu, C.Y.; Pei, Y.Y.; Jin, S.L.; Fang, X.Y.; Li, Y.C. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice. Neurosci. Lett., 2016, 614, 77-82.
[http://dx.doi.org/10.1016/j.neulet.2016.01.002] [PMID: 26773864]
[102]
Lee, B.; Sur, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Effect of berberine on depression- and anxiety-like behaviors and activation of the noradrenergic system induced by development of morphine dependence in rats. Korean J. Physiol. Pharmacol., 2012, 16(6), 379-386.
[http://dx.doi.org/10.4196/kjpp.2012.16.6.379] [PMID: 23269899]
[103]
Fan, J.; Li, B.; Ge, T.; Zhang, Z.; Lv, J.; Zhao, J.; Wang, P.; Liu, W.; Wang, X.; Mlyniec, K.; Cui, R. Berberine produces antidepressant-like effects in ovariectomized mice. Sci. Rep., 2017, 7(1), 1310.
[http://dx.doi.org/10.1038/s41598-017-01035-5] [PMID: 28465511]
[104]
Zhu, X.; Sun, Y.; Zhang, C.; Liu, H. Effects of berberine on a rat model of chronic stress and depression via gastrointestinal tract pathology and gastrointestinal flora profile assays. Mol. Med. Rep., 2017, 15(5), 3161-3171.
[http://dx.doi.org/10.3892/mmr.2017.6353] [PMID: 28339024]
[105]
Alavijeh, M.M.; Vaezi, G.; Khaksari, M.; Hojati, V. Berberine hydrochloride attenuates voluntary methamphetamine consumption and anxiety-like behaviors via modulation of oxytocin receptors in methamphetamine addicted rats. Physiol. Behav., 2019, 206, 157-165.
[http://dx.doi.org/10.1016/j.physbeh.2019.03.024] [PMID: 30922821]
[106]
Lee, B.; Shim, I.; Lee, H.; Hahm, D.H. Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder. Korean J. Physiol. Pharmacol., 2018, 22(2), 183-192.
[http://dx.doi.org/10.4196/kjpp.2018.22.2.183] [PMID: 29520171]
[107]
Mi, G.; Liu, S.; Zhang, J.; Liang, H.; Gao, Y.; Li, N.; Yu, B.; Yang, H.; Yang, Z. Levo-Tetrahydroberberrubine Produces Anxiolytic-Like Effects in Mice through the 5-HT1A Receptor. PLoS One, 2017, 12(1), e0168964.
[http://dx.doi.org/10.1371/journal.pone.0168964] [PMID: 28085967]
[108]
Peng, W.H.; Wu, C.R.; Chen, C.S.; Chen, C.F.; Leu, Z.C.; Hsieh, M.T. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci., 2004, 75(20), 2451-2462.
[http://dx.doi.org/10.1016/j.lfs.2004.04.032] [PMID: 15350820]
[109]
Lins, B.R.; Marks, W.N.; Phillips, A.G.; Howland, J.G. Dissociable effects of the d- and l- enantiomers of govadine on the disruption of prepulse inhibition by MK-801 and apomorphine in male Long-Evans rats. Psychopharmacology (Berl.), 2017, 234(7), 1079-1091.
[http://dx.doi.org/10.1007/s00213-017-4540-x] [PMID: 28180960]
[110]
Lins, B.R.; Phillips, A.G.; Howland, J.G. Effects of D- and L-govadine on the disruption of touchscreen object-location paired associates learning in rats by acute MK-801 treatment. Psychopharmacology (Berl.), 2015, 232(23), 4371-4382.
[http://dx.doi.org/10.1007/s00213-015-4064-1] [PMID: 26359226]
[111]
Lapish, C.C.; Ahn, K.C.; Chambers, R.A.; Ashby, D.M.; Ahn, S.; Phillips, A.G. Selective effects of D- and L-govadine in preclinical tests of positive, negative, and cognitive symptoms of schizophrenia. Neuropsychopharmacology, 2014, 39, 1754-1762.
[112]
Meade, J.A.; Free, R.B.; Miller, N.R.; Chun, L.S.; Doyle, T.B.; Moritz, A.E.; Conroy, J.L.; Watts, V.J.; Sibley, D.R. (-)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology (Berl.), 2015, 232(5), 917-930.
[http://dx.doi.org/10.1007/s00213-014-3726-8] [PMID: 25231919]
[113]
Ravandi, G.S.; Shabani, M.; Bashiri, H.; Saeedi Goraghani, M.; Khodamoradi, M.; Nozari, M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci. Lett., 2019, 706, 151-157.
[http://dx.doi.org/10.1016/j.neulet.2019.05.029] [PMID: 31103726]
[114]
Chen, C.C.; Hung, T.H.; Lee, C.Y.; Wang, L.F.; Wu, C.H.; Ke, C.H.; Chen, S.F. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS One, 2014, 9(12), e115694.
[http://dx.doi.org/10.1371/journal.pone.0115694] [PMID: 25546475]
[115]
Huang, S.X.; Qiu, G.; Cheng, F.R.; Pei, Z.; Yang, Z.; Deng, X.H.; Zhu, J.H.; Chen, L.; Chen, C.C.; Lin, W.F.; Liu, Y.; Liu, Z.; Zhu, F.Q. Berberine protects secondary injury in mice with traumatic brain injury through anti-oxidative and anti-inflammatory modulation. Neurochem. Res., 2018, 43(9), 1814-1825.
[http://dx.doi.org/10.1007/s11064-018-2597-5] [PMID: 30027364]
[116]
Wang, J.; Zhang, Y. Neuroprotective effect of berberine agonist against impairment of learning and memory skills in severe traumatic brain injury via Sirt1/p38 MAPK expression. Mol. Med. Rep., 2018, 17(5), 6881-6886.
[http://dx.doi.org/10.3892/mmr.2018.8674] [PMID: 29512719]
[117]
Wang, H.C.; Wang, B.D.; Chen, M.S.; Chen, H.; Sun, C.F.; Shen, G.; Zhang, J.M. Neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury. Exp. Ther. Med., 2018, 15(1), 1129-1135.
[PMID: 29399112]
[118]
Rajasekhar, K.; Samanta, S.; Bagoband, V.; Murugan, N.A.; Govindaraju, T. Antioxidant berberine-derivative inhibits multifaceted amyloid toxicity. iScience, 2020, 23(4), 101005.
[http://dx.doi.org/10.1016/j.isci.2020.101005] [PMID: 32272441]
[119]
Xu, J.; Wu, W.; Zhang, H.; Yang, L. Berberine alleviates amyloid β25-35-induced inflammatory response in human neuroblastoma cells by inhibiting proinflammatory factors. Exp. Ther. Med., 2018, 16(6), 4865-4872.
[http://dx.doi.org/10.3892/etm.2018.6749] [PMID: 30542442]
[120]
Wen, C.; Huang, C.; Yang, M.; Fan, C.; Li, Q.; Zhao, J. The secretion from bone marrow mesenchymal stem cells pretreated with berberine rescues neurons with oxidative damage through activation of the Keap1-Nrf2-HO-1 signaling pathway. Neurotox. Res., 2020, 38, 59-73.
[http://dx.doi.org/10.1007/s12640-020-00178-0]
[121]
Zhao, C.; Su, P.; Lv, C.; Guo, L.; Cao, G.; Qin, C. Berberine alleviates amyloid β-induced mitochondrial dysfunction and synaptic loss. Oxid. Med. Cell. Longev., 2019, 2019, 7593608.
[http://dx.doi.org/10.1155/2019/7593608]
[122]
Yu, Y.; Zhao, Y.; Teng, F.; Li, J.; Guan, Y.; Xu, J.; Lv, X.; Guan, F.; Zhang, M.; Chen, L. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging rats. J. Nutr. Health Aging, 2018, 22(6), 710-717.
[http://dx.doi.org/10.1007/s12603-018-1015-7] [PMID: 29806860]
[123]
Cai, Z.Y.; Wang, C.L.; Lu, T.T.; Yang, W.M. berberine alleviates amyloid-beta pathogenesis via activating LKB1/AMPK signaling in the brain of APP/PS1 transgenic mice. Curr. Mol. Med., 2019, 19(5), 342-348.
[http://dx.doi.org/10.2174/1566524019666190315164120] [PMID: 30873920]
[124]
Martins, I.J. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J. Clin. Epigenet., 2017, 3(3), 24.
[http://dx.doi.org/10.21767/2472-1158.100058]
[125]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv. Aging Res., 2016, 05(1), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[126]
Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670]
[127]
Cai, Z.; Wang, C.; He, W.; Chen, Y. Berberine alleviates amyloid-beta pathology in the brain of APP/PS1 transgenic mice via inhibiting β/γ-secretases activity and enhancing α-secretases. Curr. Alzheimer Res., 2018, 15(11), 1045-1052.
[http://dx.doi.org/10.2174/1567205015666180702105740] [PMID: 29962345]
[128]
Xuan, W.T.; Wang, H.; Zhou, P.; Ye, T.; Gao, H.W.; Ye, S. Berberine ameliorates rats model of combined Alzheimer's disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotechnology, 2020, 10, 359.
[http://dx.doi.org/10.1007/s13205-020-02354-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy