Research Article

MicroRNA-7 Regulates Insulin Signaling Pathway by Targeting IRS1, IRS2, and RAF1 Genes in Gestational Diabetes Mellitus

Author(s): Ravi Bhushan, Anjali Rani, Deepali Gupta, Akhtar Ali and Pawan K. Dubey*

Volume 11, Issue 1, 2022

Published on: 27 May, 2022

Page: [57 - 72] Pages: 16

DOI: 10.2174/2211536611666220413100636

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Small non-coding micro RNAs (miRNAs) are indicated in various metabolic processes and play a critical role in disease pathology, including gestational diabetes mellitus (GDM).

Objective: The purpose of this study was to examine the altered expression of miRNAs and their target genes in placental tissue (PL), cord blood (CB), and maternal blood (MB) of matched non-glucose tolerant (NGT) and GDM mother.

Methods: In a case-control study, micro-RNA was quantified from forty-five serum (MB n = 15, CB n = 15, and PL n = 15) and matched placental tissue using stem-loop RT-qPCR followed by target prediction, network construction and functional and pathways enrichment analysis. Further, target genes were verified in-vitro through transfection and RT-qPCR.

Results: Five miRNAs, namely hsa-let 7a-5P, hsa-miR7-5P, hsa-miR9-5P, hsa-miR18a-5P, and hsamiR23a- 3P were significantly over-expressed (p < 0.05) in all three samples namely PL, CB, and MB of GDM patients. However, the sample-wise comparison reveals higher expression of miRNA 7 in MB while lowest in CB than control. Furthermore, a comparison of fold change expression of target genes discloses a lower expression of IRS1, IRS2, and RAF1 in MB while comparatively higher expression of NRAS in MB and CB. In-vitro validation reveals lower expression of IRS1/2 and RAF1 in response to overexpression of miR-7 and vice-versa. Thus it is evident that increased miRNA7 expression causes down-regulation of its target genes IRS1, IRS2, and RAF1 in GDM mother compared to control. Further, target prediction, pathway enrichment, and hormone analysis (significantly higher FSH & LH in MB of GDM compared to NGT) revealed insulin signaling, inflammatory and GnRH signaling as major pathways regulated by miRNA7.

Conclusion: Thus, an elevated level of miRNA7 may be associated with the progression of GDM by altering the multiple pathways like insulin, GnRH, and inflammatory signaling pathways via targeting IRS1, IRS2, and RAF1, implicating a new therapeutic target for GDM.

Keywords: MicroRNAs, plasma, tissue, real-time PCR, gestational diabetes mellitus, insulin, signaling pathway.

Graphical Abstract
[1]
American Diabetes Association. Gestational diabetes mellitus. Diabetes Care 2004; 27(Suppl. 1): S88-90.
[http://dx.doi.org/10.2337/diacare.27.2007.S88] [PMID: 14693936]
[2]
Landon MB, Spong CY, Thom E, et al. Eunice kennedy shriver national institute of child health and human development maternal-fetal medicine units network. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009; 361(14): 1339-48.
[http://dx.doi.org/10.1056/NEJMoa0902430] [PMID: 19797280]
[3]
Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships. Diabetes 2000; 49(12): 2208-11.
[http://dx.doi.org/10.2337/diabetes.49.12.2208] [PMID: 11118027]
[4]
Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in pregnancy and gestational diabetes mellitus: Emerging role in maternal meta-bolic regulation. Curr Diab Rep 2017; 17(5): 35.
[http://dx.doi.org/10.1007/s11892-017-0856-5] [PMID: 28378294]
[5]
Guarino E, Delli Poggi C, Grieco GE, et al. Circulating MicroRNAs as biomarkers of gestational diabetes mellitus: Updates and perspec-tives. Int J Endocrinol 2018; 2018: 6380463.
[http://dx.doi.org/10.1155/2018/6380463] [PMID: 29849620]
[6]
Liu L, Zhang X, Rong C, et al. Distinct DNA methylomes of human placentas between pre-eclampsia and gestational diabetes mellitus. Cell Physiol Biochem 2014; 34(6): 1877-89.
[http://dx.doi.org/10.1159/000366386] [PMID: 25503509]
[7]
Özcan S. Minireview: MicroRNA function in pancreatic β cells. Mol Endocrinol 2014; 28(12): 1922-33.
[http://dx.doi.org/10.1210/me.2014-1306] [PMID: 25396300]
[8]
Needhamsen M, White RB, Giles KM, Dunlop SA, Thomas MG. Regulation of human PAX6 expression by miR-7. Evol Bioinform 2014; 10: 107-13.
[http://dx.doi.org/10.4137/EBO.S13739]
[9]
Meza-Sosa KF, Pérez-García EI, Camacho-Concha N, López-Gutiérrez O, Pedraza-Alva G, Pérez-Martínez L. MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS One 2014; 9(9): e103987.
[http://dx.doi.org/10.1371/journal.pone.0103987] [PMID: 25181544]
[10]
Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108(22): 9232-7.
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456]
[11]
Feng Y, Qu X, Chen Y, et al. MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reprod Biol Endocrinol 2020; 18(1): 61.
[http://dx.doi.org/10.1186/s12958-020-00618-8] [PMID: 32505219]
[12]
Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA 2011; 108(52): 21075-80.
[http://dx.doi.org/10.1073/pnas.1118922109] [PMID: 22160727]
[13]
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: The story so far. J Physiol Biochem 2020; 76(4): 485-502.
[http://dx.doi.org/10.1007/s13105-020-00760-2] [PMID: 32749641]
[14]
Hu D, Wang Y, Zhang H, Kong D. Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem 2018; 74(2): 291-9.
[http://dx.doi.org/10.1007/s13105-018-0615-3] [PMID: 29470815]
[15]
Wang T, Zhu H, Yang S, Fei X. Let-7a-5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 2019; 19(5): 4229-37.
[http://dx.doi.org/10.3892/mmr.2019.10057]
[16]
Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51(5): 823-31.
[http://dx.doi.org/10.1007/s00592-014-0617-8] [PMID: 24981880]
[17]
Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 2015; 5(1): 12453.
[http://dx.doi.org/10.1038/srep12453] [PMID: 26211738]
[18]
Song J, Bai Z, Han W, et al. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 2012; 57(4): 897-904.
[http://dx.doi.org/10.1007/s10620-011-1981-7] [PMID: 22198701]
[19]
Wang G-P, Xu C-S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol Biotechnol 2010; 46(1): 49-57.
[http://dx.doi.org/10.1007/s12033-010-9274-5] [PMID: 20339955]
[20]
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[21]
Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2015; 43(Database issue): D146-52.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[22]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[23]
Kohl M, Wiese S, Warscheid B. Cytoscape: Software for visualization and analysis of biological networks Data mining in proteomics. Totowa, NJ: Humana Press 2011; pp. 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18]
[24]
Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[25]
Wang S-S, Li Y-Q, Liang Y-Z, et al. Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance. J Cell Mol Med 2017; 21(12): 3372-80.
[http://dx.doi.org/10.1111/jcmm.13240] [PMID: 28661068]
[26]
Wan S, Wang J, Wang J, et al. Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular compli-cations. Diabetes Res Clin Pract 2017; 130: 171-9.
[http://dx.doi.org/10.1016/j.diabres.2017.06.005] [PMID: 28646700]
[27]
Ahmed K, LaPierre MP, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest 2017; 127(3): 1061-74.
[http://dx.doi.org/10.1172/JCI90031] [PMID: 28218624]
[28]
Peng C, Wang Y-L. Editorial: MicroRNAs as new players in endocrinology. Front Endocrinol (Lausanne) 2018; 9: 459.
[http://dx.doi.org/10.3389/fendo.2018.00459] [PMID: 30174649]
[29]
Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124(6): 2722-35.
[http://dx.doi.org/10.1172/JCI73066] [PMID: 24789908]
[30]
Harreiter J, Dovjak G, Kautzky-Willer A. Gestational diabetes mellitus and cardiovascular risk after pregnancy. Womens Health (Lond Engl) 2014; 10(1): 91-108.
[http://dx.doi.org/10.2217/WHE.13.69] [PMID: 24328601]
[31]
Fraser A, Lawlor DA. Long-term health outcomes in offspring born to women with diabetes in pregnancy. Curr Diab Rep 2014; 14(5): 489.
[http://dx.doi.org/10.1007/s11892-014-0489-x] [PMID: 24664798]
[32]
Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44(8): 3865-77.
[http://dx.doi.org/10.1093/nar/gkw116] [PMID: 26921406]
[33]
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017; 542(7642): 450-5.
[http://dx.doi.org/10.1038/nature21365] [PMID: 28199304]
[34]
Sebastiani G, Guarino E, Grieco GE, et al. Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational dia-betes mellitus reveals upregulation of miRNA miR-330-3p. Front Endocrinol (Lausanne) 2017; 8: 345.
[http://dx.doi.org/10.3389/fendo.2017.00345] [PMID: 29312141]
[35]
Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabe-tes mellitus. Int J Gynaecol Obstet 2015; 130(1): 49-53.
[http://dx.doi.org/10.1016/j.ijgo.2015.01.010] [PMID: 25887942]
[36]
Shi Z, Zhao C, Guo X, et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERα expression in estrogen-induced insulin resistance. Endocrinology 2014; 155(5): 1982-90.
[http://dx.doi.org/10.1210/en.2013-2046] [PMID: 24601884]
[37]
Tryggestad JB, Vishwanath A, Jiang S, et al. Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clin Sci (Lond) 2016; 130(21): 1955-67.
[http://dx.doi.org/10.1042/CS20160305] [PMID: 27562513]
[38]
Ding R, Guo F, Zhang Y, et al. Integrated transcriptome sequencing analysis reveals role of miR-138-5p/TBL1X in placenta from gesta-tional diabetes mellitus. Cell Physiol Biochem 2018; 51(2): 630-46.
[http://dx.doi.org/10.1159/000495319] [PMID: 30463081]
[39]
Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013; 62(3): 887-95.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022]
[40]
Sorokin AV, Chen J. MEMO1, a new IRS1-interacting protein, induces epithelial-mesenchymal transition in mammary epithelial cells. Oncogene 2013; 32(26): 3130-8.
[http://dx.doi.org/10.1038/onc.2012.327] [PMID: 22824790]
[41]
Besse-Patin A, Jeromson S, Levesque-Damphousse P, Secco B, Laplante M, Estall JL. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci USA 2019; 116(10): 4285-90.
[http://dx.doi.org/10.1073/pnas.1815150116] [PMID: 30770439]
[42]
Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: Promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (Ulixertinib). Mol Cancer Ther 2017; 16(11): 2351-63.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0456] [PMID: 28939558]
[43]
Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87(1): 51-6.
[http://dx.doi.org/10.1016/j.biochi.2004.10.018] [PMID: 15733737]
[44]
Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet 2011; 7(12): e1002429.
[http://dx.doi.org/10.1371/journal.pgen.1002429] [PMID: 22242005]
[45]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[46]
Duncan BB, Schmidt MI, Pankow JS, et al. Atherosclerosis Risk in Communities Study. Low-grade systemic inflammation and the devel-opment of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 2003; 52(7): 1799-805.
[http://dx.doi.org/10.2337/diabetes.52.7.1799] [PMID: 12829649]
[47]
Chen X, Yang F, Zhang T, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res 2019; 38(1): 99.
[http://dx.doi.org/10.1186/s13046-019-1078-2] [PMID: 30795814]
[48]
Mai S, Xiao R, Shi L, et al. MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma. Cell Death Dis 2019; 10(11): 819.
[http://dx.doi.org/10.1038/s41419-019-2060-9] [PMID: 31659158]
[49]
Deng YH, Deng ZH, Hao H, et al. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res 2018; 373(1-2): 171-9.
[http://dx.doi.org/10.1016/j.yexcr.2018.10.010] [PMID: 30342991]
[50]
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8(1): 24.
[http://dx.doi.org/10.1186/s40169-019-0240-y] [PMID: 31468250]
[51]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[52]
Pantham P, Aye ILMH, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 2015; 36(7): 709-15.
[http://dx.doi.org/10.1016/j.placenta.2015.04.006] [PMID: 25972077]
[53]
Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009; 9(4): 193-9.
[http://dx.doi.org/10.1016/j.gep.2008.12.003] [PMID: 19135553]
[54]
Saylor PJ, Keating NL, Freedland SJ, Smith MR. Gonadotropin-releasing hormone agonists and the risks of type 2 diabetes and cardiovas-cular disease in men with prostate cancer. Drugs 2011; 71(3): 255-61.
[http://dx.doi.org/10.2165/11588930-000000000-00000] [PMID: 21319864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy