Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Importance of Indazole against Neurological Disorders

Author(s): Dilipkumar Pal* and Pooja Sahu

Volume 22, Issue 14, 2022

Published on: 27 April, 2022

Page: [1136 - 1151] Pages: 16

DOI: 10.2174/1568026622666220225152443

Price: $65

conference banner
Abstract

Indazole is a nitrogen-containing bicyclic compound, having three tautomeric forms: 1Hindazole, 2H-indazole, and 3H-indazole. Mostly, they are considered as 1H-indazole tautomeric forms, although they have the potential to tautomerism to 2H- and 3H-indazole forms. Indazoles are involved in a wide variety of biological and enzymatic processes. Therefore, they exhibit a series of pharmacological activities. Indazoles show potent activities against neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), mood disorders, etc., by inhibiting different signaling pathways and the generation of neurotransmitters and activation of enzyme activity. They effectively prevent neurological diseases by different mechanisms, such as by inhibiting the monoamine oxidase (MAO) and kinase enzymes like Glycogen synthase kinase 3 (GSK3), and leucinerich repeat kinase enzyme 2 (LRRK2). In this article, we have discussed multiple causative strategies of indazole to treat neurological diseases. This has aroused special attention in the discovery of the novel indazoles and their biological activities.

Keywords: Indazole, Alzheimer disease, Parkinson's disease, MAO, GSK-3, LRRK-2, Neurological disorders.

Graphical Abstract
[1]
Hajra, A.; Ghosh, S.; Mondal, S. Direct catalytic functionalization of indazole derivatives. Adv. Synth. Catal., 2020, 363(18), 3768-3794.
[2]
Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: A patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453.
[3]
Zhang, S.G.; Liang, C.G.; Zhang, W.H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules, 2018, 23(11), 2783.
[http://dx.doi.org/10.3390/molecules23112783] [PMID: 30373212]
[4]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[5]
Pal, D.; Saha, S. Chondroitin: A natural biomarker with immense biomedical applications. RSC Advances, 2019, 9(48), 28061-28077.
[http://dx.doi.org/10.1039/C9RA05546K]
[6]
Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.J.; de Ocáriz, C.O. Pharmacological properties of indazole derivatives: Recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[7]
Ali, N.; Zakir, S.; Patel, M.; Farooqui, M. Synthesis of new α aminophosphonate system bearing indazole moiety and their biological activity. Eur. J. Med. Chem., 2012, 50, 39-43.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.024] [PMID: 22341789]
[8]
Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem., 2008, 24(24), 4073-4095.
[http://dx.doi.org/10.1002/ejoc.200800227]
[9]
Pérez-Villanueva, J.; Yépez-Mulia, L.; González-Sánchez, I.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Sainz-Espuñes, T.D.R.; Cerbón, M.A.; Rodríguez-Villar, K.; Rodríguez-Vicente, A.K.; Cortés-Gines, M.; Custodio-Galván, Z.; Estrada-Castro, D.B. Synthesis and biological evaluation of 2H-Indazole derivatives: Towards antimicrobial and anti-inflammatory dual agents. Molecules, 2017, 22(11), 1864.
[http://dx.doi.org/10.3390/molecules22111864] [PMID: 29088121]
[10]
Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev., 2019, 39(5), 1603-1706.
[http://dx.doi.org/10.1002/med.21561] [PMID: 30604512]
[11]
Mercer, S.E.; Chaturvedula, P.V.; Conway, C.M.; Cook, D.A.; Davis, C.D.; Pin, S.S.; Macci, R.; Schartman, R.; Signor, L.J.; Widmann, K.A.; Whiterock, V.J.; Chen, P.; Xu, C.; Herbst, J.J.; Kostich, W.A.; Thalody, G.; Macor, J.E.; Dubowchik, G.M. Azepino-indazoles as calcitonin gene-related peptide (CGRP) receptor antagonists. Bioorg. Med. Chem. Lett., 2021, 31, 127624.
[http://dx.doi.org/10.1016/j.bmcl.2020.127624] [PMID: 33096162]
[12]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[13]
Pal, D.; Sannigrahi, S.; Mazumder, U.K. Analgesic and anticonvulsant effects of saponin isolated from the leaves of Clerodendrum infortunatum Linn. in mice. Indian J. Exp. Biol., 2009, 47(9), 743-747.
[PMID: 19957887]
[14]
Pal, D.; Nandi, M. CNS activities of Celsia coromandeliane Vahl in Mice. Acta Polon Pharm-. Drug Res., 2005, 62(5), 355-361.
[PMID: 16459484]
[15]
Pal, D.; Panda, C.; Sinhababu, S.; Dutta, A.; Bhattacharya, S. Evaluation of psychopharmacological effects of petroleum ether extract of Cuscuta reflexa Roxb. stem in mice. Acta Pol. Pharm., 2003, 60(6), 481-486.
[PMID: 15080597]
[16]
Mal, S.; Malik, U.; Pal, D.; Mishra, A. Insight γ-secretase: Structure, function and role in Alzheimer’s disease. Curr. Drug Targets, 2021, 22(12), 1376-1403.
[http://dx.doi.org/10.2174/1389450121999201230203709] [PMID: 33390127]
[17]
Mondal, A.; Bose, S.; Banerjee, S.; Pal, D. Role of γ-Secretase inhibitors for the treatment of diverse disease conditions through inhibition of notch signalling pathway. Curr. Drug Targets, 2021, 22(15), 1799-1807.
[18]
Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat., 2018, 28(3), 211-226.
[http://dx.doi.org/10.1080/13543776.2018.1427735] [PMID: 29324067]
[19]
Tzvetkov, N.T.; Stammler, H.G.; Antonov, L. Tautomerism of N -(3,4-dichlorophenyl)-1 H -indazole-5-carboxamide - a new selective, highly potent and reversible MAO-B inhibitor. J. Mol. Struct., 2017, 1149, 273-281.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.108]
[20]
Harish, K.P.; Mohana, K.N.; Mallesha, L. Synthesis of indazole substituted-1,3,4-thiadiazoles and their anticonvulsant activity. Drug Invent. Today, 2013, 5(2), 92-99.
[http://dx.doi.org/10.1016/j.dit.2013.06.002]
[21]
Carradori, S.; Petzer, J.P. Novel monoamine oxidase inhibitors: A patent review (2012 - 2014). Expert Opin. Ther. Pat., 2015, 25(1), 91-110.
[http://dx.doi.org/10.1517/13543776.2014.982535] [PMID: 25399762]
[22]
Duarte, P.; Cuadrado, A.; León, R. Monoamine oxidase inhibitors: from classic to new clinical approaches. Handb. Exp. Pharmacol., 2021, 264, 229-259.
[http://dx.doi.org/10.1007/164_2020_384] [PMID: 32852645]
[23]
Livingston, M.G.; Livingston, H.M. Monoamine oxidase inhibitors. An update on drug interactions. Drug Saf., 1996, 14(4), 219-227.
[http://dx.doi.org/10.2165/00002018-199614040-00002] [PMID: 8713690]
[24]
Tzvetkov, N.T.; Hinz, S.; Küppers, P.; Gastreich, M.; Müller, C.E. Indazole- and indole-5-carboxamides: Selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J. Med. Chem., 2014, 57(15), 6679-6703.
[http://dx.doi.org/10.1021/jm500729a] [PMID: 24955776]
[25]
Tzvetkov, N.T.; Stammler, H.G.; Neumann, B.; Hristova, S.; Antonov, L.; Gastreich, M. Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. Eur. J. Med. Chem., 2017, 127, 470-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.011] [PMID: 28107736]
[26]
Herraiz, T.; Arán, V.J.; Guillén, H. Nitroindazole compounds inhibit the oxidative activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to neurotoxic pyridinium cations by human monoamine oxidase (MAO). Free Radic. Res., 2009, 43(10), 975-984.
[http://dx.doi.org/10.1080/10715760903159170] [PMID: 19669997]
[27]
Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[28]
Jismy, B.; El Qami, A.; Pišlar, A.; Frlan, R.; Kos, J.; Gobec, S.; Knez, D.; Abarbri, M. Pyrimido[1,2-b]indazole derivatives: Selective inhibitors of human monoamine oxidase B with neuroprotective activity. Eur. J. Med. Chem., 2021, 209, 112911.
[http://dx.doi.org/10.1016/j.ejmech.2020.112911] [PMID: 33071056]
[29]
Gökhan-Kelekçi, N.; Simşek, Ö.Ö.; Ercan, A.; Yelekçi, K.; Şahin, Z.S.; Işik, S.; Uçar, G.; Bilgin, A.A. Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors. Bioorg. Med. Chem., 2009, 17(18), 6761-6772.
[http://dx.doi.org/10.1016/j.bmc.2009.07.033] [PMID: 19682910]
[30]
Yamada, M.; Yasuhara, H. Clinical pharmacology of MAO inhibitors: Safety and future. Neurotoxicology, 2004, 25(1-2), 215-221.
[http://dx.doi.org/10.1016/S0161-813X(03)00097-4] [PMID: 14697896]
[31]
Volz, H-P.; Gleiter, C.H. Monoamine oxidase inhibitors. A perspective on their use in the elderly. Drugs Aging, 1998, 13(5), 341-355.
[http://dx.doi.org/10.2165/00002512-199813050-00002] [PMID: 9829163]
[32]
Kumar, B.; Sheetal, S.; Mantha, A.K.; Kumar, V. Recent developments on the structure-activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6(48), 42660-42683.
[http://dx.doi.org/10.1039/C6RA00302H]
[33]
Pal, D.; Mazumder, U.K. Isolation of compound and CNS depressant activities of Mikania scandens Willd with special emphasis to brain biogenic amines in mice. Indian J. Exp. Biol., 2014, 52(12), 1186-1194.
[PMID: 25651612]
[34]
Gupta, M.; Mazumder, U.K.; Pal, D.; Bhattacharya, S.; Chakrabarty, S. Studies on brain biogenic amines in methanolic extract of Cuscuta reflexa Roxb stem and Corchorus olitorius Linn. seed treated mice. Acta-Polon Pharm-. Drug Res., 2003, 60(3), 207-210.
[PMID: 14556490]
[35]
Riederer, P.; Laux, G. MAO-inhibitors in Parkinson’s disease. Exp. Neurobiol., 2011, 20(1), 1-17.
[http://dx.doi.org/10.5607/en.2011.20.1.1] [PMID: 22110357]
[36]
Henchcliffe, C.; Schumacher, H.C.; Burgut, F.T. Recent advances in Parkinson’s disease therapy: Use of monoamine oxidase inhibitors. Expert Rev. Neurother., 2005, 5(6), 811-821.
[http://dx.doi.org/10.1586/14737175.5.6.811] [PMID: 16274338]
[37]
Koide, T.; Uyemura, K. Preferential inhibition of type B-MAO by new compounds, 1-[3-(dimethylamino)propyl]-5-methyl-3-phenyl-1h-indazole(Fs32) and its N-desmethylated derivative (FS97). Neuropharmacology, 1980, 19(9), 871-875.
[http://dx.doi.org/10.1016/0028-3908(80)90086-6] [PMID: 7422097]
[38]
Ooms, F.; Norberg, B.; Isin, E.M.; Castagnoli, N.; Van der Schyf, C.J.; Wouters, J. 7-nitroindazole. Acta Crystallogr., 2000, 56(10), e474-e475.
[39]
Royland, J.E.; Delfani, K.; Langston, J.W.; Janson, A.M.; Di Monte, D.A. 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Res., 1999, 839(1), 41-48.
[http://dx.doi.org/10.1016/S0006-8993(99)01689-3] [PMID: 10482797]
[40]
Aanandhi, M.V.; Joseph, A.A.; Chandrakumar, R.; Koilraj, M.; Sujatha, R.; Shanmugasundaram, P. Synthesis and biological activities of a novel series of indazole derivatives. Biosci. Biotechnol. Res. Asia, 2008, 5(1), 313-318.
[41]
Lan, J.S.; Liu, Y.; Hou, J.W.; Yang, J.; Zhang, X.Y.; Zhao, Y.; Xie, S.S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of resveratrol-indazole hybrids as novel monoamine oxidases inhibitors with amyloid-β aggregation inhibition. Bioorg. Chem., 2018, 76, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.009] [PMID: 29172101]
[42]
Judge, S.I.; Smith, P.J.; Stewart, P.E.; Bever, C.T., Jr Potassium channel blockers and openers as CNS neurologic therapeutic agents. Recent Patents CNS Drug Discov., 2007, 2(3), 200-228.
[http://dx.doi.org/10.2174/157488907782411765] [PMID: 18221232]
[43]
Weinreich, F.; Jentsch, T.J. Neurological diseases caused by ion-channel mutations. Curr. Opin. Neurobiol., 2000, 10(3), 409-415.
[http://dx.doi.org/10.1016/S0959-4388(00)00089-1] [PMID: 10851168]
[44]
Kullmann, D.M.; Hanna, M.G. Neurological disorders caused by inherited ion-channel mutations. Lancet Neurol., 2002, 1(3), 157-166.
[http://dx.doi.org/10.1016/S1474-4422(02)00071-6] [PMID: 12849484]
[45]
De Luca, L.; Ferro, S.; Damiano, F.M.; Supuran, C.T.; Vullo, D.; Chimirri, A.; Gitto, R. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur. J. Med. Chem., 2014, 71, 105-111.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.071] [PMID: 24287559]
[46]
Alim, Z. 1H-indazole molecules reduced the activity of human erythrocytes carbonic anhydrase I and II isoenzymes. J. Biochem. Mol. Toxicol., 2018, 32(9), e22194.
[http://dx.doi.org/10.1002/jbt.22194] [PMID: 29984869]
[47]
Bosley, T.M.; Salih, M.A.; Alorainy, I.A.; Islam, M.Z.; Oystreck, D.T.; Suliman, O.S.M.; al Malki, S.; Suhaibani, A.H.; Khiari, H.; Beckers, S.; van Wesenbeeck, L.; Perdu, B.; AlDrees, A.; Elmalik, S.A.; Van Hul, W.; Abu-Amero, K.K. The neurology of carbonic anhydrase type II deficiency syndrome. Brain, 2011, 134(Pt 12), 3502-3515.
[http://dx.doi.org/10.1093/brain/awr302] [PMID: 22120147]
[48]
Jang, B.G.; Yun, S-M.; Ahn, K.; Song, J.H.; Jo, S.A.; Kim, Y-Y.; Kim, D.K.; Park, M.H.; Han, C.; Koh, Y.H. Plasma carbonic anhydrase II protein is elevated in Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(3), 939-945.
[http://dx.doi.org/10.3233/JAD-2010-100384] [PMID: 20634585]
[49]
Galatsis, P. Leucine-rich repeat kinase 2 inhibitors: A patent review (2014-2016). Expert Opin. Ther. Pat., 2017, 27(6), 667-676.
[http://dx.doi.org/10.1080/13543776.2017.1280464] [PMID: 28117607]
[50]
Lee, B.D.; Dawson, V.L.; Dawson, T.M. Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson’s disease. Trends Pharmacol. Sci., 2012, 33(7), 365-373.
[http://dx.doi.org/10.1016/j.tips.2012.04.001] [PMID: 22578536]
[51]
Ding, X.; Ren, F. Leucine-rich repeat kinase 2 inhibitors: A patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(4), 275-286.
[http://dx.doi.org/10.1080/13543776.2020.1729354] [PMID: 32049564]
[52]
Osborne, J.; Birchall, K.; Tsagris, D.J.; Lewis, S.J.; Smiljanic-Hurley, E.; Taylor, D.L.; Levy, A.; Alessi, D.R.; McIver, E.G. Discovery of potent and selective 5-azaindazole inhibitors of leucine-rich repeat kinase 2 (LRRK2) - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 668-673.
[PMID: 30554956]
[53]
Greggio, E.; Cookson, M.R. Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: Three questions. ASN Neuro, 2009, 1(1), AN20090007.
[http://dx.doi.org/10.1042/AN20090007] [PMID: 19570025]
[54]
Prati, F.; Buonfiglio, R.; Furlotti, G.; Cavarischia, C.; Mangano, G.; Picollo, R.; Oggianu, L.; di Matteo, A.; Olivieri, S.; Bovi, G.; Porceddu, P.F.; Reggiani, A.; Garrone, B.; Di Giorgio, F.P.; Ombrato, R. Optimization of indazole-based GSK-3 inhibitors with mitigated hERG issue and in vivo activity in a mood disorder model. ACS Med. Chem. Lett., 2020, 11(5), 825-831.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00633] [PMID: 32435391]
[55]
Ombrato, R.; Cazzolla, N.; Mancini, F.; Mangano, G. Structure-based discovery of 1H-Indazole-3-carboxamides as a novel structural class of human GSK-3 inhibitors. J. Chem. Inf. Model., 2015, 55(12), 2540-2551.
[http://dx.doi.org/10.1021/acs.jcim.5b00486] [PMID: 26600430]
[56]
Pal, D.; Mukherjee, S.; Song, I.H.; Nimse, S.B. GSK-3 inhibitors: A new class of drugs for Alzheimer’s disease treatment. Curr. Drug Targets, 2021, 22(15), 1725-1737.
[http://dx.doi.org/10.2174/1389450122666210114095307] [PMID: 33459229]
[57]
Srivani, G.; Sharvirala, R.; Veerareddy, P.R.; Pal, D.; Kiran, G. GSK-3 inhibitors as new leads to treat Type-II diabetes. Curr. Drug Targets, 2021, 22(13), 1555-1567.
[http://dx.doi.org/10.2174/1389450122666210120144428] [PMID: 33494669]
[58]
Saha, S.; Pal, D.; Nimse, S.B. Recent advances in the discovery of GSK-3 inhibitors from synthetic origin in the treatment of neurological disorders. Curr. Drug Targets, 2021, 22(12), 1437-1462.
[http://dx.doi.org/10.2174/1389450122666210120143953] [PMID: 33494672]
[59]
Chandra, P.; Sachhan, N.; Pal, D. Glycogen synthase kinase-3 (GSK-3) inhibitors as new lead to treat breast and ovarian cancer; Curr. Drug Tar, 2021, p. 22.
[60]
Fucile, S.; Renzi, M.; Lax, P.; Eusebi, F. Fractional Ca(2+) current through human neuronal α7 nicotinic acetylcholine receptors. Cell Calcium, 2003, 34(2), 205-209.
[http://dx.doi.org/10.1016/S0143-4160(03)00071-X] [PMID: 12810063]
[61]
Thomsen, M.S.; Hansen, H.H.; Timmerman, D.B.; Mikkelsen, J.D. Cognitive improvement by activation of α7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Curr. Pharm. Des., 2010, 16(3), 323-343.
[http://dx.doi.org/10.2174/138161210790170094] [PMID: 20109142]
[62]
Kelso, M.L.; Oestreich, J.H. Traumatic brain injury: central and peripheral role of α7 nicotinic acetylcholine receptors. Curr. Drug Targets, 2012, 13(5), 631-636.
[http://dx.doi.org/10.2174/138945012800398964] [PMID: 22300031]
[63]
Wu, J.; Liu, Q.; Tang, P.; Mikkelsen, J.D.; Shen, J.; Whiteaker, P.; Yakel, J.L. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol., 2016, 37(7), 562-574.
[http://dx.doi.org/10.1016/j.tips.2016.03.005] [PMID: 27179601]
[64]
Albuquerque, E.X.; Schwarcz, R. Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: Facts and challenges. Biochem. Pharmacol., 2013, 85(8), 1027-1032.
[http://dx.doi.org/10.1016/j.bcp.2012.12.014] [PMID: 23270993]
[65]
Mao, Z.; Wen-Ting, Z.; Hai-Tao, W.; Hui, Y.; Shi-Yi, L.; Jiang-Ping, X.; Wen-Ya, W. AMI, an indazole derivative, improves Parkinson’s disease by inhibiting Tau phosphorylation. Front. Mol. Neurosci., 2020, 13, 165.
[http://dx.doi.org/10.3389/fnmol.2020.00165] [PMID: 33328879]
[66]
Claramunt, R.M.; López, C.; López, A.; Pérez-Medina, C.; Pérez-Torralba, M.; Alkorta, I.; Elguero, J.; Escames, G.; Acuña-Castroviejo, D. Synthesis and biological evaluation of indazole derivatives. Eur. J. Med. Chem., 2011, 46(4), 1439-1447.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.027] [PMID: 21334118]
[67]
Muramatsu, Y.; Kurosaki, R.; Mikami, T.; Michimata, M.; Matsubara, M.; Imai, Y.; Kato, H.; Itoyama, Y.; Araki, T. Therapeutic effect of neuronal nitric oxide synthase inhibitor (7-nitroindazole) against MPTP neurotoxicity in mice. Metab. Brain Dis., 2002, 17(3), 169-182.
[http://dx.doi.org/10.1023/A:1020025805287] [PMID: 12322787]
[68]
Schulz, J.B.; Matthews, R.T.; Muqit, M.M.K.; Browne, S.E.; Beal, M.F. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem., 1995, 64(2), 936-939.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64020936.x] [PMID: 7530297]
[69]
Szökõ, E.; Haberle, D.; Halász, A.S.; Tekes, K.; Magyar, K. Protective effect of 7-nitroindazole against DSP-4 induced noradrenaline depletion in mouse hippocampus. J. Neural Transm. (Vienna), 2001, 108(4), 407-413.
[http://dx.doi.org/10.1007/s007020170062] [PMID: 11475008]
[70]
Wei, W.; Liu, Z.; Wu, X.; Gan, C.; Su, X.; Liu, H.; Que, H.; Zhang, Q.; Xue, Q.; Yue, L.; Yu, L.; Ye, T. Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Advances, 2021, 11(26), 5675-15687.
[http://dx.doi.org/10.1039/D1RA01147B]
[71]
Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Indazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2011, 21(7), 1509-1523.
[http://dx.doi.org/10.1007/s00044-011-9631-3]
[72]
Abbassi, N.; Rakib, M.; Chicha, H.; Bouissane, L.; Hannioui, A.; Aiello, C.; Gangemi, R.; Castagnola, P.; Rosano, C.; Viale, M. Synthesis and antitumor activity of some substituted indazole derivatives. Arch. Pharm. (Weinheim), 2014, 347(6), 423-431.
[http://dx.doi.org/10.1002/ardp.201300390] [PMID: 24554280]
[73]
Gurjar, V.K.; Pal, D. Design, in silico studies, and synthesis of new 1,8 naphthyridine-3-carboxylic acid analogues and evaluation of their H1R antagonism effects. RSC Advances, 2020, 10(23), 13907-13921.
[http://dx.doi.org/10.1039/D0RA00746C]
[74]
Faidallah, H.M.; Khan, K.A.; Rostom, S.A.F.; Asiri, A.M. Synthesis and in vitro antitumor and antimicrobial activity of some 2,3-diaryl-7-methyl-4,5,6,7-tetrahydroindazole and 3,3a,4,5,6,7-hexahydroindazole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 495-508.
[http://dx.doi.org/10.3109/14756366.2011.653354] [PMID: 22329488]
[75]
Laghchioua, F.E.; Kouakou, A.; Eddahmi, M.; Viale, M.; Monticone, M.; Gangemi, R.; Maric, I.; El Ammari, L.; Saadi, M.; Baltas, M.; Kandri Rodi, Y.; Rakib, E.M. Antiproliferative and apoptotic activity of new indazole derivatives as potential anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(12), e2000173.
[http://dx.doi.org/10.1002/ardp.202000173] [PMID: 32812268]
[76]
Liu, J.; Zhou, J.; He, F.; Gao, L.; Wen, Y.; Gao, L.; Wang, P.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem., 2020, 192, 112189.
[http://dx.doi.org/10.1016/j.ejmech.2020.112189] [PMID: 32151834]
[77]
Li, X.; Chu, S.; Feher, V.A.; Khalili, M.; Nie, Z.; Margosiak, S.; Nikulin, V.; Levin, J.; Sprankle, K.G.; Tedder, M.E.; Almassy, R.; Appelt, K.; Yager, K.M. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J. Med. Chem., 2003, 46(26), 5663-5673.
[http://dx.doi.org/10.1021/jm0302039] [PMID: 14667220]
[78]
Rodríguez-Villar, K.; Yépez-Mulia, L.; Cortés-Gines, M.; Aguilera-Perdomo, J.D.; Quintana-Salazar, E.A.; Olascoaga Del Angel, K.S.; Cortés-Benítez, F.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Pérez-Villanueva, J. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-Phenyl-2H-Indazole derivatives. Molecules, 2021, 26(8), 2145.
[http://dx.doi.org/10.3390/molecules26082145] [PMID: 33917871]
[79]
Kim, S.H.; Markovitz, B.; Trovato, R.; Murphy, B.R.; Austin, H.; Willardsen, A.J.; Baichwal, V.; Morham, S.; Bajji, A. Discovery of a new HIV-1 inhibitor scaffold and synthesis of potential prodrugs of indazoles. Bioorg. Med. Chem. Lett., 2013, 23(10), 2888-2892.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.075] [PMID: 23566519]
[80]
Tan, X-D.; Mao, L-G.; Wu, W.; Nian, S-Y.; Wang, G-P. Synthesis and biological evaluation of substituted indazolyl amide derivatives as S -adenosyl- l -homocysteine hydrolase inhibitors. Chin. Chem. Lett., 2016, 27(6), 984-988.
[http://dx.doi.org/10.1016/j.cclet.2016.03.028]
[81]
Rani, P.; Pal, D.; Hegde, R.R.; Hashim, S.R. Anticancer, antiinflammatory, analgesic activities of synthesized 2-(substituted phenoxy) acetamide derivatives. Biomed. Int., 2014, 1-9.
[82]
Sannigrahi, S.; Mazumder, U.K.; Pal, D.; Mishra, M.L.; Maity, S. Flavonoids of Enhydra Fluctuans exhibits analgesic and anti-inflammatory activity in different animal models. Pak. J. Pharm. Sci., 2011, 24(3), 369-375.
[PMID: 21715271]
[83]
Kaushik, B.; Pal, D.; Saha, S. Gamma secretase inhibitor: Therapeutic target via NOTCH signalling in T cell acute lymphoblastic leukemia. Curr. Drug Targets, 2021, 22(15), 1789-1798.
[84]
Mazumder, U.K.; Gupta, M.; Pal, D.; Bhattacharya, S.; Chakrabarty, S. Chemical and toxicological evaluation of methanol extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed on hematological parameters and hepatorenal functions in mice. Acta Pol. Pharm., 2003, 60(4), 317-323.
[PMID: 14714862]
[85]
Bai, S.; Nagai, M.; Koerner, S.K.; Veves, A.; Sun, L. Structure-activity relationship study and discovery of indazole 3-carboxamides as calcium-release activated calcium channel blockers. Bioorg. Med. Chem. Lett., 2017, 27(3), 393-397.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.062] [PMID: 28057422]
[86]
Beal, M.F. Excitotoxicity, and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol., 1998, 44(S1), S110-S114.
[87]
Fraley, M.E.; Steen, J.T.; Brnardic, E.J.; Arrington, K.L.; Spencer, K.L.; Hanney, B.A.; Kim, Y.; Hartman, G.D.; Stirdivant, S.M.; Drakas, B.A.; Rickert, K.; Walsh, E.S.; Hamilton, K.; Buser, C.A.; Hardwick, J.; Tao, W.; Beck, S.C.; Mao, X.; Lobell, R.B.; Sepp-Lorenzino, L.; Yan, Y.; Ikuta, M.; Munshi, S.K.; Kuo, L.C.; Kreatsoulas, C. 3-(Indol-2-yl)indazoles as Chek1 kinase inhibitors: Optimization of potency and selectivity via substitution at C6. Bioorg. Med. Chem. Lett., 2006, 16(23), 6049-6053.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.118] [PMID: 16978863]
[88]
Furlotti, G.; Alisi, M.A.; Apicella, C.; Capezzone de Joannon, A.; Cazzolla, N.; Costi, R.; Cuzzucoli Crucitti, G.; Garrone, B.; Iacovo, A.; Magarò, G.; Mangano, G.; Miele, G.; Ombrato, R.; Pescatori, L.; Polenzani, L.; Rosi, F.; Vitiello, M.; Di Santo, R. Discovery and pharmacological profile of new 1H-indazole-3-carboxamide and 2H-pyrrolo[3,4-c]quinoline derivatives as selective serotonin 4 receptor ligands. J. Med. Chem., 2012, 55(22), 9446-9466.
[http://dx.doi.org/10.1021/jm300573d] [PMID: 23043420]
[89]
Thiry, A.; Dogné, J.M.; Supuran, C.T.; Masereel, B. Anticonvulsant sulfonamides/sulfamates/sulfamides with carbonic anhydrase inhibitory activity: Drug design and mechanism of action. Curr. Pharm. Des., 2008, 14(7), 661-671.
[http://dx.doi.org/10.2174/138161208783877956] [PMID: 18336312]
[90]
Matsumura, N.; Kikuchi-Utsumi, K.; Sakamaki, K.; Watabe, M.; Aoyama, K.; Nakaki, T. Anticonvulsant action of indazole. Epilepsy Res., 2013, 104(3), 203-216.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.11.001] [PMID: 23219048]
[91]
Hill, S.L.; Dunn, M.; Cano, C.; Harnor, S.J.; Hardcastle, I.R.; Grundlingh, J.; Dargan, P.I.; Wood, D.M.; Tucker, S.; Bartram, T.; Thomas, S.H.L. Human toxicity caused by indole and Indazole carboxylate synthetic cannabinoid receptor agonists: From horizon scanning to notification. Clin. Chem., 2018, 64(2), 346-354.
[http://dx.doi.org/10.1373/clinchem.2017.275867] [PMID: 29038156]
[92]
Vashisht Gopal, Y.N.; Kondapi, A.K. Topoisomerase II poisoning by indazole and imidazole complexes of ruthenium. J. Biosci., 2001, 26(2), 271-276.
[http://dx.doi.org/10.1007/BF02703651] [PMID: 11426063]
[93]
Zhao, Y-L.; Su, M.; Shang, J-H.; Wang, X.; Njateng, G.S.S.; Bao, G-L.; Ma, J.; Sun, Q.D.; Yuan, F.; Wang, J.K.; Luo, X.D. Acute and chronic toxicity of indole alkaloids from leaves of Alstonia scholaris (L.) R. Br. in mice and rats. Nat. Prod. Bioprospect., 2020, 10(2), 77-88.
[http://dx.doi.org/10.1007/s13659-020-00237-1] [PMID: 32236848]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy