Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Antiviral Potential of Medicinal Plants for the COVID-19

Author(s): Yashika Sharma, Sulochana Kaushik, Sanjit Boora, Pawan Kumar, Ajit Kumar, Jaya P. Yadav and Samander Kaushik*

Volume 20, Issue 4, 2022

Published on: 05 July, 2022

Article ID: e250422204020 Pages: 10

DOI: 10.2174/2211352520666220425132933

Price: $65

Abstract

Background: SARS-CoV-2 infection has spread throughout the globe and has become a terrible epidemic. Researchers all around the globe are working to understand the characteristics of coronavirus and are trying to find antiviral compounds as an alternative to vaccines.

Objective: The present study has been conceptualized to screen the various metabolites of traditional therapeutic plants that can have crucial antiviral activity against COVID-19.

Methods: Medicinal plants are rich sources of therapeutic agents of human origin. In this study, active metabolites from plants such as O. sanctum, C. longa, A. indica, Z. officinale, A. paniculata, G. glabra, A. sativum, P. guajava, V. negundo and S. aromaticum have been studied. This study aims to control COVID-19, either by interfering with the Cysteine-like protease (3CLpro) component of COVID-19 or by blocking viral entry via the human angiotensinconverting enzyme 2 (ACE 2) receptor. The molecular docking of forty plant metabolites was studied with the 3Clpro component and ACE 2 receptors. In addition to this, the binding capacity of these two targets was also compared with hydroxychloroquine used for its treatment.

Results: The results reveal that Glycyrrhizin binds to 3CLpro in a highly stable manner with the lowest binding energy. Glabridin, beta-sitosterol, beta-Caryophyllene, alpha-Curcumene, and Apigenin, among others, have shown effective interactions with both ACE 2 and 3CLpro. The study reveals the ability of more than 20 plant-based compounds against the COVID-19 infection cycle, which are more effective than hydroxychloroquine.

Conclusion: Medicinal plant-based therapeutic compounds might provide quickly, sensitive, precise, and cost-effective alternative therapies. To reduce adverse effects, many pharmacological characteristics of medicinal plant agents should be adjusted.

Keywords: COVID-19, molecular docking, medicinal plants, antiviral, alternate therapy, severe acute respiratory syndromes.

Graphical Abstract
[1]
Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; Medhi, B. Drug targets for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[2]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[http://dx.doi.org/10.26355/eurrev_202004_21036] [PMID: 32373991]
[3]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing COVID-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[4]
Gautret, P.; Lagier, J.C.; Honoré, S.; Hoang, V.T.; Colson, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open label non-randomized clinical trial revisited. Int. J. Antimicrob. Agents, 2021, 57(1), 106243.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106243] [PMID: 33408014]
[5]
Qomara, W.F.; Primanissa, D.N.; Amalia, S.H.; Purwadi, F.V.; Zakiyah, N. Effectiveness of remdesivir, lopinavir/ritonavir, and favipiravir for covid-19 treatment: a systematic review. Int. J. Gen. Med., 2021, 14, 8557-8571.
[http://dx.doi.org/10.2147/IJGM.S332458] [PMID: 34849001]
[6]
Poddighe, D.; Aljofan, M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir. Chem. Chemother., 2020, 28, 2040206620961712.
[http://dx.doi.org/10.1177/2040206620961712] [PMID: 32972196]
[7]
Deng, J.; Zhou, F.; Heybati, K.; Ali, S.; Zuo, Q.K.; Hou, W.; Dhivagaran, T.; Ramaraju, H.B.; Chang, O.; Wong, C.Y.; Silver, Z. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: A meta-analysis. Future Virol., 2021, 17(2), 95-118.
[http://dx.doi.org/10.2217/fvl-2021-0119] [PMID: 34887938]
[8]
Peng, J.; Fu, M.; Mei, H.; Zheng, H.; Liang, G.; She, X.; Wang, Q.; Liu, W. Efficacy and secondary infection risk of tocilizumab, sarilumab and anakinra in COVID-19 patients: A systematic review and meta-analysis. Rev. Med. Virol., 2021, e2295.
[http://dx.doi.org/10.1002/rmv.2295] [PMID: 34558756]
[9]
Vachirayonstien, T.; Promkhatkaew, D.; Bunjob, M.; Chueyprom, A.; Chavalittumrong, P.; Sawanpanyalert, P. Molecular evaluation of extracellular activity of medicinal herb Clinacanthus nutans against herpes simplex virus type-2. Nat. Prod. Res., 2010, 24(3), 236-245.
[http://dx.doi.org/10.1080/14786410802393548] [PMID: 20140802]
[10]
Kaushik, S.; Kaushik, S.; Sharma, V.; Yadav, J.P. Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacogn. Rev., 2018, 12(24), 177-185.
[http://dx.doi.org/10.4103/phrev.phrev_2_18]
[11]
Kaushik, S; Dar, L; Kaushik, S; Yadav, JP Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC complement. med. ther, 2021, 21(1), 1-15.
[http://dx.doi.org/10.1186/s12906-021-03402-2]
[12]
Kaushik, S.; Dar, L.; Kaushik, S.; Yadav, J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol., 2021, 267(3), 113541.
[http://dx.doi.org/10.1016/j.jep.2020.113541] [PMID: 33152438]
[13]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[14]
Kaushik, S.; Jangra, G.; Kundu, V.; Yadav, J.P.; Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease, 2020, 31(3), 1-7.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[15]
Jakhar, R.; Kaushik, S.; Gakhar, S.K. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics. J. Med. Virol., 2020, 92(10), 2114-2123.
[http://dx.doi.org/10.1002/jmv.25993] [PMID: 32379348]
[16]
Mo, J.; Li, J. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax. Pathog. Glob. Health, 2015, 109(2), 61-67.
[http://dx.doi.org/10.1179/2047773215Y.0000000005] [PMID: 25706099]
[17]
Ammendolia, M.G.; Agamennone, M.; Pietrantoni, A.; Lannutti, F.; Siciliano, R.A.; De Giulio, B.; Amici, C.; Superti, F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog. Glob. Health, 2012, 106(1), 12-19.
[http://dx.doi.org/10.1179/2047773212Y.0000000004] [PMID: 22595270]
[18]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[19]
Cassone, A.; Gucciardo, D.; Cauda, R. A call to research: The relationship between SARS-2-CoV, ACE 2 and antihypertensives. Pathog. Glob. Health, 2020, 114(4), 165-167.
[http://dx.doi.org/10.1080/20477724.2020.1765650] [PMID: 32450774]
[20]
Guy, J.L.; Jackson, R.M.; Jensen, H.A.; Hooper, N.M.; Turner, A.J. Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS J., 2005, 272(14), 3512-3520.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04756.x] [PMID: 16008552]
[21]
Luo, P.; Liu, D. Li, J. Pharmacological perspective: Glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int. J. Antimicrob. Agents, 2020, 55(6), 105995.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105995] [PMID: 32335281]
[22]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[23]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[24]
Chen, H.; Du, Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202001.0358.v3]
[25]
Maurya, D.K. Evaluation of yashtimadhu (glycyrrhiza glabra) active phytochemicals against novel coronavirus (SARS) Preprints, 2020.
[http://dx.doi.org/10.21203/rs.3.rs-26480/v1]
[26]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[27]
Lee, J.; Jung, Y.; Shin, J.H.; Kim, H.K.; Moon, B.C.; Ryu, D.H.; Hwang, G.S. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules, 2014, 19(7), 9535-9551.
[http://dx.doi.org/10.3390/molecules19079535] [PMID: 25000465]
[28]
Alzohairy, M.A. Therapeutics role of azadirachta indica (Neem) and their active constituents in diseases prevention and treatment; Evidence-based Complement Altern Med, 2016, pp. 1-11.
[http://dx.doi.org/10.1155/2016/7382506]
[29]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015, 142979.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[30]
Tan, M.C.S.; Oyong, G.G.; Shen, C.C.; Ragasa, C.Y. Chemical constituents of andrographis paniculata (Burm.f.) nees. Int J Pharmacogn Phytochem Res, 2016, 8(8), 1398-1402.
[31]
Sharma, V; Katiyar, A; Agrawal, RC Glycyrrhiza glabra: Chemistry and pharmacological activity. 2018, 87-100.
[http://dx.doi.org/10.1007/978-3-319-27027-2_21]
[32]
Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med., 1992, 58(5), 417-423.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[33]
Sriwilaijaroen, N.; Fukumoto, S.; Kumagai, K.; Hiramatsu, H.; Odagiri, T.; Tashiro, M.; Suzuki, Y. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral Res., 2012, 94(2), 139-146.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.013] [PMID: 22453134]
[34]
Joseph, B. MINI PRIYA R. Review on nutritional, medicinal and pharmacological properties of Guava (Psidium guajava Linn.). Int. J. Pharma Bio Sci., 2011, 2(1), 53-59.
[35]
Venkateswarlu, K. Vitex negundo: Medicinal values, Biological activities, Toxicity studies and Phytopharmacological actions. Int J Pharm Phytopharmacol Res, 2012, 2(2), 126-133.
[36]
Batiha, G.E.S.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum l. (myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 2020, 10(2), 202-218.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy