Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anticancer Mechanisms of Berberine: A Good Choice for Glioblastoma Multiforme Therapy

Author(s): Bahram Bibak, Farzaneh Shakeri, Zakieh Keshavarzi, Hamid Mollazadeh, Hossein Javid, Mohammad Jalili-Nik, Thozhukat Sathyapalan, Amir R. Afshari* and Amirhossein Sahebkar*

Volume 29, Issue 26, 2022

Published on: 06 April, 2022

Page: [4507 - 4528] Pages: 22

DOI: 10.2174/0929867329666220224112811

Price: $65

Open Access Journals Promotions 2
Abstract

The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, it inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The antitumoral effect of berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of berberine in various cancers, proposing its potential role as a therapeutic agent for GBM.

Keywords: Glioblastoma multiforme, phytomolecules, berberine, autophagy, apoptosis, malignant brain tumor.

[1]
Maghrouni, A.; Givari, M.; Jalili-Nik, M.; Mollazadeh, H.; Bibak, B.; Sadeghi, M.M.; Afshari, A.R.; Johnston, T.P.; Sahebkar, A. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int. Immunopharmacol., 2021, 93, 107403.
[http://dx.doi.org/10.1016/j.intimp.2021.107403] [PMID: 33581502]
[2]
Afshari, A.R.; Mollazadeh, H.; Mohtashami, E.; Soltani, A.; Soukhtanloo, M.; Hosseini, A.; Jalili-Nik, M.; Vahedi, M.M.; Roshan, M.K.; Sahebkar, A. Protective role of natural products in glioblastoma multiforme: A focus on nitric oxide pathway. Curr. Med. Chem., 2021, 28(2), 377-400.
[http://dx.doi.org/10.2174/0929867327666200130104757] [PMID: 32000638]
[3]
Soukhtanloo, M.; Mohtashami, E.; Maghrouni, A.; Mollazadeh, H.; Mousavi, S.H.; Roshan, M.K.; Tabatabaeizadeh, S.A.; Hosseini, A.; Vahedi, M.M.; Jalili-Nik, M.; Afshari, A.R. Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacol. Rep., 2020, 72(2), 285-295.
[http://dx.doi.org/10.1007/s43440-020-00081-7] [PMID: 32152926]
[4]
Mohtashami, E.; Shafaei-Bajestani, N.; Mollazadeh, H.; Mousavi, S.H.; Jalili-Nik, M.; Sahebkar, A.; Afshari, A.R. The current state of potential therapeutic modalities for glioblastoma multiforme: A clinical review. Curr. Drug Metab., 2020, 21(8), 564-578.
[http://dx.doi.org/10.2174/1389200221666200714101038] [PMID: 32664839]
[5]
Jalili-Nik, M.; Sadeghi, M.M.; Mohtashami, E.; Mollazadeh, H.; Afshari, A.R.; Sahebkar, A. Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid Med Cell Longev., 2020, 2020, 3237983.
[http://dx.doi.org/10.1155/2020/3237983] [PMID: 32454937]
[6]
Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, A.R.; Salehi, S.; Samini, F.; Rajabzadeh, G.; Gorji, A. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: An in vitro study. Mol. Neurobiol., 2020, 57(8), 3391-3411.
[http://dx.doi.org/10.1007/s12035-020-01922-5] [PMID: 32430842]
[7]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[8]
Afshari, A.R.; Karimi Roshan, M.; Soukhtanloo, M.; Ghorbani, A.; Rahmani, F.; Jalili-Nik, M.; Vahedi, M.M.; Hoseini, A.; Sadeghnia, H.R.; Mollazadeh, H.; Mousavi, S.H. Cytotoxic effects of auraptene against a human malignant glioblastoma cell line. Avicenna J. Phytomed., 2019, 9(4), 334-346.
[PMID: 31309072]
[9]
Afshari, A.R.; Jalili-Nik, M.; Soukhtanloo, M.; Ghorbani, A.; Sadeghnia, H.R.; Mollazadeh, H.; Karimi Roshan, M.; Rahmani, F.; Sabri, H.; Vahedi, M.M.; Mousavi, S.H. Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: Role of reactive oxygen species (ROS). EXCLI J., 2019, 18, 576-590.
[PMID: 31611741]
[10]
Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138.
[http://dx.doi.org/10.2174/0929867327666201111145212] [PMID: 33176632]
[11]
Jalili-Nik, M.; Sabri, H.; Zamiri, E.; Soukhtanloo, M.; Roshan, M.K.; Hosseini, A.; Mollazadeh, H.; Vahedi, M.M.; Afshari, A.R.; Mousavi, S.H. Cytotoxic effects of ferula latisecta on human glioma U87 cells. Drug Res. (Stuttg.), 2019, 69(12), 665-670.
[http://dx.doi.org/10.1055/a-0986-6543] [PMID: 31499542]
[12]
Guamán Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I.J.M. Berberine, an epiphany against cancer. Molecules., 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[13]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[14]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[15]
Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702.
[http://dx.doi.org/10.2147/CMAR.S242329] [PMID: 32099466]
[16]
Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887.
[http://dx.doi.org/10.3389/fphar.2021.653887] [PMID: 33981233]
[17]
Zhao, J.V.; Yeung, W.F.; Chan, Y.H.; Vackova, D.; Leung, J.Y.Y.; Ip, D.K.M.; Zhao, J.; Ho, W.K.; Tse, H.F.; Schooling, C.M. Effect of berberine on cardiovascular disease risk factors: A mechanistic randomized controlled trial. Nutrients, 2021, 13(8), 2550.
[http://dx.doi.org/10.3390/nu13082550] [PMID: 34444711]
[18]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[19]
Pirro, M.; Mannarino, M.R.; Bianconi, V.; Simental-Mendía, L.E.; Bagaglia, F.; Mannarino, E.; Sahebkar, A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2016, 110, 76-88.
[http://dx.doi.org/10.1016/j.phrs.2016.04.021] [PMID: 27157250]
[20]
Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A novel therapeutic strategy for cancer. IUBMB Life, 2020, 72(10), 2065-2079.
[http://dx.doi.org/10.1002/iub.2350] [PMID: 32735398]
[21]
Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[22]
Tan, W.; Li, Y.; Chen, M.; Wang, Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int. J. Nanomedicine, 2011, 6, 1773-1777.
[http://dx.doi.org/10.2147/IJN.S22683] [PMID: 21931477]
[23]
Meeran, S.M.; Katiyar, S.; Katiyar, S.K. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol. Appl. Pharmacol., 2008, 229(1), 33-43.
[http://dx.doi.org/10.1016/j.taap.2007.12.027] [PMID: 18275980]
[24]
Yi, T.; Zhuang, L.; Song, G.; Zhang, B.; Li, G.; Hu, T. Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells. Nutr. Cancer, 2015, 67(3), 523-531.
[http://dx.doi.org/10.1080/01635581.2015.1004733] [PMID: 25837881]
[25]
Lin, J.P.; Yang, J.S.; Lee, J.H.; Hsieh, W.T.; Chung, J.G. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol., 2006, 12(1), 21-28.
[http://dx.doi.org/10.3748/wjg.v12.i1.21] [PMID: 16440412]
[26]
Jeong, H.W.; Hsu, K.C.; Lee, J-W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, W.S.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E955-E964.
[http://dx.doi.org/10.1152/ajpendo.90599.2008] [PMID: 19208854]
[27]
Zhu, J.; Cao, D.; Guo, C.; Liu, M.; Tao, Y.; Zhou, J.; Wang, F.; Zhao, Y.; Wei, J.; Zhang, Y.; Fang, W.; Li, Y. Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling. Cell. Mol. Neurobiol., 2019, 39(6), 751-768.
[http://dx.doi.org/10.1007/s10571-019-00675-7] [PMID: 31020571]
[28]
Chitra, P.; Saiprasad, G.; Manikandan, R.; Sudhandiran, G. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicol. Lett., 2013, 219(2), 178-193.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.009] [PMID: 23523906]
[29]
Mollazadeh, H.; Afshari, A.R.; Hosseinzadeh, H. Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis: - Black cumin and cancer. J. Pharmacopuncture, 2017, 20(3), 158-172.
[http://dx.doi.org/10.3831/KPI.2017.20.019] [PMID: 30087792]
[30]
Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Panda, K.C.; Das, S.; Jena, M.; Bhutia, S.K. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother. Res., 2021, 35(8), 4194-4214.
[http://dx.doi.org/10.1002/ptr.7082] [PMID: 33749909]
[31]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(6805), 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[32]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76(11), 1075-1079.
[http://dx.doi.org/10.1055/s-0030-1249961] [PMID: 20486070]
[33]
Kim, J-S.; Oh, D.; Yim, M-J.; Park, J-J.; Kang, K-R.; Cho, I-A.; Moon, S.M.; Oh, J.S.; You, J.S.; Kim, C.S.; Kim, D.K.; Lee, S.Y.; Lee, G.J.; Im, H.J.; Kim, S.G. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells. Oncol. Rep., 2015, 33(4), 1775-1782.
[http://dx.doi.org/10.3892/or.2015.3768] [PMID: 25634589]
[34]
Jabbarzadeh Kaboli, P.; Rahmat, A.; Ismail, P.; Ling, K-H. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol., 2014, 740, 584-595.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.025] [PMID: 24973693]
[35]
Patil, J.B.; Kim, J.; Jayaprakasha, G.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharmacol., 2010, 645(1-3), 70-78.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.037] [PMID: 20691179]
[36]
Seo, Y.S.; Yim, M.J.; Kim, B.H.; Kang, K.R.; Lee, S.Y.; Oh, J.S.; You, J.S.; Kim, S.G.; Yu, S.J.; Lee, G.J.; Kim, D.K.; Kim, C.S.; Kim, J.S.; Kim, J.S. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncol. Rep., 2015, 34(6), 3025-3034.
[http://dx.doi.org/10.3892/or.2015.4312] [PMID: 26503508]
[37]
Okubo, S.; Uto, T.; Goto, A.; Tanaka, H.; Nishioku, T.; Yamada, K.; Shoyama, Y. Berberine induces apoptotic cell death via activation of caspase-3 and -8 in HL-60 human leukemia cells: Nuclear localization and structure-activity relationships. Am. J. Chin. Med., 2017, 45(7), 1497-1511.
[http://dx.doi.org/10.1142/S0192415X17500811] [PMID: 29025293]
[38]
Mohammadlou, M.; Abdollahi, M.; Hemati, M.; Baharlou, R.; Doulabi, E.M.; Pashaei, M.; Ghahremanfard, F.; Faranoush, M.; Kokhaei, P. Apoptotic effect of berberine via Bcl-2, ROR1, and mir-21 in patients with B-chronic lymphocytic leukemia. Phytother. Res., 2021, 35(4), 2025-2033.
[http://dx.doi.org/10.1002/ptr.6945] [PMID: 33174291]
[39]
Hwang, J-M.; Kuo, H-C.; Tseng, T-H.; Liu, J-Y.; Chu, C-Y. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch. Toxicol., 2006, 80(2), 62-73.
[http://dx.doi.org/10.1007/s00204-005-0014-8] [PMID: 16189662]
[40]
Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39.
[http://dx.doi.org/10.1186/1476-4598-10-39] [PMID: 21496227]
[41]
Zhu, Y.; Ma, N.; Li, H.X.; Tian, L.; Ba, Y.F.; Hao, B. Berberine induces apoptosis and DNA damage in MG63 human osteosarcoma cells. Mol. Med. Rep., 2014, 10(4), 1734-1738.
[http://dx.doi.org/10.3892/mmr.2014.2405] [PMID: 25050485]
[42]
Gao, X.; Zhang, C.; Wang, Y.; Zhang, P.; Zhang, J.; Hong, T. Berberine and cisplatin exhibit synergistic anticancer effects on osteosarcoma MG-63 cells by inhibiting the MAPK pathway. Molecules, 2021, 26(6), 1666.
[http://dx.doi.org/10.3390/molecules26061666] [PMID: 33802664]
[43]
Yang, X.; Huang, N. Berberine induces selective apoptosis through the AMPK-mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol. Med. Rep., 2013, 8(2), 505-510.
[http://dx.doi.org/10.3892/mmr.2013.1506] [PMID: 23732865]
[44]
Ramesh, G.; Das, S.; Bola Sadashiva, S.R. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence. J. Pharm. Pharmacol., 2020, 72(12), 1893-1908.
[http://dx.doi.org/10.1111/jphp.13354] [PMID: 32815562]
[45]
Zheng, F.; Tang, Q.; Wu, J.; Zhao, S.; Liang, Z.; Li, L.; Wu, W.; Hann, S. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J. Exp. Clin. Cancer Res., 2014, 33(1), 36.
[http://dx.doi.org/10.1186/1756-9966-33-36] [PMID: 24766860]
[46]
Park, S.H.; Sung, J.H.; Kim, E.J.; Chung, N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz. J. Med. Biol. Res., 2015, 48(2), 111-119.
[http://dx.doi.org/10.1590/1414-431x20144293] [PMID: 25517919]
[47]
Jin, H.; Ko, Y.S.; Park, S.W.; Chang, K.C.; Kim, H.J. 13-Ethylberberine induces apoptosis through the mitochondria-related apoptotic pathway in radiotherapy-resistant breast cancer cells. Molecules, 2019, 24(13), 2448.
[http://dx.doi.org/10.3390/molecules24132448] [PMID: 31277363]
[48]
Wang, Y.; Liu, Q.; Liu, Z.; Li, B.; Sun, Z.; Zhou, H.; Zhang, X.; Gong, Y.; Shao, C. Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat. Res., 2012, 734(1-2), 20-29.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.04.005] [PMID: 22561209]
[49]
Hu, H.Y.; Li, K.P.; Wang, X.J.; Liu, Y.; Lu, Z.G.; Dong, R.H.; Guo, H.B.; Zhang, M.X. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166.
[http://dx.doi.org/10.1038/aps.2012.161] [PMID: 23247593]
[50]
Lin, J.P.; Yang, J.S.; Wu, C.C.; Lin, S.S.; Hsieh, W.T.; Lin, M.L.; Yu, F.S.; Yu, C.S.; Chen, G.W.; Chang, Y.H.; Chung, J.G. Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro. In Vivo, 2008, 22(2), 223-230.
[PMID: 18468407]
[51]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis*. Annu. Rev. Genet., 2009, 43(1), 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[52]
Gottlieb, E.; Armour, S.M.; Harris, M.H.; Thompson, C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ., 2003, 10(6), 709-717.
[http://dx.doi.org/10.1038/sj.cdd.4401231] [PMID: 12761579]
[53]
Li, J.; Gu, L.; Zhang, H.; Liu, T.; Tian, D.; Zhou, M.; Zhou, S. Berberine represses DAXX gene transcription and induces cancer cell apoptosis. Lab. Invest., 2013, 93(3), 354-364.
[http://dx.doi.org/10.1038/labinvest.2012.172] [PMID: 23295648]
[54]
Lopes, T.Z.; de Moraes, F.R.; Tedesco, A.C.; Arni, R.K.; Rahal, P.; Calmon, M.F. Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed. Pharmacother., 2020, 123, 109794.
[http://dx.doi.org/10.1016/j.biopha.2019.109794] [PMID: 31874443]
[55]
Liu, L.; Fan, J.; Ai, G.; Liu, J.; Luo, N.; Li, C.; Cheng, Z. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol. Res., 2019, 52(1), 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[56]
Li, J.; Liu, F.; Jiang, S.; Liu, J.; Chen, X.; Zhang, S.; Zhao, H. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol. Lett., 2018, 15(5), 7409-7414.
[http://dx.doi.org/10.3892/ol.2018.8249] [PMID: 29725453]
[57]
Pan, Y.; Zhang, F.; Zhao, Y.; Shao, D.; Zheng, X.; Chen, Y.; He, K.; Li, J.; Chen, L. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J. Cancer, 2017, 8(9), 1679-1689.
[http://dx.doi.org/10.7150/jca.19106] [PMID: 28775788]
[58]
El Khalki, L.; Maire, V.; Dubois, T.; Zyad, A. Berberine impairs the survival of triple negative breast cancer cells: Cellular and molecular analyses. Molecules, 2020, 25(3), 506.
[http://dx.doi.org/10.3390/molecules25030506] [PMID: 31991634]
[59]
Kuo, C-L.; Chi, C-W.; Liu, T-Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo, 2005, 19(1), 247-252.
[PMID: 15796182]
[60]
Li, J.; Li, O.; Kan, M.; Zhang, M.; Shao, D.; Pan, Y.; Zheng, H.; Zhang, X.; Chen, L.; Liu, S. Berberine induces apoptosis by suppressing the arachidonic acid metabolic pathway in hepatocellular carcinoma. Mol. Med. Rep., 2015, 12(3), 4572-4577.
[http://dx.doi.org/10.3892/mmr.2015.3926] [PMID: 26081696]
[61]
Kuo, H-P.; Lee, Y-J.; Hsu, C-Y.; Lee, S-L.; Hsu, S-C.; Chuang, T-C.; Liu, J-Y.; Kuo, C-L.; Ho, C-T.; Kao, M-C. Growth-suppressive effect of berberine on endometrial carcinoma cells: Role of mitochondrial and PI3K/Akt pathway. J. Funct. Foods, 2015, 17, 600-609.
[http://dx.doi.org/10.1016/j.jff.2015.06.006]
[62]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[63]
Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064.
[http://dx.doi.org/10.1038/srep26064] [PMID: 27263652]
[64]
Lane, D. Designer combination therapy for cancer. Nat. Biotechnol., 2006, 24(2), 163-164.
[http://dx.doi.org/10.1038/nbt0206-163] [PMID: 16465160]
[65]
You, H.Y.; Xie, X.M.; Zhang, W.J.; Zhu, H.L.; Jiang, F.Z. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In Vitro Cell. Dev. Biol. Anim., 2016, 52(8), 857-863.
[http://dx.doi.org/10.1007/s11626-016-0044-y] [PMID: 27142767]
[66]
Kou, Y.; Tong, B.; Wu, W.; Liao, X.; Zhao, M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/mTOR signaling pathway in gastric cancer. Front. Pharmacol., 2020, 11, 616251.
[http://dx.doi.org/10.3389/fphar.2020.616251] [PMID: 33362566]
[67]
Guo, N.; Yan, A.; Gao, X.; Chen, Y.; He, X.; Hu, Z.; Mi, M.; Tang, X.; Gou, X. Berberine sensitizes rapamycin-mediated human hepatoma cell death in vitro. Mol. Med. Rep., 2014, 10(6), 3132-3138.
[http://dx.doi.org/10.3892/mmr.2014.2608] [PMID: 25310356]
[68]
Zhou, F.; Hu, J.; Dai, N.; Song, L.; Lin, T.; Liu, J.; Li, K.; Peng, Z.; He, Y.; Liao, D. Berberine and ginsenoside Rg3 act synergistically via the MAPK/ERK pathway in nasopharyngeal carcinoma cells. J. Funct. Foods, 2020, 66, 103802.
[http://dx.doi.org/10.1016/j.jff.2020.103802]
[69]
Kim, D.W.; Ahan, S.H.; Kim, T.Y. Enhancement of arsenic trioxide (As2O3)-mediated apoptosis using berberine in human neuroblastoma SH-SY5Y cells. J. Korean Neurosurg. Soc., 2007, 42(5), 392-399.
[http://dx.doi.org/10.3340/jkns.2007.42.5.392] [PMID: 19096576]
[70]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[71]
Diaz-Moralli, S.; Tarrado-Castellarnau, M.; Miranda, A.; Cascante, M. Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther., 2013, 138(2), 255-271.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.011] [PMID: 23356980]
[72]
Goel, B.; Tripathi, N.; Bhardwaj, N.; Jain, S.K. Small molecule CDK inhibitors for the therapeutic management of cancer. Curr. Top. Med. Chem., 2020, 20(17), 1535-1563.
[http://dx.doi.org/10.2174/1568026620666200516152756] [PMID: 32416692]
[73]
Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther., 2006, 5(2), 296-308.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0448] [PMID: 16505103]
[74]
Yan, K.; Zhang, C.; Feng, J.; Hou, L.; Yan, L.; Zhou, Z.; Liu, Z.; Liu, C.; Fan, Y.; Zheng, B.; Xu, Z. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. Eur. J. Pharmacol., 2011, 661(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.021] [PMID: 21545798]
[75]
James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7.
[http://dx.doi.org/10.1002/mc.20690] [PMID: 21061266]
[76]
Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur. J. Pharmacol., 2012, 688(1-3), 14-21.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.004] [PMID: 22617025]
[77]
Li, L.; Wang, X.; Sharvan, R.; Gao, J.; Qu, S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed. Pharmacother., 2017, 95, 1225-1231.
[http://dx.doi.org/10.1016/j.biopha.2017.09.010] [PMID: 28931215]
[78]
Kalaiarasi, A.; Anusha, C.; Sankar, R.; Rajasekaran, S.; John Marshal, J.; Muthusamy, K.; Ravikumar, V. Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line. J. Agric. Food Chem., 2016, 64(50), 9542-9550.
[http://dx.doi.org/10.1021/acs.jafc.6b04453] [PMID: 27936791]
[79]
Wang, Y.; Zhang, S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed. Pharmacother., 2018, 103, 1287-1293.
[http://dx.doi.org/10.1016/j.biopha.2018.04.161] [PMID: 29864910]
[80]
Zhang, Y.; Liu, X.; Yu, M.; Xu, M.; Xiao, Y.; Ma, W.; Huang, L.; Li, X.; Ye, X. Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Life Sci., 2020, 260, 118413.
[http://dx.doi.org/10.1016/j.lfs.2020.118413] [PMID: 32926933]
[81]
Liu, Z.; Liu, Q.; Xu, B.; Wu, J.; Guo, C.; Zhu, F.; Yang, Q.; Gao, G.; Gong, Y.; Shao, C. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat. Res., 2009, 662(1-2), 75-83.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.12.009] [PMID: 19159633]
[82]
Samad, M.A.; Saiman, M.Z.; Abdul Majid, N.; Karsani, S.A.; Yaacob, J.S. Berberine inhibits telomerase activity and induces cell cycle arrest and telomere erosion in colorectal cancer cell line, HCT 116. Molecules, 2021, 26(2), 376.
[http://dx.doi.org/10.3390/molecules26020376] [PMID: 33450878]
[83]
Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol., 2021, 59(1), 21-30.
[http://dx.doi.org/10.1080/13880209.2020.1865407] [PMID: 33417512]
[84]
Ren, M.; Yang, L.; Li, D.; Yang, L.; Su, Y.; Su, X. Cell cycle regulation by berberine in human melanoma A375 cells. Bull. Exp. Biol. Med., 2020, 169(4), 491-496.
[http://dx.doi.org/10.1007/s10517-020-04916-4] [PMID: 32915362]
[85]
Jantová, S.; Cipák, L.; Cernáková, M.; Kost’álová, D. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J. Pharm. Pharmacol., 2003, 55(8), 1143-1149.
[http://dx.doi.org/10.1211/002235703322277186] [PMID: 12956905]
[86]
Wang, Z.C.; Wang, J.; Chen, H.; Tang, J.; Bian, A.W.; Liu, T.; Yu, L.F.; Yi, Z.; Yang, F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg. Med. Chem. Lett., 2020, 30(2), 126821.
[http://dx.doi.org/10.1016/j.bmcl.2019.126821] [PMID: 31812467]
[87]
Loo, Y.S.; Madheswaran, T.; Rajendran, R.; Bose, R.J. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J. Drug Deliv. Sci. Technol., 2020, 57, 101756.
[http://dx.doi.org/10.1016/j.jddst.2020.101756]
[88]
Pierpaoli, E.; Arcamone, A.G.; Buzzetti, F.; Lombardi, P.; Salvatore, C.; Provinciali, M. Antitumor effect of novel berberine derivatives in breast cancer cells. Biofactors, 2013, 39(6), 672-679.
[http://dx.doi.org/10.1002/biof.1131] [PMID: 24000115]
[89]
Zhuo, Y.; Chen, Q.; Chen, B.; Zhan, X.; Qin, X.; Huang, J.; Lv, X. Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest. Int. J. Clin. Pharmacol. Ther., 2017, 55(1), 32-40.
[http://dx.doi.org/10.5414/CP202534] [PMID: 27719740]
[90]
Ponnusamy, L.; Kothandan, G.; Manoharan, R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(11), 165897.
[http://dx.doi.org/10.1016/j.bbadis.2020.165897] [PMID: 32682817]
[91]
Du, J.; Sun, Y.; Lu, Y.Y.; Lau, E.; Zhao, M.; Zhou, Q.M.; Su, S.B. Berberine and evodiamine act synergistically against human breast cancer MCF-7 cells by inducing cell cycle arrest and apoptosis. Anticancer Res., 2017, 37(11), 6141-6151.
[PMID: 29061795]
[92]
Hashemi-Niasari, F.; Rabbani-Chadegani, A.; Razmi, M.; Fallah, S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2018, 106, 858-867.
[http://dx.doi.org/10.1016/j.biopha.2018.07.019] [PMID: 30119256]
[93]
Mittal, A.; Tabasum, S.; Singh, R.P. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine, 2014, 21(3), 340-347.
[http://dx.doi.org/10.1016/j.phymed.2013.09.002] [PMID: 24176840]
[94]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[95]
Ma, W.; Zhu, M.; Yang, L.; Yang, T.; Zhang, Y. Synergistic effect of TPD7 and berberine against leukemia jurkat cell growth through regulating ephrin-B2 signaling. Phytother. Res., 2017, 31(9), 1392-1399.
[http://dx.doi.org/10.1002/ptr.5866] [PMID: 28703366]
[96]
Wen, C.; Wu, L.; Fu, L.; Zhang, X.; Zhou, H. Berberine enhances the anti-tumor activity of tamoxifen in drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells. Mol. Med. Rep., 2016, 14(3), 2250-2256.
[http://dx.doi.org/10.3892/mmr.2016.5490] [PMID: 27432642]
[97]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[98]
Liu, J.; Zhu, Z.; Liu, Y.; Wei, L.; Li, B.; Mao, F.; Zhang, J.; Wang, Y.; Liu, Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci., 2020, 242, 117228.
[http://dx.doi.org/10.1016/j.lfs.2019.117228] [PMID: 31881227]
[99]
Yu, R.; Zhang, Z.Q.; Wang, B.; Jiang, H.X.; Cheng, L.; Shen, L.M. Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int., 2014, 14(1), 49.
[http://dx.doi.org/10.1186/1475-2867-14-49] [PMID: 24991192]
[100]
Han, B.; Wang, K.; Tu, Y.; Tan, L.; He, C. Low-dose berberine attenuates the anti-breast cancer activity of chemotherapeutic agents via induction of autophagy and antioxidation. Dose Response, 2020, 18(4), 1559325820939751.
[http://dx.doi.org/10.1177/1559325820939751] [PMID: 33100936]
[101]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem., 2010, 111(6), 1426-1436.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[102]
Liu, J.; Liu, P.; Xu, T.; Chen, Z.; Kong, H.; Chu, W.; Wang, Y.; Liu, Y. Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des. Devel. Ther., 2020, 14, 1813-1823.
[http://dx.doi.org/10.2147/DDDT.S239247] [PMID: 32494123]
[103]
Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother., 2020, 128, 110245.
[http://dx.doi.org/10.1016/j.biopha.2020.110245] [PMID: 32454290]
[104]
La, X.; Zhang, L.; Li, Z.; Yang, P.; Wang, Y. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget, 2017, 8(13), 20909-20924.
[http://dx.doi.org/10.18632/oncotarget.14959] [PMID: 28157699]
[105]
Peng, P.L.; Kuo, W.H.; Tseng, H.C.; Chou, F.P. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: The contribution of autophagic cell death. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(2), 529-542.
[http://dx.doi.org/10.1016/j.ijrobp.2007.08.034] [PMID: 18207031]
[106]
Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 2017, 20(2), 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[107]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[108]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[109]
Jie, S.; Li, H.; Tian, Y.; Guo, D.; Zhu, J.; Gao, S.; Jiang, L. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. J. Gastroenterol. Hepatol., 2011, 26(1), 179-185.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06389.x] [PMID: 21175812]
[110]
Tsang, C.M.; Cheung, K.C.; Cheung, Y.C.; Man, K.; Lui, V.W.; Tsao, S.W.; Feng, Y. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochim. Biophys. Acta, 2015, 1852(3), 541-551.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.004] [PMID: 25496992]
[111]
Chu, S.C.; Yu, C.C.; Hsu, L.S.; Chen, K.S.; Su, M.Y.; Chen, P.N. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol. Pharmacol., 2014, 86(6), 609-623.
[http://dx.doi.org/10.1124/mol.114.094037] [PMID: 25217495]
[112]
Yang, X.; Yang, B.; Cai, J.; Zhang, C.; Zhang, Q.; Xu, L.; Qin, Q.; Zhu, H.; Ma, J.; Tao, G.; Cheng, H.; Sun, X. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol. Ther., 2013, 14(11), 1068-1073.
[http://dx.doi.org/10.4161/cbt.26426] [PMID: 24025355]
[113]
Zhang, C.; Yang, X.; Zhang, Q.; Yang, B.; Xu, L.; Qin, Q.; Zhu, H.; Liu, J.; Cai, J.; Tao, G.; Ma, J.; Ge, X.; Zhang, S.; Cheng, H.; Sun, X. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1α expression. Acta Otolaryngol., 2014, 134(2), 185-192.
[http://dx.doi.org/10.3109/00016489.2013.850176] [PMID: 24325635]
[114]
Fu, L.; Chen, W.; Guo, W.; Wang, J.; Tian, Y.; Shi, D.; Zhang, X.; Qiu, H.; Xiao, X.; Kang, T.; Huang, W.; Wang, S.; Deng, W. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One, 2013, 8(7), e69240.
[http://dx.doi.org/10.1371/journal.pone.0069240] [PMID: 23869238]
[115]
Gao, J.L.; Shi, J.M.; Lee, S.M.; Zhang, Q.W.; Wang, Y.T. Angiogenic pathway inhibition of Corydalis yanhusuo and berberine in human umbilical vein endothelial cells. Oncol. Res., 2009, 17(11-12), 519-526.
[http://dx.doi.org/10.3727/096504009789745575] [PMID: 19806782]
[116]
Yahuafai, J.; Asai, T.; Oku, N.; Siripong, P. Anticancer efficacy of the combination of berberine and PEGylated liposomal doxorubicin in meth a sarcoma-bearing mice. Biol. Pharm. Bull., 2018, 41(7), 1103-1106.
[http://dx.doi.org/10.1248/bpb.b17-00989] [PMID: 29962406]
[117]
Kim, S.; Oh, S-J.; Lee, J.; Han, J.; Jeon, M.; Jung, T.; Lee, S.K.; Bae, S.Y.; Kim, J.; Gil, W.H.; Kim, S.W.; Lee, J.E.; Nam, S.J. Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells. Cell. Physiol. Biochem., 2013, 32(5), 1541-1550.
[http://dx.doi.org/10.1159/000356591] [PMID: 24335179]
[118]
Hamsa, T.P.; Kuttan, G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem. Toxicol., 2012, 35(1), 57-70.
[http://dx.doi.org/10.3109/01480545.2011.589437] [PMID: 22145808]
[119]
Pierpaoli, E.; Damiani, E.; Orlando, F.; Lucarini, G.; Bartozzi, B.; Lombardi, P.; Salvatore, C.; Geroni, C.; Donati, A.; Provinciali, M. Antiangiogenic and antitumor activities of berberine derivative NAX014 compound in a transgenic murine model of HER2/neu-positive mammary carcinoma. Carcinogenesis, 2015, 36(10), 1169-1179.
[http://dx.doi.org/10.1093/carcin/bgv103] [PMID: 26168818]
[120]
Pierpaoli, E.; Piacenza, F.; Fiorillo, G.; Lombardi, P.; Orlando, F.; Salvatore, C.; Geroni, C.; Provinciali, M. Antimetastatic and antitumor activities of orally administered NAX014 compound in a murine model of HER2-positive breast cancer. Int. J. Mol. Sci., 2021, 22(5), 2653.
[http://dx.doi.org/10.3390/ijms22052653] [PMID: 33800754]
[121]
Luo, Y.; Tian, G.; Zhuang, Z.; Chen, J.; You, N.; Zhuo, L.; Liang, B.; Song, Y.; Zang, S.; Liu, J.; Yang, J.; Ge, W.; Shi, J. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am. J. Transl. Res., 2019, 11(5), 2668-2682.
[PMID: 31217846]
[122]
Meirson, T.; Gil-Henn, H.; Samson, A.O. Invasion and metastasis: The elusive hallmark of cancer. Oncogene, 2020, 39(9), 2024-2026.
[http://dx.doi.org/10.1038/s41388-019-1110-1] [PMID: 31745295]
[123]
Na, T-Y.; Schecterson, L.; Mendonsa, A.M.; Gumbiner, B.M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 5931-5937.
[http://dx.doi.org/10.1073/pnas.1918167117] [PMID: 32127478]
[124]
Kaszak, I.; Witkowska-Piłaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Ngosa Toka, F.; Jurka, P. Role of cadherins in cancer-a review. Int. J. Mol. Sci., 2020, 21(20), 7624.
[http://dx.doi.org/10.3390/ijms21207624] [PMID: 33076339]
[125]
Mishra, R.; Nathani, S.; Varshney, R.; Sircar, D.; Roy, P. Berberine reverses epithelial-mesenchymal transition and modulates histone methylation in osteosarcoma cells. Mol. Biol. Rep., 2020, 47(11), 8499-8511.
[http://dx.doi.org/10.1007/s11033-020-05892-8] [PMID: 33074411]
[126]
Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive effects of berberine on intestinal tumor development in Apcmin/+ mice. BMC Gastroenterol., 2013, 13(1), 163.
[http://dx.doi.org/10.1186/1471-230X-13-163] [PMID: 24279644]
[127]
Kim, S.; You, D.; Jeong, Y.; Yu, J.; Kim, S.W.; Nam, S.J.; Lee, J.E. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. Phytomedicine, 2018, 50, 43-49.
[http://dx.doi.org/10.1016/j.phymed.2018.08.004] [PMID: 30466991]
[128]
Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134.
[http://dx.doi.org/10.1038/nrc.2017.118] [PMID: 29326430]
[129]
Derynck, R.; Weinberg, R.A. EMT and cancer: More than meets the eye. Dev. Cell, 2019, 49(3), 313-316.
[http://dx.doi.org/10.1016/j.devcel.2019.04.026] [PMID: 31063750]
[130]
Saitoh, M. Involvement of partial EMT in cancer progression. J. Biochem., 2018, 164(4), 257-264.
[http://dx.doi.org/10.1093/jb/mvy047] [PMID: 29726955]
[131]
Ho, Y-T.; Yang, J-S.; Li, T-C.; Lin, J-J.; Lin, J-G.; Lai, K-C.; Ma, C.Y.; Wood, W.G.; Chung, J.G. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9. Cancer Lett., 2009, 279(2), 155-162.
[http://dx.doi.org/10.1016/j.canlet.2009.01.033] [PMID: 19251361]
[132]
Li, W.; Li, Q.; Kang, S.; Same, M.; Zhou, Y.; Sun, C. CancerDetector: Ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res., 2018, 46(15), e89.
[http://dx.doi.org/10.1093/nar/gky423] [PMID: 29897492]
[133]
Liu, L.; Sun, L.; Zheng, J.; Cui, L. Berberine modulates Keratin 17 to inhibit cervical cancer cell viability and metastasis. J. Recept. Signal Transduct. Res., 2021, 41(6), 521-531.
[http://dx.doi.org/10.1080/10799893.2020.1830110] [PMID: 33045871]
[134]
Kim, S.; Choi, J.H.; Kim, J.B.; Nam, S.J.; Yang, J-H.; Kim, J-H.; Lee, J.E. Berberine suppresses TNF-α-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules, 2008, 13(12), 2975-2985.
[http://dx.doi.org/10.3390/molecules13122975] [PMID: 19052522]
[135]
Liu, J.F.; Lai, K.C.; Peng, S.F.; Maraming, P.; Huang, Y.P.; Huang, A.C.; Chueh, F.S.; Huang, W.W.; Chung, J.G. Berberine inhibits human melanoma A375.S2 cell migration and invasion via affecting the FAK, uPA, and NF-κB signaling pathways and inhibits PLX4032 resistant A375.S2 cell migration in vitro. Molecules, 2018, 23(8), 2019.
[http://dx.doi.org/10.3390/molecules23082019] [PMID: 30104528]
[136]
Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71.
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[137]
Li, Y.; Wang, T.; Sun, Y.; Huang, T.; Li, C.; Fu, Y.; Li, Y.; Li, C. p53-mediated PI3K/AKT/mTOR pathway played a role in PtoxDpt-induced EMT inhibition in liver cancer cell lines. Oxid. Med. Cell. Longev., 2019, 2019, 2531493.
[http://dx.doi.org/10.1155/2019/2531493] [PMID: 31191795]
[138]
Karimi Roshan, M.; Soltani, A.; Soleimani, A.; Rezaie Kahkhaie, K.; Afshari, A.R.; Soukhtanloo, M. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie, 2019, 165, 229-234.
[http://dx.doi.org/10.1016/j.biochi.2019.08.003] [PMID: 31401189]
[139]
Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT factors and metabolic pathways in cancer. Front. Oncol., 2020, 10, 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[140]
Kou, Y.; Li, L.; Li, H.; Tan, Y.; Li, B.; Wang, K.; Du, B. Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells. Biochem. Biophys. Res. Commun., 2016, 479(2), 290-296.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.061] [PMID: 27639645]
[141]
Hamsa, T.P.; Kuttan, G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother. Res., 2012, 26(4), 568-578.
[http://dx.doi.org/10.1002/ptr.3586] [PMID: 21953764]
[142]
Wu, C-.M.; Li, T-.M.; Tan, T-.W.; Fong, Y-.C.; Tang, C-.H. Berberine reduces the metastasis of chondrosarcoma by modulating the α ν β 3 integrin and the PKC δ, c-Src, and AP-1 signaling pathways. Evid Based Complement Alternat Med, 2013, 2013, 423164.
[http://dx.doi.org/10.1155/2013/423164] [PMID: 24027594]
[143]
Ma, W.; Zhu, M.; Zhang, D.; Yang, L.; Yang, T.; Li, X.; Zhang, Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 2017, 25, 45-51.
[http://dx.doi.org/10.1016/j.phymed.2016.12.013] [PMID: 28190470]
[144]
Liu, B.; Wang, G.; Yang, J.; Pan, X.; Yang, Z.; Zang, L. Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes. PLoS One, 2011, 6(6), e21416.
[http://dx.doi.org/10.1371/journal.pone.0021416] [PMID: 21738655]
[145]
Liu, X.; Ji, Q.; Ye, N.; Sui, H.; Zhou, L.; Zhu, H.; Fan, Z.; Cai, J.; Li, Q. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE 2 mediated JAK2/STAT3 signaling pathway. PLoS One, 2015, 10(5), e0123478.
[http://dx.doi.org/10.1371/journal.pone.0123478] [PMID: 25954974]
[146]
Tang, F.; Wang, D.; Duan, C.; Huang, D.; Wu, Y.; Chen, Y.; Wang, W.; Xie, C.; Meng, J.; Wang, L.; Wu, B.; Liu, S.; Tian, D.; Zhu, F.; He, Z.; Deng, F.; Cao, Y. Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. J. Biol. Chem., 2009, 284(40), 27456-27466.
[http://dx.doi.org/10.1074/jbc.M109.033795] [PMID: 19651779]
[147]
Peng, P.L.; Hsieh, Y.S.; Wang, C.J.; Hsu, J.L.; Chou, F.P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol. Appl. Pharmacol., 2006, 214(1), 8-15.
[http://dx.doi.org/10.1016/j.taap.2005.11.010] [PMID: 16387334]
[148]
Qi, H.W.; Xin, L.Y.; Xu, X.; Ji, X.X.; Fan, L.H. Epithelial-to-mesenchymal transition markers to predict response of Berberine in suppressing lung cancer invasion and metastasis. J. Transl. Med., 2014, 12(1), 22.
[http://dx.doi.org/10.1186/1479-5876-12-22] [PMID: 24456611]
[149]
Li, X.; Zhao, S.J.; Shi, H.L.; Qiu, S.P.; Xie, J.Q.; Wu, H.; Zhang, B.B.; Wang, Z.T.; Yuan, J.Y.; Wu, X.J. Berberine hydrochloride IL-8 dependently inhibits invasion and IL-8-independently promotes cell apoptosis in MDA-MB-231 cells. Oncol. Rep., 2014, 32(6), 2777-2788.
[http://dx.doi.org/10.3892/or.2014.3520] [PMID: 25335112]
[150]
Kuo, H.P.; Chuang, T.C.; Tsai, S.C.; Tseng, H.H.; Hsu, S.C.; Chen, Y.C.; Kuo, C.L.; Kuo, Y.H.; Liu, J.Y.; Kao, M.C. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J. Agric. Food Chem., 2012, 60(38), 9649-9658.
[http://dx.doi.org/10.1021/jf302832n] [PMID: 22950834]
[151]
Yan, L.; Yan, K.; Kun, W.; Xu, L.; Ma, Q.; Tang, Y.; Jiao, W.; Gu, G.; Fan, Y.; Xu, Z. Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase. Tumour Biol., 2013, 34(1), 215-221.
[http://dx.doi.org/10.1007/s13277-012-0531-z] [PMID: 23065570]
[152]
Yount, G.; Qian, Y.; Moore, D.; Basila, D.; West, J.; Aldape, K.; Arvold, N.; Shalev, N.; Haas-Kogan, D. Berberine sensitizes human glioma cells, but not normal glial cells, to ionizing radiation in vitro. J. Exp. Ther. Oncol., 2004, 4(2), 137-143.
[PMID: 15500008]
[153]
Effects of statins on brain tumors: A review.Seminars in cancer biology y; Afshari, A.R.; Mollazadeh, H.; Henney,N.C.; Jamialahmad, T.; Sahebkar, A., Eds.; Elsevier, 2020.
[154]
Guamán Ortiz, L.M.; Croce, A.L.; Aredia, F.; Sapienza, S.; Fiorillo, G.; Syeda, T.M.; Buzzetti, F.; Lombardi, P.; Scovassi, A.I. Effect of new berberine derivatives on colon cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(10), 824-833.
[http://dx.doi.org/10.1093/abbs/gmv077] [PMID: 26341980]
[155]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[156]
Agnarelli, A.; Natali, M.; Garcia-Gil, M.; Pesi, R.; Tozzi, M.G.; Ippolito, C.; Bernardini, N.; Vignali, R.; Batistoni, R.; Bianucci, A.M.; Marracci, S. Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci. Rep., 2018, 8(1), 10599.
[http://dx.doi.org/10.1038/s41598-018-28952-3] [PMID: 30006630]
[157]
Eom, K-S.; Hong, J-M.; Youn, M-J.; So, H-S.; Park, R.; Kim, J-M.; Kim, T.Y. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol. Pharm. Bull., 2008, 31(4), 558-562.
[http://dx.doi.org/10.1248/bpb.31.558] [PMID: 18379040]
[158]
Tong, L.; Xie, C.; Wei, Y.; Qu, Y.; Liang, H.; Zhang, Y.; Xu, T.; Qian, X.; Qiu, H.; Deng, H. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release. Front. Oncol., 2019, 9, 364.
[http://dx.doi.org/10.3389/fonc.2019.00364] [PMID: 31139563]
[159]
Sun, Y.; Yu, J.; Liu, X.; Zhang, C.; Cao, J.; Li, G.; Liu, X.; Chen, Y.; Huang, H. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed. Pharmacother., 2018, 102, 699-710.
[http://dx.doi.org/10.1016/j.biopha.2018.03.132] [PMID: 29604589]
[160]
Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378.
[http://dx.doi.org/10.18632/oncotarget.3629] [PMID: 25812084]
[161]
Zhou, G.; Wang, J.; Zhao, M.; Xie, T.X.; Tanaka, N.; Sano, D.; Patel, A.A.; Ward, A.M.; Sandulache, V.C.; Jasser, S.A.; Skinner, H.D.; Fitzgerald, A.L.; Osman, A.A.; Wei, Y.; Xia, X.; Songyang, Z.; Mills, G.B.; Hung, M.C.; Caulin, C.; Liang, J.; Myers, J.N. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell, 2014, 54(6), 960-974.
[http://dx.doi.org/10.1016/j.molcel.2014.04.024] [PMID: 24857548]
[162]
Li, N.; Huang, D.; Lu, N.; Luo, L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol. Rep., 2015, 34(6), 2821-2826.
[http://dx.doi.org/10.3892/or.2015.4288] [PMID: 26398719]
[163]
Park, J.J.; Seo, S.M.; Kim, E.J.; Lee, Y.J.; Ko, Y.G.; Ha, J.; Lee, M. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem. Biophys. Res. Commun., 2012, 426(4), 461-467.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.091] [PMID: 22943849]
[164]
Rottenberg, H.; Hoek, J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell, 2017, 16(5), 943-955.
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[165]
Liu, Z.; Chen, Y.; Gao, H.; Xu, W.; Zhang, C.; Lai, J.; Liu, X.; Sun, Y.; Huang, H. Berberine inhibits cell proliferation by interfering with wild-type and mutant P53 in human glioma cells. OncoTargets Ther., 2020, 13, 12151-12162.
[http://dx.doi.org/10.2147/OTT.S279002] [PMID: 33262612]
[166]
Palma, T.V.; Lenz, L.S.; Bottari, N.B.; Pereira, A.; Schetinger, M.R.C.; Morsch, V.M.; Ulrich, H.; Pillat, M.M.; de Andrade, C.M. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol. Biol. Rep., 2020, 47(6), 4393-4400.
[http://dx.doi.org/10.1007/s11033-020-05500-9] [PMID: 32410137]
[167]
Chen, T.C.; Lai, K.C.; Yang, J.S.; Liao, C.L.; Hsia, T.C.; Chen, G.W.; Lin, J.J.; Lin, H.J.; Chiu, T.H.; Tang, Y.J.; Chung, J.G. Involvement of reactive oxygen species and caspase-dependent pathway in berberine-induced cell cycle arrest and apoptosis in C6 rat glioma cells. Int. J. Oncol., 2009, 34(6), 1681-1690.
[PMID: 19424587]
[168]
Eom, K.S.; Kim, H-J.; So, H-S.; Park, R.; Kim, T.Y. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[169]
Tang, W-C.; Lee, K-H. Inhibitory effects of Berberine on the migratory and invasive abilities of cancer cells. Cancer Microenviron., 2015, 2
[170]
Qu, H.; Song, X.; Song, Z.; Jiang, X.; Gao, X.; Bai, L.; Wu, J.; Na, L.; Yao, Z. Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int., 2020, 20(1), 592.
[http://dx.doi.org/10.1186/s12935-020-01693-y] [PMID: 33298057]
[171]
Fu, S.; Xie, Y.; Tuo, J.; Wang, Y.; Zhu, W.; Wu, S.; Yan, G.; Hu, H. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells. MedChemComm, 2015, 6(1), 164-173.
[http://dx.doi.org/10.1039/C4MD00264D] [PMID: 26811742]
[172]
Yan, Y.; Xu, Z.; Dai, S.; Qian, L.; Sun, L.; Gong, Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J. Exp. Clin. Cancer Res., 2016, 35(1), 23.
[http://dx.doi.org/10.1186/s13046-016-0303-5] [PMID: 26830677]
[173]
Zhuang, W.; Qin, Z.; Liang, Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(5), 341-351.
[http://dx.doi.org/10.1093/abbs/gmp028] [PMID: 19430698]
[174]
Kanzawa, T.; Germano, I.M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ., 2004, 11(4), 448-457.
[http://dx.doi.org/10.1038/sj.cdd.4401359] [PMID: 14713959]
[175]
Wang, J.; Yang, S.; Cai, X.; Dong, J.; Chen, Z.; Wang, R.; Zhang, S.; Cao, H.; Lu, D.; Jin, T.; Nie, Y.; Hao, J.; Fan, D. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer. Oncotarget, 2016, 7(46), 76076-76086.
[http://dx.doi.org/10.18632/oncotarget.12589] [PMID: 27738318]
[176]
Puputti, M.; Tynninen, O.; Sihto, H.; Blom, T.; Mäenpää, H.; Isola, J.; Paetau, A.; Joensuu, H.; Nupponen, N.N. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol. Cancer Res., 2006, 4(12), 927-934.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0085] [PMID: 17189383]
[177]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[178]
Lin, T.H.; Kuo, H.C.; Chou, F.P.; Lu, F.J. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[179]
Maiti, P.; Plemmons, A.; Dunbar, G.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One, 2019, 14(12), e0225660.
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[180]
Onishi, M.; Ichikawa, T.; Kurozumi, K.; Date, I. Angiogenesis and invasion in glioma. Brain Tumor Pathol., 2011, 28(1), 13-24.
[http://dx.doi.org/10.1007/s10014-010-0007-z] [PMID: 21221826]
[181]
Li, D.; Finley, S.D. Mechanistic insights into the heterogeneous response to anti‐VEGF treatment in tumors. Integr. Biol., 2021, 10(4), 253-269.
[http://dx.doi.org/10.1039/C8IB00019K]
[182]
Jin, F.; Xie, T.; Huang, X.; Zhao, X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol., 2018, 56(1), 665-671.
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[183]
Wang, X.; Wang, R.; Xing, D.; Su, H.; Ma, C.; Ding, Y.; Du, L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci., 2005, 77(24), 3058-3067.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[184]
Sobolova, K.; Hrabinova, M.; Hepnarova, V.; Kucera, T.; Kobrlova, T.; Benkova, M.; Janockova, J.; Dolezal, R.; Prchal, L.; Benek, O.; Mezeiova, E.; Jun, D.; Soukup, O.; Korabecny, J. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem., 2020, 203, 112593.
[http://dx.doi.org/10.1016/j.ejmech.2020.112593] [PMID: 32688201]
[185]
Ma, X.; Jiang, Y.; Wu, A.; Chen, X.; Pi, R.; Liu, M.; Liu, Y. Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One, 2010, 5(10), e13489.
[http://dx.doi.org/10.1371/journal.pone.0013489] [PMID: 20976070]
[186]
Zhang, D.M.; Liu, H.Y.; Xie, L.; Liu, X.D. Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells. Acta Pharmacol. Sin., 2007, 28(4), 573-578.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00521.x] [PMID: 17376298]
[187]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[188]
Wang, Q.S.; Li, K.; Gao, L.N.; Zhang, Y.; Lin, K.M.; Cui, Y.L. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater. Sci., 2020, 8(10), 2853-2865.
[http://dx.doi.org/10.1039/C9BM02006C] [PMID: 32270794]
[189]
Singh, D.P.; Chopra, K. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur. J. Pharmacol., 2013, 720(1-3), 98-106.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.043] [PMID: 24177287]
[190]
Gao, Z.S.; Zhang, C.J.; Xia, N.; Tian, H.; Li, D.Y.; Lin, J.Q.; Mei, X.F.; Wu, C. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater., 2021, 126, 211-223.
[http://dx.doi.org/10.1016/j.actbio.2021.03.018] [PMID: 33722788]
[191]
Wang, S.; An, J.; Dong, W.; Wang, X.; Sheng, J.; Jia, Y.; He, Y.; Ma, X.; Wang, J.; Yu, D.; Jia, X.; Wang, B.; Yu, W.; Liu, K.; Zhao, Y.; Wu, Y.; Zhu, W.; Pan, Y. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int. J. Nanomedicine, 2020, 15, 7951-7965.
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[192]
Yu, F.; Ao, M.; Zheng, X.; Li, N.; Xia, J.; Li, Y.; Li, D.; Hou, Z.; Qi, Z.; Chen, X.D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv., 2017, 24(1), 825-833.
[http://dx.doi.org/10.1080/10717544.2017.1321062] [PMID: 28509588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy