[2]
Huo, S.; Li, H.; Boersma, A.J.; Herrmann, A. DNA nanotechnology
enters cell membranes. In: Advanced Science; John Wiley and
Sons Inc., 2019, 6, pp. 1900043.
[5]
Stepanenko, A.A.; Heng, H.H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat. Res. Rev. Mutat. Res., 2017, 773, 91-103.
[7]
Nikyar, A.; Bolhassani, A.; Rouhollah, F.; Heshmati, M. Construction of a prokaryotic expression vector harboring two HIV-1 accessory genes. Med. Lab. J., 2021, 15(2), 11-17.
[8]
Rostami, B.; Irani, S.; Bolhassani, A.; Cohan, R.A. Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life, 2019, 71, 1619-1633.
[9]
Kristensen, M.; Nielsen, H.M. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. Tissue Barriers, 2016, 4(2), e1178369.
[12]
Elegheert, J.; Behiels, E.; Scott, S.; Woolley, R.E.; Griffiths, S.C. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc., 2018, 13, 2991-3017.
[14]
Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis., 2017, 4, 43-63.
[16]
Lundstrom, K. Viral vectors for COVID-19 vaccine development. Viruses, 2021, 13, 317.
[22]
Schneckenburger, H. Laser-assisted optoporation of cells and tissues – A mini-review. Biomed. Opt. Express, 2019, 10(6), 2883.
[24]
Fajrial, A.K.; He, Q.Q.; Wirusanti, N.I.; Slansky, J.E.; Ding, X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics, 2020, 10, 5532-5549.
[31]
Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y. A review on electroporation-based intracellular delivery. Molecules, 2018, 23(11), 3044.
[33]
Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T. Miklavčič, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng., 2014, 16, 295-320.
[35]
Geboers, B.; Scheffer, H.J.; Graybill, P.M.; Ruarus, A.H.; Nieuwenhuizen, S.; Puijk, R.S.; van den Tol, P.M.; Davalos, R.V.; Rubinsky, B.; de Gruij, T.D. Miklavčič, D.; Meijerink, M.R.; High-voltage electrical pulses in oncology: Irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology, 2020, 295(2), 254-272.
[37]
Wells, D.J. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol. Toxicol., 2010, 26(1), 21-28.
[43]
Pavlin, M.; Kandušer, M. New insights into the mechanisms of gene electrotransfer - experimental and theoretical analysis. Sci. Rep., 2015, 5(1), 1-11.
[44]
Shirley, S.A.; Heller, R.; Heller, L.C. Gene ther cancer transl approaches
from preclin stud to clin implement. In: Electroporation
Gene Therapy, 2013; pp. 93-106.
[45]
Emerson, M.; Renwick, L.; Tate, S.; Rhind, S.; Milne, E. Transfection efficiency and toxicity following delivery of naked plasmid DNA and cationic lipid-DNA complexes to ovine lung segments. Mol. Ther., 2003, 8(4), 646-653.
[55]
Ohmura, N.; Kawasaki, K.; Satoh, T.; Hata, Y. In vivo electroporation to physiologically identified deep brain regions in postnatal mammals. Brain Struct. Funct., 2014, 220(3), 1307-1316.
[57]
de Melo, J.; Blackshaw, S. In vivo electroporation of developing mouse retina. J. Vis. Exp., 2011, (52), e2847.
[66]
Lin, X. Barravecchia, M.; Kothari, P.; Young, J.L.; Dean, D.A. β1-Na+,K+-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther., 2016, 23(6), 489-499.
[67]
Barnett, R.C.; Lin, X.; Barravecchia, M.; Norman, R.A.; Bentley,
K.L. de M.; Fazal, F. Featured article: electroporation-mediated
gene delivery of surfactant protein B (SP-B) restores expression
and improves survival in mouse model of SP-B deficiency. 2017,
242(13), 1345-1354.
[68]
Katayama, R.; Kimura, T.; Tomita, T.; Matsuno, H.; Morita, Y.; Matsushita, I.; Gejo, R. Efficient gene delivery to articular cartilage using electroporation. Mod. Rheumatol., 2003, 13(3), 243-249.
[72]
He, Z.; Leong, D.J.; Zhuo, Z.; Majeska, R.J.; Cardoso, L.; Spray, D.C.; Goldring, M.B.; Cobelli, N.J.; Sun, H.B. Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes. Osteoarthritis Cartilage, 2016, 24(5), 892-901.
[77]
Taylor, J.; Babbs, C.F.; Alzghoul, M.B.; Olsen, A.; Latour, M.; Pond, A.L. Optimization of ectopic gene expression in skeletal muscle through DNA transfer by electroporation. BMC Biotechnol., 2004, 4(1), 1-8.
[79]
Mennuni, C.; Calvaruso, F.; Zampaglione, I.; Rizzuto, G.; Rinaudo, D.; Dammassa, E. Hyaluronidase increases electrogene transfer efficiency in skeletal muscle. Hum. Gene Ther., 2004, 13(3), 355-365.
[86]
Sutter, M.A.; Cremona, T.P.; Nita, I.; Cavarra, E.; Lungarella, G.; Lewis, E.C. In vivo electroporation-mediated, intrahepatic alpha1 antitrypsin gene transfer reduces pulmonary emphysema in pallid mice. Pharm., 2020, 12(9), 793.
[89]
Calvet, C.Y.; André, F.M.; Mir, L.M. Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo: Enhanced gene transfer and adjuvant activity. OncoImmunology, 2014, 3(4), e28540.
[93]
Burkart, C.; Mukhopadhyay, A.; Shirley, S.A.; Connolly, R.J.; Wright, J.H.; Bahrami, A. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther., 2018, 25(2), 93-103.