Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Receptor-Mediated Targeting in Breast Cancer through Solid Lipid Nanoparticles and Its Mechanism

Author(s): Zoya Malik, Rabea Parveen, Sageer Abass, Mohammad Irfan Dar, Syed Akhtar Husain* and Sayeed Ahmad*

Volume 23, Issue 10, 2022

Published on: 08 June, 2022

Page: [800 - 817] Pages: 18

DOI: 10.2174/1389200223666220416213639

Price: $65

Abstract

Nanoparticles have gained prominence in many areas and domains worldwide, such as metallic NP, carbon dots, quantum dots, polymeric NP, nano-suspension, nanocrystals, solid lipid nanoparticles (SLN), etc. and have been applied in the field of medicine as nanomedicine with promising results. Rise in cancer mortality rate has been an issue for a long time with female breast cancer as one of the most detected cancers. No permanent treatment has been developed till date could combat breast cancer with minimum side effects that are not long-lasting as there is no proper technique through which the anticancer drugs can recognize benign or malignant or normal cells that causes systematic toxicity. Advancement in technology has led to the discovery of many biological pathways and mechanisms. Tumor cells or cancer cells overexpress some high-affinity receptors that can be targeted to deliver the anticancer drugs at specific site using these pathways and mechanisms. Solid lipid nanoparticles (SLN) are among some of the excellent drug delivery systems, especially stealth SLN (sSLN). SLN, when conjugated with a ligand (called as sSLN), has affinity and specificity towards a specific receptor, and can deliver the drug in breast cancer cells overexpressing the receptors. Using this technique, various investigations have reported better anti-breast cancer activity than simple SLN (non-conjugated to ligand or no receptor targeting). This review includes the investigations and data on receptor-mediated targeting in breast cancer from 2010 to 2021 by searching different databases. Overall, information on SLN in different cancers is reviewed. In vivo investigations, pharmacokinetics, biodistribution, and stability are discussed to describe the efficacy of sSLN. Investigations included in this review demonstrate that sSLN delivers the drug by overcoming the biological barriers and shows enhanced and better activity than non-conjugated SLN which also verifies that a lesser concentration of drug can show anti-breast cancer activity. The efficacy of medicines could be increased with lower cancer deaths through stealth-SLN. Due to the low cost of synthesis, biocompatibility and easy to formulate, more study is needed in vitro and in vivo so that this novel technique could be utilized in the treatment of human breast cancer.

Keywords: Solid lipid nanoparticles, breast cancer, stealth-solid lipid nanoparticles, receptor-mediated targeting, clathrin-mediated endocytosis, caveolin-mediated endocytosis.

Graphical Abstract
[1]
Fujiki, M. Resonance in chirogenesis and photochirogenesis: Colloidal polymers meet chiral optofluidics. Symmetry (Basel), 2021, 13(2), 199.
[http://dx.doi.org/10.3390/sym13020199]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[4]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[5]
Henry, N.L.; Cannon-Albright, L.A. Breast cancer histologic subtypes show excess familial clustering. Cancer, 2019, 125(18), 3131-3138.
[http://dx.doi.org/10.1002/cncr.32198] [PMID: 31120568]
[6]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[7]
Omura, Y.; Jones, M.K.; Nihrane, A.; Duvvi, H.; Shimotsuura, Y.; Ohki, M. More than 97% of Human Papilloma Virus type 16 (HPV-16) was found with chrysotile asbestos & relatively smooth round tumor outline, and less than 3% was found with HPV-18 and tremolite asbes-tos & irregular sawtooth-like zigzag outline in breast cancer tissues in over 500 mammograms of female patients: Their implications in diag-nosis, treatment, and prevention of breast cancer. Acupunct. Electrother. Res., 2013, 38(3-4), 211-230.
[http://dx.doi.org/10.3727/036012913X13831832269324] [PMID: 24494324]
[8]
Strumylaite, L.; Kregzdyte, R.; Bogusevicius, A.; Poskiene, L.; Baranauskiene, D.; Pranys, D. Association between cadmium and breast can-cer risk according to estrogen receptor and human epidermal growth factor receptor 2: Epidemiological evidence. Breast Cancer Res. Treat., 2014, 145(1), 225-232.
[http://dx.doi.org/10.1007/s10549-014-2918-6] [PMID: 24692081]
[9]
Nickels, S.; Truong, T.; Hein, R.; Stevens, K.; Buck, K.; Behrens, S.; Eilber, U.; Schmidt, M.; Häberle, L.; Vrieling, A.; Gaudet, M.; Figueroa, J.; Schoof, N.; Spurdle, A.B.; Rudolph, A.; Fasching, P.A.; Hopper, J.L.; Makalic, E.; Schmidt, D.F.; Southey, M.C.; Beckmann, M.W.; Ekici, A.B.; Fletcher, O.; Gibson, L.; Silva, I.S.; Peto, J.; Humphreys, M.K.; Wang, J.; Cordina-Duverger, E.; Menegaux, F.; Nordestgaard, B.G.; Bo-jesen, S.E.; Lanng, C.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Clarke, C.A.; Brenner, H.; Müller, H.; Arndt, V.; Stegmaier, C.; Brauch, H.; Brüning, T.; Harth, V.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Lambrechts, D.; Smeets, D.; Neven, P.; Paridaens, R.; Flesch-Janys, D.; Obi, N.; Wang-Gohrke, S.; Couch, F.J.; Olson, J.E.; Vachon, C.M.; Giles, G.G.; Severi, G.; Baglietto, L.; Offit, K.; John, E.M.; Miron, A.; Andrulis, I.L.; Knight, J.A.; Glendon, G.; Mulligan, A.M.; Chanock, S.J.; Lissowska, J.; Liu, J.; Cox, A.; Cramp, H.; Connley, D.; Balasubramanian, S.; Dunning, A.M.; Shah, M.; Trentham-Dietz, A.; Newcomb, P.; Titus, L.; Egan, K.; Cahoon, E.K.; Rajara-man, P.; Sigurdson, A.J.; Doody, M.M.; Guénel, P.; Pharoah, P.D.; Schmidt, M.K.; Hall, P.; Easton, D.F.; Garcia-Closas, M.; Milne, R.L.; Chang-Claude, J. Genica NetworkkConFab; AOCS Management Group. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet., 2013, 9(3), e1003284.
[http://dx.doi.org/10.1371/journal.pgen.1003284] [PMID: 23544014]
[10]
Mohapatra, S.; Iqbal, Z.; Ahmad, S.; Kohli, K.; Farooq, U.; Padhi, S.; Kabir, M. Menopausal remediation and quality of life (QoL) improve-ment: Insights and perspectives. Endocrine, Metab. Immune Disord. Targets, 2020, 20, 1624-1636.
[11]
Biswas, S.; Rao, C.M. Epigenetics in cancer: Fundamentals and beyond. Pharmacol. Ther., 2017, 173, 118-134.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.011] [PMID: 28188812]
[12]
Wenzel, E.S.; Singh, A.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer. In vivo (Brooklyn),, 2018, 32(1), 1-5.
[13]
Yassemi, A.; Kashanian, S.; Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through in-duction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol., 2020, 25(4), 397-407.
[http://dx.doi.org/10.1080/10837450.2019.1703739] [PMID: 31893979]
[14]
Shan, D.; Li, J.; Cai, P.; Prasad, P.; Liu, F.; Rauth, A.M.; Wu, X.Y. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv. Transl. Res., 2015, 5(1), 15-26.
[http://dx.doi.org/10.1007/s13346-014-0210-2] [PMID: 25787336]
[15]
Souto, E.B.; Doktorovova, S.; Campos, J.R.; Martins-Lopes, P.; Silva, A.M. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur. J. Pharm. Sci., 2019, 128, 27-35.
[http://dx.doi.org/10.1016/j.ejps.2018.11.022] [PMID: 30472221]
[16]
Guney Eskiler, G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur. J. Pharm. Sci., 2018, 120, 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040] [PMID: 29719240]
[17]
Bhagwat, G.S.; Athawale, R.B.; Gude, R.P.; Md, S.; Alhakamy, N.A.; Fahmy, U.A.; Kesharwani, P. Formulation and development of transfer-rin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol., 2020, 11, 614290.
[http://dx.doi.org/10.3389/fphar.2020.614290] [PMID: 33329007]
[18]
Tran, B.N.; Nguyen, H.T.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch. Pharm. Res., 2017, 40(12), 1420-1432.
[http://dx.doi.org/10.1007/s12272-017-0968-0] [PMID: 29027133]
[19]
Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang, W.; Shakhnovich, E.I.; Liu, Z.J.; Stevens, R.C.; Lambert, N.A.; Babu, M.M.; Wang, M.W.; Zhao, S. Common activation mechanism of class A GPCRs. eLife, 2019, 8, e50279.
[http://dx.doi.org/10.7554/eLife.50279] [PMID: 31855179]
[20]
Malik, Z.; Parveen, R.; Parveen, B.; Zahiruddin, S.; Aasif Khan, M.; Khan, A.; Massey, S.; Ahmad, S.; Husain, S.A. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. J. Ethnopharmacol., 2021, 272, 113936.
[http://dx.doi.org/10.1016/j.jep.2021.113936] [PMID: 33610710]
[21]
Wang, K.; Eblan, M.J.; Deal, A.M.; Lipner, M.; Zagar, T.M.; Wang, Y. Cardiac toxicity after radiotherapy for stage iii non-small-cell lung cancer: Pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J. Clin. Oncol., 2017, 35(13), 1387-1394.
[22]
Abdulkareem, I.H.; Zurmi, I.B. Review of hormonal treatment of breast cancer. Niger. J. Clin. Pract., 2012, 15(1), 9-14.
[http://dx.doi.org/10.4103/1119-3077.94088]
[23]
García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers (Basel), 2019, 11(12), 1822.
[http://dx.doi.org/10.3390/cancers11121822]
[24]
Pawar, H.; Surapaneni, S.K.; Tikoo, K.; Singh, C.; Burman, R.; Gill, M.S.; Suresh, S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv., 2016, 23(4), 1453-1468.
[http://dx.doi.org/10.3109/10717544.2016.1138339] [PMID: 26878325]
[25]
Yin, J.; Zheng, G.; Jia, X.; Zhang, Z.; Zhang, W.; Song, Y.; Xiong, Y.; He, Z.A. Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One, 2013, 8(9), e73268.
[http://dx.doi.org/10.1371/journal.pone.0073268] [PMID: 24039897]
[26]
Xu, W.; Bae, E.J.; Lee, M-K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multi-drug-resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 7549-7563.
[http://dx.doi.org/10.2147/IJN.S182621] [PMID: 30532538]
[27]
Letourneau, J.M.; Ebbel, E.E.; Katz, P.P.; Oktay, K.H.; McCulloch, C.E.; Ai, W.Z.; Chien, A.J.; Melisko, M.E.; Cedars, M.I.; Rosen, M.P. Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer, 2012, 118(7), 1933-1939.
[http://dx.doi.org/10.1002/cncr.26403] [PMID: 21850728]
[28]
Boltong, A.; Aranda, S.; Keast, R.; Wynne, R.; Francis, P.A.; Chirgwin, J.; Gough, K. A prospective cohort study of the effects of adjuvant breast cancer chemotherapy on taste function, food liking, appetite and associated nutritional outcomes. PLoS One, 2014, 9(7), e103512.
[http://dx.doi.org/10.1371/journal.pone.0103512] [PMID: 25078776]
[29]
Erdoğar, N.; Akkın, S.; Varan, G.; Bilensoy, E. Erlotinib complexation with randomly methylated β-cyclodextrin improves drug solubility, intestinal permeability, and therapeutic efficacy in non-small cell lung cancer. Pharm. Dev. Technol., 2021, 26(7), 797-806.
[http://dx.doi.org/10.1080/10837450.2021.1946695] [PMID: 34219578]
[30]
Wang, J.; Li, Q.; Chen, Z.; Qi, X.; Wu, X.; Di, G.; Fan, J.; Guo, C. Improved bioavailability and anticancer efficacy of Hesperetin on breast cancer via a self-assembled rebaudioside A nanomicelles system. Toxicol. Appl. Pharmacol., 2021, 419, 115511.
[http://dx.doi.org/10.1016/j.taap.2021.115511] [PMID: 33819459]
[31]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[32]
Tran, T.H.; Choi, J.Y.; Ramasamy, T.; Truong, D.H.; Nguyen, C.N.; Choi, H-G.; Yong, C.S.; Kim, J.O. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr. Polym., 2014, 114, 407-415.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.026] [PMID: 25263908]
[33]
Pathak, A.; Tanmay, M.; Murthy, R.S.R. Development and characterization of docetaxel loaded anti-FGFR-1 modified solid lipid nanoparti-cles for breast cancer targeting. Int. J. Adv. Pharm. Biol. Chem., 2012, 1, 381-387.
[34]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the produc-tion of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[35]
Du, X.; Li, Y.; Xia, Y-L.; Ai, S-M.; Liang, J.; Sang, P.; Ji, X-L.; Liu, S-Q. Insights into protein-ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci., 2016, 17(2), 144.
[http://dx.doi.org/10.3390/ijms17020144]
[36]
Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), E371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[37]
Martins, S.; Costa-Lima, S.; Carneiro, T.; Cordeiro-da-Silva, A.; Souto, E.B.; Ferreira, D.C. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int. J. Pharm., 2012, 430(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.032] [PMID: 22465548]
[38]
Monteiro, C.A.P.; Oliveira, A.D.P.R.; Silva, R.C.; Lima, R.R.M.; Souto, F.O.; Baratti, M.O.; Carvalho, H.F.; Santos, B.S.; Cabral Filho, P.E.; Fontes, A. Evaluating internalization and recycling of folate receptors in breast cancer cells using quantum dots. J. Photochem. Photobiol. B, 2020, 209, 111918.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111918] [PMID: 32531690]
[39]
Osborne, D.G.; Piotrowski, J.T.; Dick, C.J.; Zhang, J-S.; Billadeau, D.D. SNX17 affects T cell activation by regulating TCR and integrin recy-cling. J. Immunol., 2015, 194(9), 4555-4566.
[40]
Chen, C.; Garcia-Santos, D.; Ishikawa, Y.; Seguin, A.; Li, L.; Fegan, K.H.; Hildick-Smith, G.J.; Shah, D.I.; Cooney, J.D.; Chen, W.; King, M.J.; Yien, Y.Y.; Schultz, I.J.; Anderson, H.; Dalton, A.J.; Freedman, M.L.; Kingsley, P.D.; Palis, J.; Hattangadi, S.M.; Lodish, H.F.; Ward, D.M.; Kaplan, J.; Maeda, T.; Ponka, P.; Paw, B.H. Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab., 2013, 17(3), 343-352.
[http://dx.doi.org/10.1016/j.cmet.2013.01.013] [PMID: 23416069]
[41]
Khan, A.; Siddiqui, S.; Husain, S.A.; Mazurek, S.; Iqbal, M.A. Phytocompounds targeting metabolic reprogramming in cancer: An assessment of role, mechanisms, pathways, and therapeutic relevance. J. Agric. Food Chem., 2021, 69(25), 6897-6928.
[http://dx.doi.org/10.1021/acs.jafc.1c01173] [PMID: 34133161]
[42]
Affram, K.O.; Smith, T.; Ofori, E.; Krishnan, S.; Underwood, P.; Trevino, J.G.; Agyare, E. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J. Drug Deliv. Sci. Technol., 2020, 55, 101374.
[http://dx.doi.org/10.1016/j.jddst.2019.101374] [PMID: 31903101]
[43]
Rahman, M.; Beg, S.; Alharbi, K.S.; Alruwaili, N.K.; Alotaibi, N.H.; Alzarea, A.I.; Almalki, W.H.; Alenezi, S.K.; Altowayan, W.M.; Alsham-mari, M.S.; Afzal, M.; Saleem, S.; Kumar, V. Implications of solid lipid nanoparticles of ganoderic acid for the treatment and management of hepatocellular carcinoma. J. Pharm. Innov., 2021, 16(2), 359-370.
[http://dx.doi.org/10.1007/s12247-020-09450-4]
[44]
Serini, S.; Cassano, R.; Corsetto, P.A.; Rizzo, A.M.; Calviello, G.; Trombino, S. Omega-3 PUFA loaded in resveratrol-based solid lipid nano-particles: Physicochemical properties and antineoplastic activities in human colorectal cancer cells in vitro. Int. J. Mol. Sci., 2018, 19(2), 586.
[http://dx.doi.org/10.3390/ijms19020586] [PMID: 29462928]
[45]
Ji, C.; Ju, S.; Zhang, D.; Qiang, J. Nanomedicine based N-trimethyl chitosan entangled solid lipid nanoparticle loaded with Irinotecan to en-hance the therapeutic efficacy in esophageal cancer cells. J. Biomater. Tissue Eng., 2018, 8(8), 1195-1200.
[http://dx.doi.org/10.1166/jbt.2018.1846]
[46]
Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treat-ment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C, 2013, 33(8), 4802-4808.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[47]
Liu, B.; Han, L.; Liu, J.; Han, S.; Chen, Z.; Jiang, L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int. J. Nanomedicine, 2017, 12, 955-968.
[http://dx.doi.org/10.2147/IJN.S115136] [PMID: 28203075]
[48]
Shi, S-J.; Zhong, Z-R.; Liu, J.; Zhang, Z-R.; Sun, X.; Gong, T. Solid lipid nanoparticles loaded with Anti-MicroRNA Oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm. Res., 2012, 29(1), 97-109.
[http://dx.doi.org/10.1007/s11095-011-0514-6] [PMID: 21732152]
[49]
Bhushan, S.; Kakkar, V.; Pal, H.C.; Mondhe, D.M.; Kaur, I.P. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor. Chem. Biol. Interact., 2016, 244, 84-93.
[http://dx.doi.org/10.1016/j.cbi.2015.11.022] [PMID: 26620693]
[50]
Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil shell-enriched Solid Lipid Nanoparticles (SLN) for effective skin carcinoma treat-ment. Drug Deliv., 2016, 23(9), 3452-3460.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[51]
Akanda, M.H.; Rai, R.; Slipper, I.J.; Chowdhry, B.Z.; Lamprou, D.; Getti, G.; Douroumis, D. Delivery of retinoic acid to LNCap human pros-tate cancer cells using solid lipid nanoparticles. Int. J. Pharm., 2015, 493(1-2), 161-171.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.042] [PMID: 26200751]
[52]
Jin, J.; Bae, K.H.; Yang, H.; Lee, S.J.; Kim, H.; Kim, Y.; Joo, K.M.; Seo, S.W.; Park, T.G.; Nam, D.H. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug. Chem., 2011, 22(12), 2568-2572.
[http://dx.doi.org/10.1021/bc200406n] [PMID: 22070554]
[53]
Wang, J.; Zhu, R.; Sun, X.; Zhu, Y.; Liu, H.; Wang, S-L. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhanc-ing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int. J. Nanomedicine, 2014, 9, 3987-3998.
[http://dx.doi.org/10.2147/IJN.S64103] [PMID: 25187702]
[54]
Javid, S.; Ziamajidi, N.; Foroughi, S.; Abbasalipourkabir, R. Effects of tamoxifen-loaded solid lipid nanoparticles on the Estrogen Receptor-α (ER-α) and Vascular Endothelial Growth Factor-A (VEGF-A) genes expression in the endometrial tissue of ovariectomized female Sprague-Dawley rats. Int. J. Biol. Macromol., 2017, 96, 706-712.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.055] [PMID: 28017765]
[55]
González-Fernández, Y.; Imbuluzqueta, E.; Zalacain, M.; Mollinedo, F.; Patiño-García, A.; Blanco-Prieto, M.J. Doxorubicin and edelfosine lipid nanoparticles are effective acting synergistically against drug-resistant osteosarcoma cancer cells. Cancer Lett., 2017, 388, 262-268.
[http://dx.doi.org/10.1016/j.canlet.2016.12.012] [PMID: 27998763]
[56]
Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for pho-todynamic inactivation of melanoma cells. Int. J. Pharm., 2017, 518(1-2), 228-241.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.004] [PMID: 28063902]
[57]
Pandey, V.; Gajbhiye, K.R.; Soni, V. Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma. Drug Deliv., 2015, 22(2), 199-205.
[http://dx.doi.org/10.3109/10717544.2013.877100] [PMID: 24467582]
[58]
Li, H.; Qu, X.; Qian, W.; Song, Y.; Wang, C.; Liu, W. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Dis., 2022, 28(1), 142-149.
[http://dx.doi.org/10.1111/odi.13751] [PMID: 33295090]
[59]
Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodg-kin’s lymphoma in mice. Arch. Biochem. Biophys., 2018, 648, 12-19.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]
[60]
Hamishehkar, H.; Bahadori, M.B.; Vandghanooni, S.; Eskandani, M.; Nakhlband, A.; Eskandani, M. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J. Drug Deliv. Sci. Technol., 2018, 45, 272-280.
[http://dx.doi.org/10.1016/j.jddst.2018.02.017]
[61]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Shakery, M. Folate targeted solid lipid nanoparticles of simvastatin for enhanced cytotoxic ef-fects of doxorubicin in chronic myeloid leukemia. Curr. Nanosci., 2012, 8(2), 249-258.
[http://dx.doi.org/10.2174/157341312800167542]
[62]
Souto, E.B.; Severino, P.; Marques, C.; Andrade, L.N.; Durazzo, A.; Lucarini, M.; Atanasov, A.G.; El Maimouni, S.; Novellino, E.; Santini, A. Croton argyrophyllus Kunth essential oil-loaded solid lipid nanoparticles: Evaluation of release profile, antioxidant activity and cytotoxicity in a neuroblastoma cell line. Sustainability (Basel), 2020, 12(18), 7697.
[http://dx.doi.org/10.3390/su12187697]
[63]
Marslin, G.; Siram, K.; Liu, X.; Khandelwal, V.K.M.; Xiaolei, S.; Xiang, W.; Franklin, G. Solid lipid nanoparticles of albendazole for enhanc-ing cellular uptake and cytotoxicity against U-87 MG glioma cell lines. Molecules, 2017, 22(11), 2040.
[http://dx.doi.org/10.3390/molecules22112040] [PMID: 29165384]
[64]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.D.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and iontophoresis. J. Biomed. Nanotechnol., 2015, 11(11), 1975-1988.
[http://dx.doi.org/10.1166/jbn.2015.2139] [PMID: 26554156]
[65]
Mohammadi Ghalaei, P.; Varshosaz, J.; Sadeghi Aliabadi, H. Evaluating cytotoxicity of hyaluronate targeted solid lipid nanoparticles of etoposide on SK-OV-3 cells. J. Drug Deliv., 2014, 2014, 746325.
[http://dx.doi.org/10.1155/2014/746325] [PMID: 24868467]
[66]
Sharifalhoseini, M.; Es-Haghi, A.; Vaezi, G.; Shajiee, H. Biosynthesis and characterisation of solid lipid nanoparticles and investigation of toxicity against breast cancer cell line. IET Nanobiotechnol., 2021, 15(8), 654-663.
[http://dx.doi.org/10.1049/nbt2.12062] [PMID: 34694719]
[67]
Sezer, C.V.; Eskisehir, T. An in vitro assessment of the cytotoxic and apoptotic potency of silymarin and silymarin loaded solid lipid nano-particles on lung and breast cancer cells. Pak. J. Zool., 2021, 53(4), 1-9.
[http://dx.doi.org/10.17582/journal.pjz/20191025131008]
[68]
Fathy Abd-Ellatef, G.E.; Gazzano, E.; Chirio, D.; Hamed, A.R.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; Sapino, S.; Ramadan Fahmy, S.; Gallarate, M.; Abdel-Hamid, A.Z.; Riganti, C. Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics, 2020, 12(2), 1-20.
[http://dx.doi.org/10.3390/pharmaceutics12020096] [PMID: 31991669]
[69]
Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother., 2019, 116, 109006.
[http://dx.doi.org/10.1016/j.biopha.2019.109006] [PMID: 31152925]
[70]
Shuhendler, A.J.; Prasad, P.; Leung, M.; Rauth, A.M.; Dacosta, R.S.; Wu, X.Y. A novel solid lipid nanoparticle formulation for active target-ing to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater., 2012, 1(5), 600-608.
[http://dx.doi.org/10.1002/adhm.201200006] [PMID: 23184795]
[71]
Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nanopar-ticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005] [PMID: 30965023]
[72]
Siddhartha, V.T.; Pindiprolu, S.K.S.S.; Chintamaneni, P.K.; Tummala, S.; Nandha Kumar, S. RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: In vitro studies. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 387-397.
[http://dx.doi.org/10.1080/21691401.2017.1313267] [PMID: 28415882]
[73]
Campos, J.; Varas-Godoy, M.; Haidar, Z.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells. Nanomedicine (Lond.), 2017, 12(5), 473-490.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
[74]
Cavaco, M.C.; Pereira, C.; Kreutzer, B.; Gouveia, L.F.; Silva-Lima, B.; Brito, A.M.; Videira, M. Evading P-glycoprotein mediated-efflux chemoresistance using Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm., 2017, 110, 76-84.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.024] [PMID: 27810470]
[75]
Wang, F.; Li, L.; Liu, B.; Chen, Z.; Li, C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed. Pharmacother., 2017, 86, 595-604.
[http://dx.doi.org/10.1016/j.biopha.2016.12.041] [PMID: 28027535]
[76]
Zhu, C.J.; An, C.G. Enhanced antitumor activity of cabazitaxel targeting CD44+ receptor in breast cancer cell line via surface functionalized lipid nanocarriers. Trop. J. Pharm. Res., 2017, 16(6), 1383-1390.
[http://dx.doi.org/10.4314/tjpr.v16i6.24]
[77]
Abbasalipourkabir, R.; Salehzadeh, A.; Abdullah, R. Tamoxifen-loaded solid lipid nanoparticles-induced apoptosis in breast cancer cell lines. J. Exp. Nanosci., 2016, 11(3), 161-174.
[http://dx.doi.org/10.1080/17458080.2015.1038660]
[78]
Jain, A.; Agarwal, A.; Majumder, S.; Lariya, N.; Khaya, A.; Agrawal, H.; Majumdar, S.; Agrawal, G.P. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J. Control. Release, 2010, 148(3), 359-367.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.003] [PMID: 20854859]
[79]
Guney Eskiler, G.; Cecener, G.; Dikmen, G.; Kani, I.; Egeli, U.; Tunca, B. A novel [Mn2(μ-(C6H5)2CHCOO)2(bipy)4](bipy)(ClO4)2 complex loaded solid lipid nanoparticles: Synthesis, characterization and in vitro cytotoxicity on MCF-7 breast cancer cells. J. Microencapsul., 2016, 33(6), 575-584.
[http://dx.doi.org/10.1080/02652048.2016.1228704] [PMID: 27575255]
[80]
Aldawsari, H.M.; Singh, S. Rapid microwave-assisted cisplatin-loaded solid lipid nanoparticles: Synthesis, characterization and anticancer study. Nanomaterials (Basel), 2020, 10(3), E510.
[http://dx.doi.org/10.3390/nano10030510] [PMID: 32168934]
[81]
da Rocha, M.C.O.; da Silva, P.B.; Radicchi, M.A.; Andrade, B.Y.G.; de Oliveira, J.V.; Venus, T.; Merker, C.; Estrela-Lopis, I.; Longo, J.P.F.; Báo, S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnology, 2020, 18(1), 43.
[http://dx.doi.org/10.1186/s12951-020-00604-7] [PMID: 32164731]
[82]
Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; Yang, Q.; Chen, C. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 2018, 23(7), 1-13.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[83]
Baek, J-S.; Na, Y-G.; Cho, C-W. Sustained cytotoxicity of wogonin on breast cancer cells by encapsulation in solid lipid nanoparticles. Nanomaterials (Basel), 2018, 8(3), E159.
[http://dx.doi.org/10.3390/nano8030159] [PMID: 29533979]
[84]
Pindiprolu, S.K.S.S.; Chintamaneni, P.K.; Krishnamurthy, P.T.; Ratna Sree Ganapathineedi, K. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev. Ind. Pharm., 2019, 45(2), 304-313.
[http://dx.doi.org/10.1080/03639045.2018.1539496] [PMID: 30348020]
[85]
Wang, W.; Zhang, L.; Chen, T.; Guo, W.; Bao, X.; Wang, D. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules, 2017.
[86]
Badawi, N.M.; Teaima, M.H.; El-Say, K.M.; Attia, D.A.; El-Nabarawi, M.A.; Elmazar, M.M. Pomegranate extract-loaded solid lipid nanoparti-cles: Design, optimization, and in vitro cytotoxicity study. Int. J. Nanomedicine, 2018, 13, 1313-1326.
[http://dx.doi.org/10.2147/IJN.S154033] [PMID: 29563789]
[87]
Yu, D.; Li, W.; Zhang, Y.; Zhang, B. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed. Pharmacother., 2016, 83, 1428-1435.
[http://dx.doi.org/10.1016/j.biopha.2016.08.061] [PMID: 27592131]
[88]
Baek, J-S.; Cho, C-W. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget, 2017, 8(18), 30369-30382.
[http://dx.doi.org/10.18632/oncotarget.16153] [PMID: 28423731]
[89]
Kim, J-H.; Kim, Y.; Bae, K.H.; Park, T.G.; Lee, J.H.; Park, K. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles. Mol. Pharm., 2015, 12(4), 1230-1241.
[http://dx.doi.org/10.1021/mp500737y] [PMID: 25686010]
[90]
Zhu, X.; Huang, S.; Xie, Y.; Zhang, H.; Hou, L.; Zhang, Y.; Huang, H.; Shi, J.; Wang, L.; Zhang, Z. Folic acid mediated solid lipid nanocarri-ers loaded with docetaxel and oxidized single-walled carbon nanotubes. J. Nanopart. Res., 2013, 16(1), 2207.
[http://dx.doi.org/10.1007/s11051-013-2207-z]
[91]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcu-min: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm., 2010, 398(1-2), 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy