Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Focused Review on Molecular Signalling Mechanisms of Ginsenosides Anti-Lung Cancer and Anti-inflammatory Activities

Author(s): Dae-Hyo Jung, Jinnatun Nahar, Ramya Mathiyalagan, Esrat Jahan Rupa, Zelika Mega Ramadhania, Yaxi Han, Deok-Chun Yang* and Se Chan Kang*

Volume 23, Issue 1, 2023

Published on: 15 August, 2022

Page: [3 - 14] Pages: 12

DOI: 10.2174/1871520622666220321091022

Price: $65

conference banner
Abstract

Background: Ginseng (Panax ginseng Meyer) is a cultivated medicinal herb that has been widely available in the Asian region since the last century. Ginseng root is used worldwide in Oriental medicine. Currently, the global mortality and infection rates for lung cancer and inflammation are significantly increasing. Therefore, various preventative methods related to the activity of ginsenosides have been used for lung cancer as well as inflammation.

Methods: Web-based searches were performed on Web of Science, Springer, PubMed, and Scopus. A cancer statistical analysis was also conducted to show the current ratio of affected cases and death from lung cancer around the world.

Results: Ginsenosides regulate the enzymes that participate in tumor growth and migration, such as nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), extracellular signalregulated kinases 1/2 (ERK1/2), the gelatinase network metalloproteinase-2 (MMP-2/9) and activator protein 1 (AP-1). In addition, ginsenosides also possess anti-inflammatory effects by inhibiting the formation of proinflammatory cytokines (tumor necrosis factor-α) (TNF-α) and interleukin-1β (IL-1β) and controlling the activities of inflammatory signalling pathways, such as NF-κB, Janus kinase2/signal transducer, and activator of transcription 3 (Jak2/Stat3).

Conclusion: In several in vitro and in vivo models, P. ginseng showed potential beneficial effects in lung cancer and inflammation treatment. In this review, we provide a detailed and up-to-date summary of research evidence for antilung cancer and anti-inflammatory protective effects of ginsenosides and their potential molecular mechanisms.

Keywords: Panax ginseng, ginsenosides, anti-lung cancer, anti-inflammation, signalling pathway, mitogen-activated protein kinase.

Graphical Abstract
[1]
Duan, Z.; Deng, J.; Dong, Y.; Zhu, C.; Li, W.; Fan, D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: In vitro and in vivo. Food Funct., 2017, 8(10), 3723-3736.
[http://dx.doi.org/10.1039/C7FO00385D] [PMID: 28949353]
[2]
Hu, M.; Yang, J.; Qu, L.; Deng, X.; Duan, Z.; Fu, R.; Liang, L.; Fan, D. Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-κB pathway in lung adenocarcinoma. Food Funct., 2020, 11(1), 456-471.
[http://dx.doi.org/10.1039/C9FO02166C] [PMID: 31830168]
[3]
Xie, Q.; Wen, H.; Zhang, Q.; Zhou, W.; Lin, X.; Xie, D.; Liu, Y. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell. Biomed. Pharmacother., 2017, 85, 16-21.
[http://dx.doi.org/10.1016/j.biopha.2016.11.096] [PMID: 27930981]
[4]
Sun, D.; Cao, M.; Li, H.; He, S.; Chen, W. Cancer burden and trends in China: A review and comparison with Japan and South Korea. Chin. J. Cancer Res., 2020, 32(2), 129-139.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.02.01] [PMID: 32410791]
[5]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 global cancer statistics? Cancer Commun. (Lond.), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[6]
Rajasekar, N.; Sivanantham, A.; Ravikumar, V.; Rajasekaran, S. An overview on the role of plant-derived tannins for the treatment of lung cancer. Phytochemistry, 2021, 188, 112799.
[http://dx.doi.org/10.1016/j.phytochem.2021.112799] [PMID: 33975161]
[7]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[8]
Choi, J-S.; Chun, K.S.; Kundu, J.; Kundu, J.K. Biochemical basis of cancer chemoprevention and/or chemotherapy with ginsenosides. (Review). Int. J. Mol. Med., 2013, 32(6), 1227-1238.
[http://dx.doi.org/10.3892/ijmm.2013.1519] [PMID: 24126942]
[9]
Chen, H. The anticancer activity and mechanisms of ginsenosides: An updated review. eFood, 2020, 1(3), 226-241.
[http://dx.doi.org/10.2991/efood.k.200512.001]
[10]
Sun, X. The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside. J. Ginseng Res., 2022, 46(2), 266-274.
[PMID: 35509820]
[11]
Yi, Y-S. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J. Ethnopharmacol., 2021, 278, 114292.
[http://dx.doi.org/10.1016/j.jep.2021.114292] [PMID: 34089812]
[12]
Im, D-S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules, 2020, 10(3), 444.
[http://dx.doi.org/10.3390/biom10030444] [PMID: 32183094]
[13]
Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin., 2008, 29(9), 1109-1118.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00869.x] [PMID: 18718180]
[14]
Yun, T-K. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol., 2001, 2(1), 49-55.
[http://dx.doi.org/10.1016/S1470-2045(00)00196-0] [PMID: 11905620]
[15]
Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res., 2018, 42(2), 123-132.
[http://dx.doi.org/10.1016/j.jgr.2017.01.008] [PMID: 29719458]
[16]
Hong, H.; Baatar, D.; Hwang, S.G. Anticancer activities of ginsenosides, the main active components of ginseng. Evid. Based Complement. Alternat. Med., 2021, 2021. Article ID 8858006
[http://dx.doi.org/10.1155/2021/8858006]
[17]
Piao, X.M.; Huo, Y.; Kang, J.P.; Mathiyalagan, R.; Zhang, H.; Yang, D.U.; Kim, M.; Yang, D.C.; Kang, S.C.; Wang, Y.P. Diversity of ginsenoside profiles produced by various processing technologies. Molecules, 2020, 25(19), 4390.
[http://dx.doi.org/10.3390/molecules25194390] [PMID: 32987784]
[18]
Kang, S.; Min, H. Ginseng, the’immunity boost’: The effects of Panax ginseng on immune system. J. Ginseng Res., 2012, 36(4), 354-368.
[http://dx.doi.org/10.5142/jgr.2012.36.4.354] [PMID: 23717137]
[19]
Lim, S-I.; Cho, C-W.; Choi, U-K.; Kim, Y-C. Antioxidant activity and ginsenoside pattern of fermented white ginseng. J. Ginseng Res., 2010, 34(3), 168-174.
[http://dx.doi.org/10.5142/jgr.2010.34.3.168]
[20]
Yang, W.Z.; Hu, Y.; Wu, W.Y.; Ye, M.; Guo, D.A. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry, 2014, 106, 7-24.
[http://dx.doi.org/10.1016/j.phytochem.2014.07.012] [PMID: 25108743]
[21]
Piao, X.; Zhang, H.; Kang, J.P.; Yang, D.U.; Li, Y.; Pang, S.; Jin, Y.; Yang, D.C.; Wang, Y. Advances in saponin diversity of Panax ginseng. Molecules, 2020, 25(15), 3452.
[http://dx.doi.org/10.3390/molecules25153452] [PMID: 32751233]
[22]
Shi, Z-Y.; Zeng, J-Z.; Wong, A.S.T. Chemical structures and pharmacological profiles of ginseng saponins. Molecules, 2019, 24(13), 2443.
[http://dx.doi.org/10.3390/molecules24132443] [PMID: 31277214]
[23]
Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449(7163), 682-688.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[24]
Liu, T.; Zuo, L.; Guo, D.; Chai, X.; Xu, J.; Cui, Z.; Wang, Z.; Hou, C. Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed. Pharmacother., 2019, 120, 109483.
[http://dx.doi.org/10.1016/j.biopha.2019.109483] [PMID: 31629252]
[25]
Bhattacharjee, S.; Nandi, S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin. Transl. Med., 2016, 5(1), 45.
[http://dx.doi.org/10.1186/s40169-016-0128-z] [PMID: 27921283]
[26]
Ma, J.; Setton, J.; Lee, N.Y.; Riaz, N.; Powell, S.N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun., 2018, 9(1), 3292.
[http://dx.doi.org/10.1038/s41467-018-05228-y] [PMID: 30120226]
[27]
Hazan, R.; Qiao, R.; Keren, R.; Badano, I.; Suyama, K. Cadherin switch in tumor progression. Ann. N. Y. Acad. Sci., 2004, 1014, 155-163.
[http://dx.doi.org/10.1196/annals.1294.016] [PMID: 15153430]
[28]
Xie, D.; Gore, C.; Liu, J.; Pong, R.C.; Mason, R.; Hao, G.; Long, M.; Kabbani, W.; Yu, L.; Zhang, H.; Chen, H.; Sun, X.; Boothman, D.A.; Min, W.; Hsieh, J.T. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc. Natl. Acad. Sci., 2010, 107(6), 2485-2490.
[http://dx.doi.org/10.1073/pnas.0908133107] [PMID: 20080667]
[29]
Chakrabarti, S.; Patel, K.D. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp. Lung Res., 2005, 31(6), 599-621.
[http://dx.doi.org/10.1080/019021490944232] [PMID: 16019990]
[30]
Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol., 2014, 26(3), 253-266.
[http://dx.doi.org/10.1016/j.smim.2014.05.004] [PMID: 24958609]
[31]
Zappulla, D. Environmental stress, erythrocyte dysfunctions, inflammation, and the metabolic syndrome: Adaptations to CO2 increases? J. Cardiometab. Syndr., 2008, 3(1), 30-34.
[http://dx.doi.org/10.1111/j.1559-4572.2008.07263.x] [PMID: 18326983]
[32]
Yadav, A.; Kumar, B.; Datta, J.; Teknos, T.N.; Kumar, P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol. Cancer Res., 2011, 9(12), 1658-1667.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0271] [PMID: 21976712]
[33]
Ko, H. Geraniin inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg. Med. Chem. Lett., 2015, 25(17), 3529-3534.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.093] [PMID: 26169124]
[34]
Kasai, H.; Allen, J.T.; Mason, R.M.; Kamimura, T.; Zhang, Z. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res., 2005, 6(1), 56.
[http://dx.doi.org/10.1186/1465-9921-6-56] [PMID: 15946381]
[35]
Chiu, W-T.; Huang, Y.F.; Tsai, H.Y.; Chen, C.C.; Chang, C.H.; Huang, S.C.; Hsu, K.F.; Chou, C.Y. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget, 2015, 6(4), 2349-2365.
[http://dx.doi.org/10.18632/oncotarget.2957] [PMID: 25537512]
[36]
Sehgal, I.; Thompson, T.C. Novel regulation of type IV collagenase (matrix metalloproteinase-9 and -2) activities by transforming growth factor-β1 in human prostate cancer cell lines. Mol. Biol. Cell, 1999, 10(2), 407-416.
[http://dx.doi.org/10.1091/mbc.10.2.407] [PMID: 9950685]
[37]
Monteiro, J.; Fodde, R. Cancer stemness and metastasis: Therapeutic consequences and perspectives. Eur. J. Cancer, 2010, 46(7), 1198-1203.
[http://dx.doi.org/10.1016/j.ejca.2010.02.030] [PMID: 20303259]
[38]
Bent, S.; Ko, R. Commonly used herbal medicines in the United States: A review. Am. J. Med., 2004, 116(7), 478-485.
[http://dx.doi.org/10.1016/j.amjmed.2003.10.036] [PMID: 15047038]
[39]
Liang, L.D.; He, T.; Du, T.W.; Fan, Y.G.; Chen, D.S.; Wang, Y. Ginsenoside Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol. Med. Rep., 2015, 11(2), 940-946.
[http://dx.doi.org/10.3892/mmr.2014.2821] [PMID: 25355274]
[40]
Ko, H.; Jeon, H.; Lee, D.; Choi, H.K.; Kang, K.S.; Choi, K.C. Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg. Med. Chem. Lett., 2015, 25(23), 5508-5513.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.067] [PMID: 26508552]
[41]
Zhang, F.; Ren, C.C.; Liu, L.; Chen, Y.N.; Yang, L.; Zhang, X.A. HOXC6 gene silencing inhibits epithelial-mesenchymal transition and cell viability through the TGF-β/smad signaling pathway in cervical carcinoma cells. Cancer Cell Int., 2018, 18(1), 204.
[http://dx.doi.org/10.1186/s12935-018-0680-2] [PMID: 30559605]
[42]
Kim, H.; Pilju, C.; Taejung, K.; Youngseok, K.; Bong, G.S.; Young-Tae, P.; Seon-Jun, C.; Cheol, H.Y.; Won-Chul, L.; Hyeonseok, K.; Jungyeob, H. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J. Ginseng Res., 2021, 45(1), 134-148.
[43]
Kim, Y-J.; Choi, W.I.; Jeon, B.N.; Choi, K.C.; Kim, K.; Kim, T.J.; Ham, J.; Jang, H.J.; Kang, K.S.; Ko, H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 2014, 322, 23-33.
[http://dx.doi.org/10.1016/j.tox.2014.04.002] [PMID: 24793912]
[44]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[45]
Birchmeier, W.; Behrens, J. Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta, 1994, 1198(1), 11-26.
[PMID: 8199193]
[46]
Smith, A.L.; Robin, T.P.; Ford, H.L. Molecular pathways: Targeting the TGF-β pathway for cancer therapy. Clin. Cancer Res., 2012, 18(17), 4514-4521.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3224] [PMID: 22711703]
[47]
Zhang, L-H.; Jia, Y.L.; Lin, X.X.; Zhang, H.Q.; Dong, X.W.; Zhao, J.M.; Shen, J.; Shen, H.J.; Li, F.F.; Yan, X.F.; Li, W.; Zhao, Y.Q.; Xie, Q.M. AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim. Biophys. Acta, 2013, 1830(8), 4148-4159.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.008] [PMID: 23583729]
[48]
Lorin, S.; Pierron, G.; Ryan, K.M.; Codogno, P.; Djavaheri-Mergny, M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy, 2010, 6(1), 153-154.
[http://dx.doi.org/10.4161/auto.6.1.10537] [PMID: 19949306]
[49]
Galardi, S.; Mercatelli, N.; Farace, M.G.; Ciafrè, S.A. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res., 2011, 39(9), 3892-3902.
[http://dx.doi.org/10.1093/nar/gkr006] [PMID: 21245048]
[50]
Li, C.; Dong, Y.; Wang, L.; Xu, G.; Yang, Q.; Tang, X.; Qiao, Y.; Cong, Z. Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK-mTOR and JNK pathways. Biochem. Cell Biol., 2019, 97(4), 406-414.
[http://dx.doi.org/10.1139/bcb-2018-0226] [PMID: 30475650]
[51]
Liu, X.; Sun, Y.; Yue, L.; Li, S.; Qi, X.; Zhao, H.; Yang, Y.; Zhang, C.; Yu, H. JNK pathway and relative transcriptional factor were involved in ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Genet. Mol. Res., 2016, 15(3), 1-13.
[http://dx.doi.org/10.4238/gmr.15039003] [PMID: 27706758]
[52]
Wu, Y.C.; Tang, S.J.; Sun, G.H.; Sun, K.H. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer. Oncogene, 2016, 35(16), 2123-2132.
[http://dx.doi.org/10.1038/onc.2015.274] [PMID: 26212008]
[53]
Ko, H.; So, Y.; Jeon, H.; Jeong, M.H.; Choi, H.K.; Ryu, S.H.; Lee, S.W.; Yoon, H.G.; Choi, K.C. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett., 2013, 335(1), 205-213.
[http://dx.doi.org/10.1016/j.canlet.2013.02.018] [PMID: 23419524]
[54]
Zhu, J.; Wang, S.; Chen, Y.; Li, X.; Jiang, Y.; Yang, X.; Li, Y.; Wang, X.; Meng, Y.; Zhu, M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.; Geng, S.; Wu, J.; Zhong, C.; Han, H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J. Nutr. Biochem., 2017, 44, 80-91.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.020] [PMID: 28431267]
[55]
Chian, S.; Zhao, Y.; Xu, M.; Yu, X.; Ke, X.; Gao, R.; Yin, L. Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway. Anticancer Drugs, 2019, 30(8), 838-845.
[http://dx.doi.org/10.1097/CAD.0000000000000781] [PMID: 31415285]
[56]
Dai, Y.; Wang, W.; Sun, Q.; Tuohayi, J. Ginsenoside Rg3 promotes the antitumor activity of gefitinib in lung cancer cell lines. Exp. Ther. Med., 2019, 17(1), 953-959.
[PMID: 30651886]
[57]
Leem, D.G.; Shin, J.S.; Kim, K.T.; Choi, S.Y.; Lee, M.H.; Lee, K.T. Dammarane-type triterpene ginsenoside-Rg18 inhibits human non-small cell lung cancer A549 cell proliferation via G1 phase arrest. Oncol. Lett., 2018, 15(4), 6043-6049.
[http://dx.doi.org/10.3892/ol.2018.8057] [PMID: 29556318]
[58]
Tian, L.; Shen, D.; Li, X.; Shan, X.; Wang, X.; Yan, Q.; Liu, J. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget, 2016, 7(2), 1619-1632.
[http://dx.doi.org/10.18632/oncotarget.6451] [PMID: 26636541]
[59]
Chen, Y.; Zhang, Y.; Song, W.; Zhang, Y.; Dong, X.; Tan, M. Ginsenoside Rh2 improves the cisplatin anti-tumor effect in lung adenocarcinoma A549 cells via superoxide and PD-L1. Anticancer. Agents Med. Chem., 2020, 20(4), 495-503.
[http://dx.doi.org/10.2174/1871520619666191209091230] [PMID: 31814556]
[60]
Li, H.; Huang, N.; Zhu, W.; Wu, J.; Yang, X.; Teng, W.; Tian, J.; Fang, Z.; Luo, Y.; Chen, M.; Li, Y. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer, 2018, 18(1), 579.
[http://dx.doi.org/10.1186/s12885-018-4299-4] [PMID: 29783929]
[61]
Ge, G.; Yan, Y.; Cai, H. Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biol. Pharm. Bull., 2017, 40(12), 2117-2124.
[http://dx.doi.org/10.1248/bpb.b17-00463] [PMID: 28966297]
[62]
Wang, Y.; Xu, H.; Lu, Z.; Yu, X.; Lv, C.; Tian, Y.; Sui, D. Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp. Ther. Med., 2018, 15(6), 4916-4924.
[http://dx.doi.org/10.3892/etm.2018.6067] [PMID: 29805515]
[63]
Chen, H.F.; Wu, L.X.; Li, X.F.; Zhu, Y.C.; Wang, W.X.; Xu, C.W.; Huang, Z.Z.; Du, K.Q. Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism. Cell. Mol. Biol., 2019, 65(4), 48-52.
[http://dx.doi.org/10.14715/cmb/2019.65.4.8] [PMID: 31078152]
[64]
Li, Y.; Zhou, T.; Ma, C.; Song, W.; Zhang, J.; Yu, Z. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells. J. Thorac. Dis., 2015, 7(3), 400-406.
[PMID: 25922718]
[65]
Lee, D.G.; Jang, S.I.; Kim, Y.R.; Yang, K.E.; Yoon, S.J.; Lee, Z.W.; An, H.J.; Jang, I.S.; Choi, J.S.; Yoo, H.S. Anti-proliferative effects of ginsenosides extracted from mountain ginseng on lung cancer. Chin. J. Integr. Med., 2016, 22(5), 344-352.
[http://dx.doi.org/10.1007/s11655-014-1789-8] [PMID: 25159864]
[66]
Xu, F-Y.; Shang, W.Q.; Yu, J.J.; Sun, Q.; Li, M.Q.; Sun, J.S. The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am. J. Transl. Res., 2016, 8(4), 1708-1718.
[PMID: 27186294]
[67]
Janeway, C.A., Jr; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20(1), 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[68]
Yi, Y.S. Caspase-11 non-canonical inflammasome: A critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology, 2017, 152(2), 207-217.
[http://dx.doi.org/10.1111/imm.12787] [PMID: 28695629]
[69]
Chhetri, J.K.; de Souto Barreto, P.; Fougère, B.; Rolland, Y.; Vellas, B.; Cesari, M. Chronic inflammation and sarcopenia: A regenerative cell therapy perspective. Exp. Gerontol., 2018, 103, 115-123.
[http://dx.doi.org/10.1016/j.exger.2017.12.023] [PMID: 29331536]
[70]
Laskin, D.L.; Pendino, K.J. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol., 1995, 35(1), 655-677.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.003255] [PMID: 7598511]
[71]
Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol., 2003, 54(4), 469-487.
[PMID: 14726604]
[72]
Lu, Y-C.; Yeh, W-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[73]
Rathinam, V.A.K.; Zhao, Y.; Shao, F. Innate immunity to intracellular LPS. Nat. Immunol., 2019, 20(5), 527-533.
[http://dx.doi.org/10.1038/s41590-019-0368-3] [PMID: 30962589]
[74]
Gao, H.; Liu, X.; Sun, W.; Kang, N.; Liu, Y.; Yang, S.; Xu, Q.M.; Wang, C.; Chen, X. Total tanshinones exhibits anti-inflammatory effects through blocking TLR4 dimerization via the MyD88 pathway. Cell Death Dis., 2017, 8(8), e3004-e3004.
[http://dx.doi.org/10.1038/cddis.2017.389] [PMID: 28817116]
[75]
Lu, M.; Zhang, Q.; Chen, K.; Xu, W.; Xiang, X.; Xia, S. The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells. Phytomedicine, 2017, 36, 153-159.
[http://dx.doi.org/10.1016/j.phymed.2017.10.001] [PMID: 29157809]
[76]
Gao, H.; Sun, W.; Zhao, J.; Wu, X.; Lu, J.J.; Chen, X.; Xu, Q.M.; Khan, I.A.; Yang, S. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci. Rep., 2016, 6(1), 33720.
[http://dx.doi.org/10.1038/srep33720] [PMID: 27666387]
[77]
He, W.; Qu, T.; Yu, Q.; Wang, Z.; Lv, H.; Zhang, J.; Zhao, X.; Wang, P. LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. Int. Endod. J., 2013, 46(2), 128-136.
[http://dx.doi.org/10.1111/j.1365-2591.2012.02096.x] [PMID: 22788664]
[78]
Zhang, G.; Ghosh, S. Toll-like receptor-mediated NF-kappaB activation: A phylogenetically conserved paradigm in innate immunity. J. Clin. Invest., 2001, 107(1), 13-19.
[http://dx.doi.org/10.1172/JCI11837] [PMID: 11134172]
[79]
Adams, J.; Stein, R. Novel inhibitors of the proteasome and their therapeutic use in inflammation. Annual Reports in Medicinal Chemistry; Elsevier, 1996, pp. 279-288.
[http://dx.doi.org/10.1016/S0065-7743(08)60467-4]
[80]
Kim, D.H.; Chung, J.H.; Yoon, J.S.; Ha, Y.M.; Bae, S.; Lee, E.K.; Jung, K.J.; Kim, M.S.; Kim, Y.J.; Kim, M.K.; Chung, H.Y. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver. J. Ginseng Res., 2013, 37(1), 54-63.
[http://dx.doi.org/10.5142/jgr.2013.37.54] [PMID: 23717157]
[81]
Chen, Y-Q.; Ghosh, S.; Ghosh, G. A novel DNA recognition mode by the NF-κ B p65 homodimer. Nat. Struct. Biol., 1998, 5(1), 67-73.
[http://dx.doi.org/10.1038/nsb0198-67] [PMID: 9437432]
[82]
Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem., 1994, 269(7), 4705-4708.
[http://dx.doi.org/10.1016/S0021-9258(17)37600-7] [PMID: 7508926]
[83]
Barnes, P.J.; Karin, M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med., 1997, 336(15), 1066-1071.
[http://dx.doi.org/10.1056/NEJM199704103361506] [PMID: 9091804]
[84]
Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-[κ]B activity. Annu. Rev. Immunol., 2000, 18(1), 621-663.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.621] [PMID: 10837071]
[85]
De Bosscher, K.; Vanden Berghe, W.; Vermeulen, L.; Plaisance, S.; Boone, E.; Haegeman, G. Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl. Acad. Sci., 2000, 97(8), 3919-3924.
[http://dx.doi.org/10.1073/pnas.97.8.3919] [PMID: 10760263]
[86]
Baldwin, A.S., Jr The NF-κ B and I κ B proteins: New discoveries and insights. Annu. Rev. Immunol., 1996, 14(1), 649-683.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[87]
Huynh, D.T.N.; Baek, N.; Sim, S.; Myung, C.S.; Heo, K.S. Minor ginsenoside Rg2 and Rh1 attenuates LPS-induced acute liver and kidney damages via downregulating activation of TLR4-STAT1 and inflammatory cytokine production in macrophages. Int. J. Mol. Sci., 2020, 21(18), 6656.
[http://dx.doi.org/10.3390/ijms21186656] [PMID: 32932915]
[88]
Gao, H.; Kang, N.; Hu, C.; Zhang, Z.; Xu, Q.; Liu, Y.; Yang, S. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine, 2020, 69, 153197.
[http://dx.doi.org/10.1016/j.phymed.2020.153197] [PMID: 32146298]
[89]
Baatar, D.; Siddiqi, M.Z. Im, W.T.; Ul Khaliq, N.; Hwang, S.G. Anti-inflammatory effect of ginsenoside Rh2-mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Med. Food, 2018, 21(10), 951-960.
[http://dx.doi.org/10.1089/jmf.2018.4180] [PMID: 30239266]
[90]
Lee, S.M. Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: Inhibition of TNF-α-induced NF-κB, COX-2, and iNOS transcriptional expression. Phytother. Res., 2014, 28(12), 1893-1896.
[http://dx.doi.org/10.1002/ptr.5203] [PMID: 25042112]
[91]
Wang, J.; Chen, Y.; Dai, C.; Shang, Y.; Xie, J. Ginsenoside Rh2 alleviates tumor-associated depression in a mouse model of colorectal carcinoma. Am. J. Transl. Res., 2016, 8(5), 2189-2195.
[PMID: 27347326]
[92]
Hsieh, Y-H.; Deng, J.S.; Chang, Y.S.; Huang, G.J. Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and Keap1/Nrf2/HO-1 signaling pathways in mice. Nutrients, 2018, 10(9), 1208.
[http://dx.doi.org/10.3390/nu10091208] [PMID: 30200495]
[93]
Chiba, T.; Yamada, M.; Aiso, S. Targeting the JAK2/STAT3 axis in Alzheimer’s disease. Expert Opin. Ther. Targets, 2009, 13(10), 1155-1167.
[http://dx.doi.org/10.1517/14728220903213426] [PMID: 19663649]
[94]
Wang, X.; Liu, Q.; Ihsan, A.; Huang, L.; Dai, M.; Hao, H.; Cheng, G.; Liu, Z.; Wang, Y.; Yuan, Z. JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol. Sci., 2012, 127(2), 412-424.
[http://dx.doi.org/10.1093/toxsci/kfs106] [PMID: 22454431]
[95]
Jang, S.; Lee, J.H.; Choi, K.R.; Kim, D.; Yoo, H.S.; Oh, S. Cytochemical alterations in the rat retina by LPS administration. Neurochem. Res., 2007, 32(1), 1-10.
[http://dx.doi.org/10.1007/s11064-006-9215-7] [PMID: 17160463]
[96]
Saravanan, S.; Islam, V.I.; Babu, N.P.; Pandikumar, P.; Thirugnanasambantham, K.; Chellappandian, M.; Raj, C.S.; Paulraj, M.G.; Ignacimuthu, S. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur. J. Pharm. Sci., 2014, 56, 70-86.
[http://dx.doi.org/10.1016/j.ejps.2014.02.005] [PMID: 24582615]
[97]
Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakan, S.T.; Koca, C.; Dey, S.; Sung, B. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Ann. N. Y. Acad. Sci., 2009, 1171(1), 59-76.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x] [PMID: 19723038]
[98]
Yang, X.O.; Panopoulos, A.D.; Nurieva, R.; Chang, S.H.; Wang, D.; Watowich, S.S.; Dong, C. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem., 2007, 282(13), 9358-9363.
[http://dx.doi.org/10.1074/jbc.C600321200] [PMID: 17277312]
[99]
Yu, Q.; Zeng, K.W.; Ma, X.L.; Jiang, Y.; Tu, P.F.; Wang, X.M. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin. J. Nat. Med., 2017, 15(10), 751-757.
[http://dx.doi.org/10.1016/S1875-5364(17)30106-1] [PMID: 29103460]
[100]
Jung, J-S.; Kim, D-H.; Kim, H-S. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-γ-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun., 2010, 397(2), 323-328.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.117] [PMID: 20510882]
[101]
Xin, C.; Kim, J.; Quan, H.; Yin, M.; Jeong, S.; Choi, J.I.; Jang, E.A.; Lee, C.H.; Kim, D.H.; Bae, H.B. Ginsenoside Rg3 promotes Fc gamma receptor-mediated phagocytosis of bacteria by macrophages via an extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent mechanism. Int. Immunopharmacol., 2019, 77, 105945.
[http://dx.doi.org/10.1016/j.intimp.2019.105945] [PMID: 31644962]
[102]
Li, F.; Cao, Y.; Luo, Y.; Liu, T.; Yan, G.; Chen, L.; Ji, L.; Wang, L.; Chen, B.; Yaseen, A.; Khan, A.A.; Zhang, G.; Jiang, Y.; Liu, J.; Wang, G.; Wang, M.K.; Hu, W. Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity. J. Ginseng Res., 2019, 43(4), 600-605.
[http://dx.doi.org/10.1016/j.jgr.2018.09.004] [PMID: 31695566]
[103]
Li, L.C. et al. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor‑κB activation in a murine model of asthma. Mol. Med. Rep., 2015, 12(5), p. 6946-6954.
[104]
Ahn, S.; Siddiqi, M.H.; Noh, H-Y.; Kim, Y-J.; Kim, Y-J.; Jin, C-G.; Yang, D-C. Anti-inflammatory activity of ginsenosides in LPS-stimulated RAW 264.7 cells. Sci. Bull. (Beijing), 2015, 60(8), 773-784.
[http://dx.doi.org/10.1007/s11434-015-0773-4]
[105]
Lee, J-O.; Choi, E.; Shin, K.K.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Hossain, M.A.; Kim, H.S.; Yi, Y.S.; Kim, D.; Kim, E.; Cho, J.Y. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J. Ginseng Res., 2019, 43(1), 154-160.
[http://dx.doi.org/10.1016/j.jgr.2018.10.003] [PMID: 30662304]
[106]
Yu, T.; Yang, Y.; Kwak, Y.S.; Song, G.G.; Kim, M.Y.; Rhee, M.H.; Cho, J.Y. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res., 2017, 41(2), 127-133.
[http://dx.doi.org/10.1016/j.jgr.2016.02.001] [PMID: 28413316]
[107]
Li, Y.; Guan, Y.; Wang, Y.; Yu, C.L.; Zhai, F.G.; Guan, L.X. Neuroprotective effect of the ginsenoside Rg1 on cerebral ischemic injury in vivo and in vitro is mediated by PPARγ-regulated antioxidative and anti-inflammatory pathways. Evid. Based Complement. Alternat. Med., 2017, 2017, 7842082.
[http://dx.doi.org/10.1155/2017/7842082] [PMID: 28656054]
[108]
Jiang, J.; Sun, X.; Akther, M.; Lian, M.L.; Quan, L.H.; Koppula, S.; Han, J.H.; Kopalli, S.R.; Kang, T.B.; Lee, K.H. Ginsenoside metabolite 20(S)-protopanaxatriol from Panax ginseng attenuates inflammation-mediated NLRP3 inflammasome activation. J. Ethnopharmacol., 2020, 251, 112564.
[http://dx.doi.org/10.1016/j.jep.2020.112564] [PMID: 31926987]
[109]
Zhang, J.; Zhang, Q.; Xu, Y. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med., 2019, 85(4), 292-301.
[http://dx.doi.org/10.1055/a-0770-0994] [PMID: 30380571]
[110]
Ahn, S.; Siddiqi, M.H.; Aceituno, V.C.; Simu, S.Y.; Yang, D.C. Suppression of MAPKs/NF-κB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264. 7 cells. Immunol. Invest., 2016, 45(5), 439-449.
[http://dx.doi.org/10.3109/08820139.2016.1168830] [PMID: 27224660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy