Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Transdermal Patches Approach Towards Self-Nano-Emulsifying Drug Delivery System (SNEDDS) Using Essential Oil as Penetration Enhancer

Author(s): Heena Farooqui*, Sukirti Upadhyay and Prashant Upadhyay*

Volume 14, Issue 4, 2022

Published on: 31 May, 2022

Page: [314 - 340] Pages: 27

DOI: 10.2174/1876402914666220221105304

Price: $65

conference banner
Abstract

A transdermal patch is a topically applied adhesive patch that delivers a medication dose directly into the blood. The patch allows for the safe delivery of a drug to the targeted site, ideally by a permeable layer covering a reservoir of the drug by melting small patches of drug embedded in the adhesive, which is one benefit of transdermal drug delivery over most types of pharmaceutical deliveries, including oral, topical, intramuscular, intravenous, and several others. This can also help heal a damaged body part, improving patient compliance, treatment efficacy, and dose frequency while minimizing the side effects. This review covers the production, methods of evaluation, quality, use of penetration enhancers, and pros and downsides of transdermal patches, as well as the benefits of essential oil as a penetration enhancer. Compared to chemical enhancers, essential oils have shown the ability to break down the stratum corneum layer, allowing drugs to penetrate deeper into the skin. Essential oils are excellent penetration enhancers for the skin. These penetration enhancers are cost-effective, biocompatible, readily available, non-toxic, chemically modifiable, and possibly biodegradable. In this review, attention has been paid to the formulation and evaluation of transdermal patches with the help of SNEDDS (self-nano-emulsifying drug delivery systems) using essential oil as a penetration enhancer, and their future prospects.

Keywords: Transdermal drug delivery system, permeation enhancer, essential oil, SNEDDS, nanocarriers, stratum corneum layer.

[1]
Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol., 2015, 172(9), 2179-2209.
[http://dx.doi.org/10.1111/bph.13059] [PMID: 25560046]
[2]
Hannan, P.A.; Khan, J.A.; Khan, A.; Safiullah, S. Oral dispersible system: A new approach in drug delivery system. Indian J. Pharm. Sci., 2016, 78(1), 2-7.
[http://dx.doi.org/10.4103/0250-474X.180244] [PMID: 27168675]
[3]
Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal drug delivery: innovative pharmaceutical developments based on disrup-tion of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[4]
Mali, A.D.; Bathe, R.; Patil, M. An updated review on transdermal drug delivery systems. Int. J. Adv. Sci. Res., 2015, 1(6), 244-254.
[http://dx.doi.org/10.7439/ijasr.v1i6.2243]
[5]
Hardainiyan, S.; Nandy, B.C.; Jasuja, N.D.; Vyas, P.; Raghav, P.K. A review on the recent innovations in transdermal drug delivery for herbal therapy. J. Biomed. Pharm. Res., 2014, 3(3), 88-101.
[6]
Verma, G. Transdermal drug delivery system, advance development and evaluation-a review. Int. J. Pharm. Sci. Res., 2017, 8(2), 385-400.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(2).385-00]
[7]
Bhairam, M.; Roy, A.; Bahadur, S.; Banafar, A.; Patel, M.; Turkane, D. Transdermal drug delivery system with formulation and evaluation aspects: Overview. Res. J. Pharm. Technol., 2012, 5(9), 1168-1176.
[8]
Kumar, A.; Pullakandam, N.; Lakshmana Prabu, S.; Gopal, V. Transdermal drug delivery system: an overview. Int. J. Pharm. Sci. Rev. Res., 2010, 3(2), 49-54.
[9]
Kathe, K.; Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci., 2017, 12(6), 487-497.
[http://dx.doi.org/10.1016/j.ajps.2017.07.004] [PMID: 32104362]
[10]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[11]
Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol., 2015, 67(4), 473-485.
[http://dx.doi.org/10.1111/jphp.12334] [PMID: 25557808]
[12]
Ng, K.W.; Lau, W.M. Skin deep: the basics of human skin structure and drug penetration. In: Percutaneous Penetration Enhancers Chemi-cal Methods in Penetration Enhancement; Dragicevic, N.; Maibach, H.I., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015, pp. 3-11.
[http://dx.doi.org/10.1007/978-3-662-45013-0_1]
[13]
Pathan, I.B.; Setty, C.M. Chemical penetration enhancers for transdermal drug delivery systems. Trop. J. Pharm. Res., 2009, 8(2), 173-179.
[http://dx.doi.org/10.4314/tjpr.v8i2.44527]
[14]
Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol., 2017, 55(1), 1592-1600.
[http://dx.doi.org/10.1080/13880209.2017.1312464] [PMID: 28399694]
[15]
Abdullah, D.; Ping, Q.N.; Liu, G.J. Enhancing effect of essential oils on the penetration of 5-fluorouracil through rat skin. Yao Xue Xue Bao, 1996, 31(3), 214-221.
[PMID: 9206269]
[16]
Tanwar, H.; Sachdeva, R. Transdermal drug delivery system: A review. Int. J. Pharm. Sci. Res., 2016, 7(6), 2274-2290.
[17]
Bolzinger, M-A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci., 2012, 17(3), 156-165.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[18]
Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol., 2021, 27(3), 299-308.
[http://dx.doi.org/10.1111/srt.12968] [PMID: 33095948]
[19]
Ruela, A.L.M.; Perissinato, A.G.; Lino, M.E. de S.; Mudrik, P.S.; Pereira, G.R. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz. J. Pharm. Sci., 2016, 52(3), 527-544.
[http://dx.doi.org/10.1590/s1984-82502016000300018]
[20]
Davis, D.A.; Martins, P.P.; Zamloot, M.S.; Kucera, S.A.; Williams, R.O., III; Smyth, H.D.C.; Warnken, Z.N. Complex drug delivery sys-tems: Controlling transdermal permeation rates with multiple active pharmaceutical ingredients. AAPS PharmSciTech, 2020, 21(5), 165.
[http://dx.doi.org/10.1208/s12249-020-01682-4] [PMID: 32500420]
[21]
Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in der-mal/transdermal delivery. Ther. Deliv., 2010, 1(1), 109-131.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[22]
Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv., 2016, 23(2), 564-578.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[23]
Das, A.; Ahmed, A.B. Formulation and evaluation of transdermal patch of indomethacin containing patchouli oil as natural penetration enhancer. Asian J. Pharm. Clin. Res., 2017, 10(11), 320.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20926]
[24]
Escobar-Chavez, J.; Diaz-Torres, R.; Rodriguez-Cruz, I.M. Dominguez-Delgado; Sampere-Morales; Angeles-anguiano; Melgoza-contreras. Nanocarriers for transdermal drug delivery. Res. Rep. Transdermal Drug Deliv., 2012, 1, 3-17.
[http://dx.doi.org/10.2147/RRTD.S32621]
[25]
Roy, N.; Agrawal, M.; Chaudhary, S.; Tirkey, V.; Dhwaj, A.; Mishra, N. Review article on permeation enhancers: A major breakthrough in drug delivery technology. Int. J. Pharm. Sci. Res., 2017, 8(3), 1001-1011.
[26]
Isaac, M.; Holvey, C. Transdermal patches: The emerging mode of drug delivery system in psychiatry. Ther. Adv. Psychopharmacol., 2012, 2(6), 255-263.
[http://dx.doi.org/10.1177/2045125312458311] [PMID: 23983984]
[27]
Padula, C.; Nicoli, S.; Colombo, P.; Santi, P. Single-layer transdermal film containing lidocaine: modulation of drug release. Eur. J. Pharm. Biopharm., 2007, 66(3), 422-428.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.014] [PMID: 17196804]
[28]
Transdermal patch. Wikipedia, 2021. Available from: https://en.wikipedia.org/wiki/Transdermal_patch
[29]
Pichayakorn, W.; Suksaeree, J.; Boonme, P.; Taweepreda, W.; Amnuaikit, T.; Ritthidej, G.C. Deproteinised natural rubber used as a con-trolling layer membrane in reservoir-type nicotine transdermal patches. Chem. Eng. Res. Des., 2013, 91(3), 520-529.
[http://dx.doi.org/10.1016/j.cherd.2012.09.011]
[30]
Mukherjee, B.; Mahapatra, S.; Gupta, R.; Patra, B.; Tiwari, A.; Arora, P. A comparison between povidone-ethylcellulose and povidone-eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation. Eur. J. Pharm. Biopharm., 2005, 59(3), 475-483.
[http://dx.doi.org/10.1016/j.ejpb.2004.09.009] [PMID: 15760728]
[31]
Rastogi, V.; Yadav, P. Transdermal drug delivery system: an overview. Asian J. Pharm., 2012, 6(3), 161.
[http://dx.doi.org/10.4103/0973-8398.104828]
[32]
Al Hanbali, O.A.; Khan, H.M.S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm., 2019, 69(2), 197-215.
[http://dx.doi.org/10.2478/acph-2019-0016] [PMID: 31259729]
[33]
Quan, D. Advancing transdermal drug-delivery systems past development barriers to the clinic: an industry perspective. Ther. Deliv., 2012, 3(3), 299-301.
[http://dx.doi.org/10.4155/tde.12.5] [PMID: 22833990]
[34]
El-Say, K.M.; Ahmed, T.A.; Badr-Eldin, S.M.; Fahmy, U.; Aldawsari, H.; Ahmed, O.A.A. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: Ex vivo and in vivo evaluation. Pharm. Dev. Technol., 2015, 20(8), 919-926.
[http://dx.doi.org/10.3109/10837450.2014.938859] [PMID: 25019166]
[35]
Badran, M.M.; Taha, E.I.; Tayel, M.M.; Al-Suwayeh, S.A. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J. Mol. Liq., 2014, 190, 16-22.
[http://dx.doi.org/10.1016/j.molliq.2013.10.015]
[36]
Ahmed, O.A.; Afouna, M.I.; El-Say, K.M.; Abdel-Naim, A.B.; Khedr, A.; Banjar, Z.M. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin. Drug Deliv., 2014, 11(7), 1005-1013.
[http://dx.doi.org/10.1517/17425247.2014.906402] [PMID: 24702435]
[37]
Hosny, K.M. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: two-step optimization of permeation parame-ters, characterization, and ex vivo and in vivo evaluation. Int. J. Nanomedicine, 2019, 14, 8589-8601.
[http://dx.doi.org/10.2147/IJN.S230747] [PMID: 31802871]
[38]
Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A.; Almohammadi, E.A.; Alotaibi, S.A.; Aljohani, R.A.; Alharbi, W.S.; Alfaleh, M.A.; Alfaifi, M.Y. Development of an optimized febuxostat self-nanoemulsified loaded transdermal film: in-vitro, ex-vivo and in-vivo evaluation. Pharm. Dev. Technol., 2020, 25(3), 326-331.
[http://dx.doi.org/10.1080/10837450.2019.1700520] [PMID: 31794286]
[39]
Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A hyaluronic acid functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials (Basel), 2021, 11(5), 1086.
[http://dx.doi.org/10.3390/nano11051086] [PMID: 33922241]
[40]
Altamimi, M.A.; Hussain, A.; Alshehri, S.; Imam, S.S.; Alnemer, U.A. Development and evaluations of transdermally delivered luteolin loaded cationic nanoemulsion: In vitro and ex vivo evaluations. Pharmaceutics, 2021, 13(8), 1218.
[http://dx.doi.org/10.3390/pharmaceutics13081218] [PMID: 34452179]
[41]
Almehmady, A.M.; Ali, S.A. Transdermal film loaded with garlic oil-acyclovir nanoemulsion to overcome barriers for its use in alleviating cold sore conditions. Pharmaceutics, 2021, 13(5), 669.
[http://dx.doi.org/10.3390/pharmaceutics13050669] [PMID: 34066923]
[42]
Altamimi, M.A.; Kazi, M.; Hadi Albgomi, M.; Ahad, A.; Raish, M. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: an anti-inflammatory exposure. Drug Dev. Ind. Pharm., 2019, 45(7), 1073-1078.
[http://dx.doi.org/10.1080/03639045.2019.1593440] [PMID: 30987466]
[43]
Rasoanirina, B.N.V.; Lassoued, M.A.; Kamoun, A.; Bahloul, B.; Miladi, K.; Sfar, S. Voriconazole-loaded self-nanoemulsifying drug deliv-ery system (SNEDDS) to improve transcorneal permeability. Pharm. Dev. Technol., 2020, 25(6), 694-703.
[http://dx.doi.org/10.1080/10837450.2020.1731532] [PMID: 32064993]
[44]
Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S. E.; Fita, I. Z.; Khalid, M. S.; Pottoo, F. H.; Bolla, S. R. A novel selfnanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation. 3 Biotech, 2019, 9(10), 360.
[http://dx.doi.org/10.1007/s13205-019-1885-3]
[45]
van Staden, D.; du Plessis, J.; Viljoen, J. Development of a self-emulsifying drug delivery system for optimized topical delivery of clo-fazimine. Pharmaceutics, 2020, 12(6), 523.
[http://dx.doi.org/10.3390/pharmaceutics12060523] [PMID: 32521671]
[46]
Pratiwi, L.; Fudholi, A.; Martien, R.; Pramono, S. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for topical delivery of mango-steen peels (garcinia mangostana L.,): formulation design and in vitro studies. J. Young Pharm., 2017, 9(3), 341-346.
[http://dx.doi.org/10.5530/jyp.2017.9.68]
[47]
Wulandari, W.; Ermawati, D.E.; Yugatama, A. Optimization SNEDDS (Self-Nano Emulsifying Drug Delivery System) of ZnO that dispersed into hydrogel matrix as UV-protective. IOP Conf. Ser. Mater. Sci. Eng., 2019, 578, p. 012058.
[http://dx.doi.org/10.1088/1757-899X/578/1/012058]
[48]
Liza, P. Novel antimicrobial activities of self-nanoemulsifying drug delivery system (snedds) ethyl acetate fraction from garcinia man-gostana l. peels against staphylococcus epidermidis: design, optimization, and in vitro studies. J. Appl. Pharm. Sci., 2021, 11(3), 162-171.
[http://dx.doi.org/10.7324/JAPS.2021.110313]
[49]
Ponto, T.; Latter, G.; Luna, G.; Leite-Silva, V.R.; Wright, A.; Benson, H.A.E. Novel self-nano-emulsifying drug delivery systems contain-ing astaxanthin for topical skin delivery. Pharmaceutics, 2021, 13(5), 649.
[http://dx.doi.org/10.3390/pharmaceutics13050649] [PMID: 34063593]
[50]
Khan, M.; Nadhman, A.; Sehgal, S.A.; Siraj, S.; Yasinzai, M.M. Formulation and Characterization of a Self-Emulsifying Drug Delivery System (SEDDS) of curcumin for the topical application in cutaneous and mucocutaneous leishmaniasis. Curr. Top. Med. Chem., 2018, 18(18), 1603-1609.
[http://dx.doi.org/10.2174/1568026618666181025104818] [PMID: 30360717]
[51]
Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Abdel Hakim, L.F. Formulation development of self-nanoemulsifying drug delivery system of celecoxib for the management of oral cavity inflammation. J. Liposome Res., 2019, 29(2), 195-205.
[http://dx.doi.org/10.1080/08982104.2018.1524484] [PMID: 30221598]
[52]
Jafri, I.; Shoaib, M.H.; Yousuf, R.I.; Ali, F.R. Effect of permeation enhancers on in vitro release and transdermal delivery of lamotrigine from Eudragit®RS100 polymer matrix-type drug in adhesive patches. Prog. Biomater., 2019, 8(2), 91-100.
[http://dx.doi.org/10.1007/s40204-019-0114-9] [PMID: 31069700]
[53]
Caliskan, U.K.; Karakus, M.M. Essential oils as skin permeation boosters and their predicted effect mechanisms. J. Dermatol. Skin Sci., 2020, 2(3), 24-30.
[54]
Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal drug delivery enhancement by compounds of natural origin. Molecules, 2011, 16(12), 10507-10540.
[http://dx.doi.org/10.3390/molecules161210507]
[55]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel), 2016, 3(4), E25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[56]
Aggarwal, G.; Dhawan, S. HariKumar, S.L. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: In vitro and in vivo evaluation. Curr. Drug Deliv., 2012, 9(2), 172-181.
[http://dx.doi.org/10.2174/156720112800234567] [PMID: 22023211]
[57]
Charoo, N.A.; Shamsher, A.A.A.; Kohli, K.; Pillai, K.; Rahman, Z. Improvement in bioavailability of transdermally applied flurbiprofen using tulsi (Ocimum sanctum) and turpentine oil. Colloids Surf. B Biointerfaces, 2008, 65(2), 300-307.
[http://dx.doi.org/10.1016/j.colsurfb.2008.05.001] [PMID: 18579348]
[58]
Chen, Y.; Quan, P.; Liu, X.; Wang, M.; Fang, L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J. Pharm. Sci., 2014, 9(2), 51-64.
[http://dx.doi.org/10.1016/j.ajps.2014.01.001]
[59]
Patel, J.; Jani, R. Enhancing effect of natural oils as permeation enhancer for transdermal delivery of diltiazem hydrochloride through wistar rat skin. nt. J. Pharm. Sci. Rev., 2016, 36(1), 9-16.
[60]
Singh, I.; Morris, A.P. Performance of transdermal therapeutic systems: Effects of biological factors. Int. J. Pharm. Investig., 2011, 1(1), 4-9.
[http://dx.doi.org/10.4103/2230-973X.76721] [PMID: 23071913]
[61]
Chen, J.; Jiang, Q-D.; Wu, Y-M.; Liu, P.; Yao, J-H.; Lu, Q.; Zhang, H.; Duan, J-A. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules, 2015, 20(10), 18219-18236.
[http://dx.doi.org/10.3390/molecules201018219] [PMID: 26457698]
[62]
Som, I.; Bhatia, K.; Yasir, M. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied Sci., 2012, 4(1), 2-9.
[http://dx.doi.org/10.4103/0975-7406.92724] [PMID: 22368393]
[63]
Das, M.K.; Bhattacharya, A.; Ghosal, S.K. Effect of different terpene-containing essential oils on percutaneous absorption of trazodone hydrochloride through mouse epidermis. Drug Deliv., 2006, 13(6), 425-431.
[http://dx.doi.org/10.1080/10717540500395064] [PMID: 17002970]
[64]
Monti, D.; Najarro, M.; Chetoni, P.; Burgalassi, S.; Saettone, M.F.; Boldrini, E. Niaouli oil as enhancer for transdermal permeation of es-tradiol evaluation of gel formulations on hairless rats in vivo. J. Drug Deliv. Sci. Technol., 2006, 16(6), 473-476.
[http://dx.doi.org/10.1016/S1773-2247(06)50090-5]
[65]
Vashisth, I.; Ahad, A. Aqil, Mohd; Agarwal, S.P. Investigating the potential of essential oils as penetration enhancer for transdermal losar-tan delivery: Effectiveness and mechanism of action. Asian J. Pharm. Sci., 2014, 9(5), 260-267.
[http://dx.doi.org/10.1016/j.ajps.2014.06.007]
[66]
Chandrashekar, N.S.; Shobha Rani, R.H. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J. Pharm. Sci., 2008, 70(1), 94-96.
[http://dx.doi.org/10.4103/0250-474X.40340] [PMID: 20390089]
[67]
Suksaeree, J.; Pichayakorn, W.; Monton, C.; Sakunpak, A.; Chusut, T.; Saingam, W. Rubber polymers for transdermal drug delivery sys-tems. Ind. Eng. Chem. Res., 2014, 53(2), 507-513.
[http://dx.doi.org/10.1021/ie403619b]
[68]
Adhyapak, A.; Desai, B. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Indian J. Health Sci., 2016, 9(1), 40-48.
[http://dx.doi.org/10.4103/2349-5006.183677]
[69]
SreeHarsha. N.; Hiremath, J.G.; Rawre, B.K.; Puttaswamy, N.; Al-Dhubiab, B.E.; Venugopala, K.N.; Akrawi, S.H.; Meravanige, G.; At-timarad, M.; B Nair, A. Formulation and evaluation of tamoxifen citrate loaded transdermal reservoir gel drug delivery systems. Indian J. Pharm. Educ. Res., 2019, 53(4s), s596-s606.
[http://dx.doi.org/10.5530/ijper.53.4s.155]
[70]
Deogade, U.M.; Deshmukh, V.N.; Sakarkar, D.M. Natural Gums and Mucilage’s in NDDS: Applications and recent approaches. Int. J. Pharm. Tech. Res., 2012, 4(2), 799-814.
[71]
Interpenetrating polymer networks: processing, properties and applications. In: Mathew, Aji. P, Eds.; Visakh, P.M.; Thomas, S.; Chandra, A.K.; Mathew, Aji. P, Eds.; Advances in Elastomers I; Springer: Berlin, Heidelberg, 2013; Vol. 11, pp. 283-301.
[http://dx.doi.org/10.1007/978-3-642-20925-3_10]
[72]
Veeren, A.; Bhaw-Luximon, A.; Jhurry, D. Polyvinylpyrrolidone–Polycaprolactone block copolymer micelles as nanocarriers of Anti-TB Drugs. Eur. Polym. J., 2013, 49(10), 3034-3045.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.06.020]
[73]
Truong, D-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/8178294]
[74]
Gungor, S.; Erdal, M.S.; Ozsoy, Y. Plasticizers in transdermal drug delivery systems.In: Recent Advances in Plasticizers; Luqman, M., Ed.; InTech, 2012.
[75]
Gal, A.; Nussinovitch, A. Plasticizers in the manufacture of novel skin-bioadhesive patches. Int. J. Pharm., 2009, 370(1-2), 103-109.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.015] [PMID: 19073242]
[76]
Rajabalaya, R.; David, S.; Ghosal, K.; Das, S.; Khanam, J.; Arunabha, N. Design and in vitro evaluation of chlorpheniramine maleate from different eudragit based matrix patches: effect of platicizer and chemical enhancers. Ars Pharm., 2009, 50(4), 177-194.
[77]
Wypych, G. Handbook of plasticizers; ChemTec Publishing: Ontario, Canada, 2004.
[78]
Sethi, B.; Mazumder, R. Comparative evaluation of selected polymers and plasticizer on transdermal drug delivery system. Int. J. Appl. Pharm., 2018, 10(1), 67-73.
[http://dx.doi.org/10.22159/ijap.2018v10i1.21960]
[79]
Modi, C. Effect of components (polymer, plasticizer and solvent) as a variable in fabrication of diclofenac transdermal patch. J. Pharm. Bioallied Sci., 2012, 4(Suppl. 1), S57-S59.
[http://dx.doi.org/10.4103/0975-7406.94129] [PMID: 23066207]
[80]
Cilurzo, F.; Gennari, C.G.M.; Minghetti, P. Adhesive properties: A critical issue in transdermal patch development. Expert Opin. Drug Deliv., 2012, 9(1), 33-45.
[http://dx.doi.org/10.1517/17425247.2012.637107] [PMID: 22171789]
[81]
Guo, R.; Du, X.; Zhang, R.; Deng, L.; Dong, A.; Zhang, J. Bioadhesive film formed from a novel organic-inorganic hybrid gel for trans-dermal drug delivery system. Eur. J. Pharm. Biopharm., 2011, 79(3), 574-583.
[http://dx.doi.org/10.1016/j.ejpb.2011.06.006] [PMID: 21723945]
[82]
Lobo, S.; Sachdeva, S.; Goswami, T. Role of pressure-sensitive adhesives in transdermal drug delivery systems. Ther. Deliv., 2016, 7(1), 33-48.
[http://dx.doi.org/10.4155/tde.15.87] [PMID: 26652621]
[83]
Cherukuri, S.; Batchu, U.R.; Mandava, K.; Cherukuri, V.; Ganapuram, K.R. Formulation and evaluation of transdermal drug delivery of topiramate. Int. J. Pharm. Investig., 2017, 7(1), 10-17.
[http://dx.doi.org/10.4103/jphi.JPHI_35_16] [PMID: 28405574]
[84]
De Mohac, L.M.; Caruana, R.; Cavallaro, G.; Giammona, G.; Licciardi, M. Spray-drying, solvent-casting and freeze-drying techniques: A comparative study on their suitability for the enhancement of drug dissolution rates. Pharm. Res., 2020, 37(3), 57.
[http://dx.doi.org/10.1007/s11095-020-2778-1] [PMID: 32076880]
[85]
Trivedi, D.; Goyal, A. Formulation and evaluation of transdermal patches containing dexketoprofen trometamol. Int. J. Pharm. Chem. Anal., 2020, 7(2), 87-97.
[http://dx.doi.org/10.18231/j.ijpca.2020.014]
[86]
Shelke, P.S. Formulation and in–vitro evaluation of transdermal patches of anti–arthritic ayurvedic medicinal plants. Biosci. Biotechnol. Res. Commun., 2020, 13(2), 803-808.
[http://dx.doi.org/10.21786/bbrc/13.2/63]
[87]
Singh, A.; Bali, A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J. Anal. Sci. Technol., 2016, 7(1), 25.
[http://dx.doi.org/10.1186/s40543-016-0105-6]
[88]
Gaikwad, D.; Jadhav, N. Terminalia arjuna transdermal matrix formulation containing different polymer components. Asian J. Pharm. Clin. Res., 2019, 12(6), 266-270.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i6.32643]
[89]
Lee, Y.; Kim, K.; Kim, M.; Choi, D.H.; Jeong, S.H. Orally disintegrating films focusing on formulation, manufacturing process, and char-acterization. J. Pharm. Investig., 2017, 47(3), 183-201.
[http://dx.doi.org/10.1007/s40005-017-0311-2]
[90]
Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech, 2016, 17(1), 20-42.
[http://dx.doi.org/10.1208/s12249-015-0360-7] [PMID: 26159653]
[91]
De Brabander, C.; Van Den Mooter, G.; Vervaet, C.; Remon, J.P. Characterization of ibuprofen as a nontraditional plasticizer of ethyl cel-lulose. J. Pharm. Sci., 2002, 91(7), 1678-1685.
[http://dx.doi.org/10.1002/jps.10159] [PMID: 12115829]
[92]
Qi, S.; Gryczke, A.; Belton, P.; Craig, D.Q.M. Characterisation of solid dispersions of paracetamol and EUDRAGIT E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int. J. Pharm., 2008, 354(1-2), 158-167.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.048] [PMID: 18242020]
[93]
Nair, A.; Varma, R.; Gourishetti, K.; Bhat, K.; Dengale, S. Influence of preparation methods on physicochemical and pharmacokinetic properties of Co-Amorphous formulations: The case of Co-Amorphous Atorvastatin: Naringin. J. Pharm. Innov., 2020, 15(3), 365-379.
[http://dx.doi.org/10.1007/s12247-019-09381-9]
[94]
Karki, S.; Kim, H.; Na, S-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci., 2016, 11(5), 559-574.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[95]
Dey, P.; Ghosh, A. Wafers: An innovative advancement of Oro-dispersible films. Int. J. Appl. Pharmaceut., 2016, 8(1), 1-7.
[http://dx.doi.org/10.22159/ijap.2016v8i1.10531]
[96]
Patel, D.; Chaudhary, S.A.; Parmar, B.; Bhura, N. Transdermal drug delivery system: A review. Pharma Innov., 2012, 1(4), 66-75.
[97]
Bongoni, R.N. Formulation and evaluation of physostigmine-transdermal patch. World J. Curr. Med. Pharm. Res., 2020, 2(2), 125-132.
[http://dx.doi.org/10.37022/WJCMPR.2020.2207]
[98]
Jan, S.U.; Gul, R.; Jalaludin, S. Formulation and evaluation of transdermal patches of pseudoephedrine Hcl; Int. J. Appl. Pharm, 2020, pp. 121-127.
[http://dx.doi.org/10.22159/ijap.2020v12i3.37080]
[99]
Sakhare, A.; Biyani, K.; Sudke, S. Design and evaluation of adhesive type transdermal patches of carvedilol. Res. J. Pharm. Technol., 2020, 13(10), 4941-4949.
[http://dx.doi.org/10.5958/0974-360X.2020.00867.7]
[100]
Panchagnula, R.; Stemmer, K.; Ritschel, W.A. Animal models for transdermal drug delivery. Methods Find. Exp. Clin. Pharmacol., 1997, 19(5), 335-341.
[PMID: 9379782]
[101]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[102]
Pandey, H.; Rani, R.; Agarwal, V. Liposome and their applications in cancer therapy. Braz. Arch. Biol. Technol., 2016, 59, e16150477.
[http://dx.doi.org/10.1590/1678-4324-2016150477]
[103]
Kalaydina, R-V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug re-lease in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[104]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[105]
Dianzani, C.; Zara, G.P.; Maina, G.; Pettazzoni, P.; Pizzimenti, S.; Rossi, F.; Gigliotti, C.L.; Ciamporcero, E.S.; Daga, M.; Barrera, G. Drug delivery nanoparticles in skin cancers. BioMed Res. Int., 2014, 2014, 895986.
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[106]
Maji, R.; Dey, N.S.; Satapathy, B.S.; Mukherjee, B.; Mondal, S. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int. J. Nanomedicine, 2014, 9(1), 3107-3118.
[http://dx.doi.org/10.2147/IJN.S63535] [PMID: 25028549]
[107]
Sudhakar, K.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.V.; Azad, A.K.; Swain, S.S.; Sekar, M.; Karupiah, S.; Porwal, O.; Sahoo, A.; Meenakshi, D.U.; Sharma, V.K.; Jain, S.; Charyulu, R.N.; Fuloria, N.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials (Basel), 2021, 11(10), 2557.
[http://dx.doi.org/10.3390/nano11102557] [PMID: 34685005]
[108]
Perche, F.; Torchilin, V.P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J. Drug Deliv., 2013, 2013, 705265.
[http://dx.doi.org/10.1155/2013/705265] [PMID: 23533772]
[109]
Lin, Y-L.; Chen, C-H.; Wu, H-Y.; Tsai, N-M.; Jian, T-Y.; Chang, Y-C.; Lin, C-H.; Wu, C-H.; Hsu, F-T.; Leung, T.K.; Liao, K.W. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnology, 2016, 14(11), 11.
[http://dx.doi.org/10.1186/s12951-016-0163-3] [PMID: 26892504]
[110]
Layek, B.; Mukherjee, B. Tamoxifen citrate encapsulated sustained release liposomes: Preparation and evaluation of physicochemical properties. Sci. Pharm., 2010, 78(3), 507-515.
[http://dx.doi.org/10.3797/scipharm.0911-11] [PMID: 21179362]
[111]
Raviraj, V.; Pham, B.T.T.; Kim, B.J.; Pham, N.T.H.; Kok, L.F.; Painter, N.; Delic, N.C.; Jones, S.K.; Hawkett, B.S.; Lyons, J.G. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using Superparamagnetic Iron Oxide nanoparticles. Cancer Nanotechnol., 2021, 12(1), 6.
[http://dx.doi.org/10.1186/s12645-021-00079-7]
[112]
Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide mag-netic based nanocarrier. J. Biomed. Mater. Res. A, 2019, 107(11), 2492-2500.
[http://dx.doi.org/10.1002/jbm.a.36755] [PMID: 31298774]
[113]
Sabir, F.; Qindeel, M.; Rehman, A.U.; Ahmad, N.M.; Khan, G.M.; Csoka, I.; Ahmed, N. An efficient approach for development and opti-misation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery. J. Microencapsul., 2021, 38(4), 233-248.
[http://dx.doi.org/10.1080/02652048.2021.1899321] [PMID: 33689550]
[114]
Hashem, F.M.; Nasr, M.; Khairy, A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm. Dev. Technol., 2014, 19(7), 824-832.
[http://dx.doi.org/10.3109/10837450.2013.836218] [PMID: 24032414]
[115]
Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S.; Suresh, S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol., 2016, 21(5), 554-562.
[http://dx.doi.org/10.3109/10837450.2015.1026605] [PMID: 26024238]
[116]
Soni, H.; Sharma, S. Current update on nanoemulsion: A Review. Sch. Int. J. Anat. Physiol., 2021, 4(1), 6-13.
[117]
Monteagudo, E.; Gándola, Y.; González, L.; Bregni, C.; Carlucci, A.M. Development, characterization, and in vitro evaluation of tamoxifen microemulsions. J. Drug Deliv., 2012, 2012, 236713.
[http://dx.doi.org/10.1155/2012/236713] [PMID: 22272375]
[118]
Thakur, R.S.; Agrawal, R. Application of nanotechnology in pharmaceutical formulation design and development. Curr. Drug Ther., 2015, 10(1), 20-34.
[http://dx.doi.org/10.2174/157488551001150825095729]
[119]
Akhtar, N.; Pathak, K. Feasibility assessment of transdermal drug delivery systems for treatment of Parkinson’s disease. Ann. Pharmacol. Pharm., 2017, 2(17), 1-4.
[120]
Shah, S.M.; Ashtikar, M.; Jain, A.S.; Makhija, D.T.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Jagtap, A.A.; Nagarsenker, M.S.; Fahr, A. Leci-Plex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm., 2015, 490(1-2), 391-403.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.042] [PMID: 26002568]
[121]
Sadarani, B.; Majumdar, A.; Paradkar, S.; Mathur, A.; Sachdev, S.; Mohanty, B.; Chaudhari, P. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomed. Pharmacother., 2019, 114, 108770.
[http://dx.doi.org/10.1016/j.biopha.2019.108770] [PMID: 30913494]
[122]
Abdelbary, A.A.; AbouGhaly, M.H.H. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box-Behnken design, in vitro evaluation and in vivo skin deposition study. Int. J. Pharm., 2015, 485(1-2), 235-243.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.020] [PMID: 25773359]
[123]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanopar-ticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(6), 886-894.
[http://dx.doi.org/10.1080/03639045.2017.1417422] [PMID: 29280388]
[124]
Ciro, Y.; Rojas, J.; Yarce, C.J.; Salamanca, C.H. Production and characterization of glutathione-chitosan conjugate films as systems for localized release of Methotrexate. Polymers (Basel), 2019, 11(12), 2032.
[http://dx.doi.org/10.3390/polym11122032] [PMID: 31817917]
[125]
Jin, B-Z.; Dong, X-Q.; Xu, X.; Zhang, F-H. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol. Lett., 2018, 15(2), 2541-2549.
[http://dx.doi.org/10.3892/ol.2017.7613] [PMID: 29434971]
[126]
Shaker, D.S.; Shaker, M.A.; Klingner, A.; Hanafy, M.S. In situ thermosensitive tamoxifen citrate loaded hydrogels: an effective tool in breast cancer loco-regional therapy. J. Drug Deliv. Sci. Technol., 2016, 35, 155-164.
[http://dx.doi.org/10.1016/j.jddst.2016.05.007]
[127]
Bhatia, A.; Singh, B.; Raza, K.; Shukla, A.; Amarji, B.; Katare, O.P. Tamoxifen-loaded novel liposomal formulations: evaluation of anti-cancer activity on DMBA-TPA induced mouse skin carcinogenesis. J. Drug Target., 2012, 20(6), 544-550.
[http://dx.doi.org/10.3109/1061186X.2012.694887] [PMID: 22643315]
[128]
Atlan, M.; Neman, J. Targeted transdermal delivery of curcumin for breast cancer prevention. Int. J. Environ. Res. Public Health, 2019, 16(24), 4949.
[http://dx.doi.org/10.3390/ijerph16244949] [PMID: 31817597]
[129]
Adhyapak, A.; Desai, B. Effect of Tamoxifen-loaded transdermal patch on physical and biochemical parameters in Dmba-induced breast cancer. Indian J. Health Sci. Biomed. Res. KLEU, 2020, 13(3), 230-234.
[http://dx.doi.org/10.4103/kleuhsj.kleuhsj_38_20]
[130]
Lee, O.; Ivancic, D.; Allu, S.; Shidfar, A.; Kenney, K.; Helenowski, I.; Sullivan, M.E.; Muzzio, M.; Scholtens, D.; Chatterton, R.T., Jr; Bethke, K.P.; Hansen, N.M.; Khan, S.A. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: Preclinical and clinical evaluation. Cancer Chemother. Pharmacol., 2015, 76(6), 1235-1246.
[http://dx.doi.org/10.1007/s00280-015-2848-y] [PMID: 26560487]
[131]
Gupta, M.; Sharma, V. Targeted drug delivery system: A review. Res. J. Chem. Sci., 2011, 1(2), 135-138.
[132]
Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Cur-rent trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791.
[http://dx.doi.org/10.1007/s13346-021-00909-6] [PMID: 33474709]
[133]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[134]
Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev., 2005, 57(11), 1666-1691.
[http://dx.doi.org/10.1016/j.addr.2005.07.003] [PMID: 16183164]
[135]
Chakraborty, P.; Dey, S.; Parcha, V.; Bhattacharya, S.S.; Ghosh, A. Design expert supported mathematical optimization and predictability study of buccoadhesive pharmaceutical wafers of Loratadine. BioMed Res. Int., 2013, 2013, 197398.
[http://dx.doi.org/10.1155/2013/197398] [PMID: 23781498]
[136]
Verma, N.; Chattopadhyay, P. Preparation of mucoadhesive patches for buccal administration of metoprolol succinate: In vitro and in vivo drug release and bioadhesion. Trop. J. Pharm. Res., 2012, 11(1), 9-17.
[http://dx.doi.org/10.4314/tjpr.v11i1.2]
[137]
Chandak, A.R.; Prasad Verma, P.R. Eudragit-based transdermal delivery system of pentazocine: Physico-chemical, in vitro and in vivo evaluations. Pharm. Dev. Technol., 2010, 15(3), 296-304.
[http://dx.doi.org/10.3109/10837450903188501] [PMID: 22716470]
[138]
Azzaoui, K.; Mejdoubi, E.; Lamhamdi, A.; Zaoui, S.; Berrabah, M.; Elidrissi, A.; Hammouti, B.; Fouda, M.M.G.; Al-Deyab, S.S. Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr. Polym., 2015, 115, 170-176.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.089] [PMID: 25439882]
[139]
Ahmed, K.S.; Shan, X.; Mao, J.; Qiu, L.; Chen, J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecox-ib co-loaded liposomes for enhancing the anticancer effect. Mater. Sci. Eng. C, 2019, 99, 1448-1458.
[http://dx.doi.org/10.1016/j.msec.2019.02.095] [PMID: 30889679]
[140]
Fathima, S.A.; Begum, S.; Fatima, S.S. Transdermal drug delivery system. Int. J. Pharm. Clin. Res., 2017, 9(1), 8261.
[http://dx.doi.org/10.25258/ijpcr.v9i1.8261]
[141]
Sakalle, P.; Dwivedi, S.; Dwivedi, A. Design, evaluation, parameters and marketed products of transdermal patches: A review. J. Pharm. Res., 2010, 3(2), 235-240.
[142]
Keleb, E.; Sharma, R.K.; Mosa, E.B.; Aljahwi, A-A.Z. Transdermal drug delivery system-design and evaluation. Int. J. Adv. Pharm. Sci., 2010, 1(3), 162-171.
[143]
Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov., 2004, 3(2), 115-124.
[http://dx.doi.org/10.1038/nrd1304] [PMID: 15040576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy