Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Bacopa monnieri for Disorders Affecting Brain: Current Perspectives

Author(s): Adithya Vinod, Sankaran Sathianarayanan, Anju Elizabath Babu, Prashant Sadanandan, Athira Kaipuzha Venu* and Baskar Venkidasamy*

Volume 22, Issue 23, 2022

Published on: 24 February, 2022

Page: [1909 - 1929] Pages: 21

DOI: 10.2174/1568026622666220119111538

Price: $65

Abstract

Bacopa monnieri (BM) is of immense therapeutic potential in today’s world. This review is aimed to project the beneficial role of BM in disorders affecting the brain, including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, and depression. The active constituents and metabolites responsible for the effects of BM could be bacoside A and B, bacopaside I and II, bacopasaponin C, betulinic acid, asiatic acid, loliolide, ebelin lactone, and quercetin. The mechanistic role of BM in brain disorders might be related to its ability to modulate neurotransmission, neurogenesis, neuronal/ glial plasticity, intracellular signaling, epigenetics, cerebral blood flow, energy metabolism, protein folding, endoplasmic reticulum stress, neuroendocrine system, oxidative stress, inflammation, and apoptosis. We have also discussed CDRI-08, clinical trials, safety, emerging formulation technologies, as well as BM combinations, and dietary supplements. To propel the clinical translation of BM in disorders affecting the brain, strategies to improve brain delivery via novel formulations and integration of the preclinical findings into large and well-defined clinical trials, in appropriate age groups and sex, specifically in the patient population against existing medications as well as placebo, are essentially required.

Keywords: Bacopa monnieri, Bacoside, Brain delivery, Brain disorders, Clinical trial, Neuroprotective.

Graphical Abstract
[1]
Domínguez, A.; Álvarez, A.; Hilario, E.; Suarez-Merino, B.; Goñi-de-Cerio, F. Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci. Discov., 2013, 1(3), 1-11.
[http://dx.doi.org/10.7243/2052-6946-1-3]
[2]
Menken, M.; Munsat, T.L.; Toole, J.F. The global burden of disease study: Implications for neurology. Arch. Neurol., 2000, 57(3), 418-420.
[http://dx.doi.org/10.1001/archneur.57.3.418] [PMID: 10714674]
[3]
Kompoliti, K.; Doumbe, J.; Mapoure, Y.N.; Nyinyikua, T.; Ouyang, B.; Shah, H.; Calvo, S.; Fernandez-Sierra, A.; Delgado, M.E.C. Mortality and morbidity among hospitalized adult patients with neurological diseases in Cameroon. J. Neurol. Sci., 2017, 381, 165-168.
[http://dx.doi.org/10.1016/j.jns.2017.08.3245] [PMID: 28991673]
[4]
Antony, T.; Kanmani, J.; Anjana, A. Study to Assess the seizure severity, depression and Quality of life among patients with epilepsy at AIMS, Kochi. Indian J. Public Health Res. Dev., 2018, 9(4), 25-29.
[http://dx.doi.org/10.5958/0976-5506.2018.00250.4]
[5]
Athira, K.V.; Bandopadhyay, S.; Samudrala, P.K.; Naidu, V.G.M.; Lahkar, M.; Chakravarty, S. An overview of the heterogeneity of major depressive disorder: Current knowledge and future prospective. Curr. Neuropharmacol., 2020, 18(3), 168-187.
[http://dx.doi.org/10.2174/1570159X17666191001142934] [PMID: 31573890]
[6]
Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol., 2020, 19(3), 255-265.
[http://dx.doi.org/10.1016/S1474-4422(19)30411-9] [PMID: 31813850]
[7]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[8]
Athira, K.V.; Sadanandan, P.; Chakravarty, S. Repurposing vorinostat for the treatment of disorders affecting brain. Neuromolecular Med., 2021, 23(4), 449-465.
[http://dx.doi.org/10.1007/s12017-021-08660-4] [PMID: 33948878]
[9]
Silva, A.R.; Grosso, C.; Delerue-Matos, C.; Rocha, J.M. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur. J. Med. Chem., 2019, 174, 87-115.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.028] [PMID: 31029947]
[10]
Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Tumer, T.B.; Moreira, A.C.; Sharopov, F.; Martorell, M.; Martins, N.; Cho, W.C.; Calina, D.; Sharifi-Rad, J. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J. Clin. Med., 2020, 9(4), 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[11]
Mohd Sairazi, N.S.; Sirajudeen, K. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement.Alternat. Med, 2020, 2020
[http://dx.doi.org/10.1155/2020/6565396]
[12]
Wąsik, A.; Antkiewicz-Michaluk, L. The mechanism of neuroprotective action of natural compounds. Pharmacol. Rep., 2017, 69(5), 851-860.
[http://dx.doi.org/10.1016/j.pharep.2017.03.018] [PMID: 28623709]
[13]
Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer’s disease. Pharmaceuticals (Basel), 2021, 14(2), 86.
[http://dx.doi.org/10.3390/ph14020086] [PMID: 33498927]
[14]
Ahsan, A.; Liu, M.; Zheng, Y.; Yan, W.; Pan, L.; Li, Y.; Ma, S.; Zhang, X.; Cao, M.; Wu, Z.; Hu, W.; Chen, Z.; Zhang, X. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm. Sin. B, 2021, 11(7), 1708-1720.
[http://dx.doi.org/10.1016/j.apsb.2020.10.018] [PMID: 34386317]
[15]
Cichon, N.; Saluk-Bijak, J.; Miller, E.; Gorniak, L.; Redlicka, J.; Niwald, M.; Bijak, M. The role of supplementation with natural compounds in post-stroke patients. Int. J. Mol. Sci., 2021, 22(15), 7893.
[http://dx.doi.org/10.3390/ijms22157893] [PMID: 34360658]
[16]
Chen, H-S.; Qi, S-H.; Shen, J-G. One-compound-multi-target: combination prospect of natural compounds with thrombolytic therapy in acute ischemic stroke. Curr. Neuropharmacol., 2017, 15(1), 134-156.
[http://dx.doi.org/10.2174/1570159X14666160620102055] [PMID: 27334020]
[17]
Nabavi, S.M.; Daglia, M.; Braidy, N.; Nabavi, S.F. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr. Neurosci., 2017, 20(3), 180-194.
[http://dx.doi.org/10.1080/1028415X.2015.1103461] [PMID: 26613119]
[18]
Vasileva, L.V.; Ivanovska, M.V.; Murdjeva, M.A.; Saracheva, K.E.; Georgiev, M.I. Immunoregulatory natural compounds in stress-induced depression: An alternative or an adjunct to conventional antidepressant therapy? Food Chem. Toxicol., 2019, 127, 81-88.
[http://dx.doi.org/10.1016/j.fct.2019.03.004] [PMID: 30858105]
[19]
Fedotova, J.; Kubatka, P.; Büsselberg, D.; Shleikin, A.G.; Caprnda, M.; Dragasek, J.; Rodrigo, L.; Pohanka, M.; Gasparova, I.; Nosal, V.; Opatrilova, R.; Qaradakhi, T.; Zulli, A.; Kruzliak, P. Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts. Biomed. Pharmacother., 2017, 95, 437-446.
[http://dx.doi.org/10.1016/j.biopha.2017.08.107] [PMID: 28863384]
[20]
Küpeli Akkol, E.; Tatlı Çankaya, I.; Şeker Karatoprak, G.; Carpar, E.; Sobarzo-Sánchez, E.; Capasso, R. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front. Pharmacol., 2021, 12, 669638.
[http://dx.doi.org/10.3389/fphar.2021.669638] [PMID: 34054540]
[21]
Kulkarni, R.; Girish, K.J.; Kumar, A. Nootropic herbs (Medhya rasayana) in Ayurveda: An update. Pharmacogn. Rev., 2012, 6(12), 147-153.
[http://dx.doi.org/10.4103/0973-7847.99949] [PMID: 23055641]
[22]
Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann. Neurosci., 2017, 24(2), 111-122.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[23]
Sukumaran, N.P.; Amalraj, A.; Gopi, S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst - A review on its mechanistic aspects. Complement. Ther. Med., 2019, 44, 68-82.
[http://dx.doi.org/10.1016/j.ctim.2019.03.016] [PMID: 31126578]
[24]
Nemetchek, M.D.; Stierle, A.A.; Stierle, D.B.; Lurie, D.I. The ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J. Ethnopharmacol., 2017, 197, 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[25]
Channa, S.; Dar, A.; Anjum, S.; Yaqoob, M. Atta-Ur-Rahman. Anti-inflammatory activity of Bacopa monniera in rodents. J. Ethnopharmacol., 2006, 104(1-2), 286-289.
[http://dx.doi.org/10.1016/j.jep.2005.10.009] [PMID: 16343831]
[26]
Mathur, D.; Goyal, K.; Koul, V.; Anand, A. The molecular links of re-emerging therapy: A review of evidence of Brahmi (Bacopa monniera). Front. Pharmacol., 2016, 7, 44.
[http://dx.doi.org/10.3389/fphar.2016.00044] [PMID: 26973531]
[27]
Chatterji, N.; Rastogi, R.; Dhar, M. Chemical examination of Bacopa monniera Wettst.: Part I-Isolation of chemical constituents. Indian J. Chem., 1963, 1, 212-215.
[28]
Srivastava, P.; Raut, H.N.; Puntambekar, H.M.; Desai, A.C. Stability studies of crude plant material of Bacopa monnieri and quantitative determination of bacopaside I and bacoside A by HPLC. Phytochem. Anal., 2012, 23(5), 502-507.
[http://dx.doi.org/10.1002/pca.2347] [PMID: 22259163]
[29]
Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: The possible contribution of bacopaside I and underlying mechanism. J. Ethnopharmacol., 2015, 164, 37-45.
[http://dx.doi.org/10.1016/j.jep.2015.01.041] [PMID: 25660331]
[30]
Jasim, B.; Daya, P.; Sreelakshmi, K.; Sachidanandan, P.; Aswani, R.; Jyothis, M.; Radhakrishnan, E. Bacopaside N1 biosynthetic potential of endophytic Aspergillus sp. BmF 16 isolated from Bacopa monnieri. 3 Biotech, 2017, 7(3), 210.
[31]
Chatterji, N.; Rastogi, R.; Dhar, M. Chemical examination of Bacopa monniera Wettst. Part II. The constitution of bacoside A. Indian J. Chem., 1965, 3, 24-29.
[32]
Basu, N. Chemical examination of Bacopa monniera, Wettst: Part III Bacoside B. Indian J. Chem., 1967, 5, 84-86.
[33]
Deb, D.D.; Kapoor, P.; Dighe, R.P.; Padmaja, R.; Anand, M.S.; D’Souza, P.; Deepak, M.; Murali, B.; Agarwal, A. In vitro safety evaluation and anticlastogenic effect of BacoMind on human lymphocytes. Biomed. Environ. Sci., 2008, 21(1), 7-23.
[http://dx.doi.org/10.1016/S0895-3988(08)60002-1] [PMID: 18478974]
[34]
Mohana, M.; Padma, P.R. Free radicals scavenging activity of the Bacoside fraction from Bascop monnieri. Int. Curr. Pharmaceut. Res., 2016, 8, 61-64.
[35]
Sekhar, V.C.; Viswanathan, G.; Baby, S. Insights into the molecular aspects of neuroprotective bacoside A and bacopaside I. Curr. Neuropharmacol., 2019, 17(5), 438-446.
[http://dx.doi.org/10.2174/1570159X16666180419123022] [PMID: 29676230]
[36]
Madhu, K.; Prakash, T.; Maya, S. Bacoside-A inhibits inflammatory cytokines and chemokine in experimental autoimmune encephalomyelitis. Biomed. Pharmacother., 2019, 109, 1339-1345.
[http://dx.doi.org/10.1016/j.biopha.2018.10.188] [PMID: 30551384]
[37]
Brimson, J.M.; Prasanth, M.I.; Plaingam, W.; Tencomnao, T. Bacopa monnieri (L.) Wettst. extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med., 2019, 10(5), 460-470.
[http://dx.doi.org/10.1016/j.jtcme.2019.10.001] [PMID: 32953562]
[38]
Wetchateng, T.; Piyabhan, P. P-1326-Effects of Bacopa monnieri on VGLUT1 density in frontal cortex, striatum and hippocampus of schizophrenic rat model. Eur. Psychiatry, 2012, 27(S1), 1-1.
[http://dx.doi.org/10.1016/S0924-9338(12)75493-7]
[39]
Saha, S.; Mahapatra, K.K.; Mishra, S.R.; Mallick, S.; Negi, V.D.; Sarangi, I.; Patil, S.; Patra, S.K.; Bhutia, S.K. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in human astrocytes. Food Chem. Toxicol., 2020, 141, 111367.
[http://dx.doi.org/10.1016/j.fct.2020.111367] [PMID: 32335210]
[40]
Thomas, R.B.; Joy, S.; Ajayan, M.S.; Paulose, C.S. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell. Mol. Neurobiol., 2013, 33(8), 1065-1074.
[http://dx.doi.org/10.1007/s10571-013-9973-0] [PMID: 23975094]
[41]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[42]
Swathi, G.; Visweswari, G.; Rajendra, W. Evaluation of rotenone induced Parkinson’s disease on glutamate metabolism and protective strategies of Bacopa monnieri. Int. J. Plant Ani. Environ. Sci, 2013, 3, 62-67.
[43]
Rajan, K.E.; Preethi, J.; Singh, H.K. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid. Based Complement. Alternat. Med., 2015, 2015, 945217.
[44]
Rauf, K.; Subhan, F.; Sewell, R.D. A Bacoside containing Bacopa monnieri extract reduces both morphine hyperactivity plus the elevated striatal dopamine and serotonin turnover. Phytother. Res., 2012, 26(5), 758-763.
[http://dx.doi.org/10.1002/ptr.3631] [PMID: 22105846]
[45]
Channa, S.; Dar, A. Calcium antagonistic activity of Bacopa monniera in guinea-pig trachea. Indian J. Pharmacol., 2012, 44(4), 516-518.
[http://dx.doi.org/10.4103/0253-7613.99336] [PMID: 23087517]
[46]
Leung, H-W.; Foo, G.; Banumurthy, G.; Chai, X.; Ghosh, S.; Mitra-Ganguli, T.; VanDongen, A.M.J. The effect of Bacopa monnieri on gene expression levels in SH-SY5Y human neuroblastoma cells. PLoS One, 2017, 12(8), e0182984.
[http://dx.doi.org/10.1371/journal.pone.0182984] [PMID: 28832626]
[47]
Jeyasri, R.; Muthuramalingam, P.; Suba, V.; Ramesh, M.; Chen, J-T. Bacopa monnieri and their bioactive compounds inferred multi-target treatment strategy for neurological diseases: A cheminformatics and system pharmacology approach. Biomolecules, 2020, 10(4), 536.
[http://dx.doi.org/10.3390/biom10040536] [PMID: 32252235]
[48]
Ramasamy, S.; Chin, S.P.; Sukumaran, S.D.; Buckle, M.J.C.; Kiew, L.V.; Chung, L.Y. In silico and in vitro analysis of bacoside A aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS One, 2015, 10(5), e0126565.
[http://dx.doi.org/10.1371/journal.pone.0126565] [PMID: 25965066]
[49]
Dubey, T.; Chinnathambi, S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch. Biochem. Biophys., 2019, 676, 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[50]
Le, X.T.; Pham, H.T.N.; Do, P.T.; Fujiwara, H.; Tanaka, K.; Li, F.; Van Nguyen, T.; Nguyen, K.M.; Matsumoto, K. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: Possible involvement of glutamatergic and cholinergic systems. Neurochem. Res., 2013, 38(10), 2201-2215.
[http://dx.doi.org/10.1007/s11064-013-1129-6] [PMID: 23949198]
[51]
Khan, M.B.; Ahmad, M.; Ahmad, S.; Ishrat, T.; Vaibhav, K.; Khuwaja, G.; Islam, F. Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: Behavioral, biochemical, immunohistochemical and histopathological evidences. Metab. Brain Dis., 2015, 30(1), 115-127.
[http://dx.doi.org/10.1007/s11011-014-9593-5] [PMID: 25037167]
[52]
Kamkaew, N.; Norman Scholfield, C.; Ingkaninan, K.; Taepavarapruk, N.; Chootip, K. Bacopa monnieri increases cerebral blood flow in rat independent of blood pressure. Phytother. Res., 2013, 27(1), 135-138.
[http://dx.doi.org/10.1002/ptr.4685] [PMID: 22447676]
[53]
Kunte, K.B.; Kuna, Y. Neuroprotective effect of Bacopa monniera on memory deficits and ATPase system in Alzheimer’s disease (AD) induced mice. J. Sci. Innov. Res., 2013, 2(4), 719-735.
[54]
Dwivedi, S.; Nagarajan, R.; Hanif, K.; Siddiqui, H.H.; Nath, C.; Shukla, R. Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: Effect on Nrf2 pathway. Evid. Based Complement. Alternat. Med., 2013, 2013 Article ID 294501
[55]
Saraf, M.K.; Prabhakar, S.; Khanduja, K.L.; Anand, A. Bacopa monniera attenuates scopolamine-induced impairment of spatial memory in mice. Evid. Based Complement. Alternat. Med., 2011, 2011, 236186.
[56]
Peth-Nui, T.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Piyavhatkul, N.; Rangseekajee, P.; Ingkaninan, K.; Vittaya-areekul, S. Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid. Based Complement. Alternat. Med., 2012, 2012, 606424.
[57]
Malishev, R.; Shaham-Niv, S.; Nandi, S.; Kolusheva, S.; Gazit, E.; Jelinek, R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem. Neurosci., 2017, 8(4), 884-891.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[58]
Pham, H.T.N.; Tran, H.N.; Nguyen, P.T.; Le, X.T.; Nguyen, K.M.; Phan, S.V.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; Folk, W.R.; Yamaguchi, M.; Matsumoto, K. Bacopa monnieri (L.) Wettst. Extract improves memory performance via promotion of neurogenesis in the hippocampal dentate gyrus of adolescent mice. Int. J. Mol. Sci., 2020, 21(9), 3365.
[http://dx.doi.org/10.3390/ijms21093365] [PMID: 32397562]
[59]
Jadiya, P.; Khan, A.; Sammi, S.R.; Kaur, S.; Mir, S.S.; Nazir, A. Anti-Parkinsonian effects of Bacopa monnieri: Insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem. Biophys. Res. Commun., 2011, 413(4), 605-610.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.010] [PMID: 21925152]
[60]
Singh, B.; Pandey, S.; Verma, R.; Ansari, J.A.; Mahdi, A.A. Comparative evaluation of extract of Bacopa monnieri and Mucuna pruriens as neuroprotectant in MPTP model of Parkinson’s disease. Indian J. Exp. Biol., 2016, 54(11), 758-766.
[61]
Gunduluru, S.; Wudayagiri, R. Protective role of Bacopa Monnieri on induced Parkinson’s disease with particular reference to catecholamine system. Int. J. Pharm. Pharm., 2014, 6(7), 379-382.
[62]
Swathi, G.; Bhuvaneswar, C.; Rajendra, W. Alterations of cholinergic neurotransmission in rotenone induced Parkinson’s disease: Protective role of Bacopa monnieri. Int. J. Pharm. Biol. Sci., 2013, 3, 286-292.
[63]
Singh, B.; Pandey, S.; Rumman, M.; Mahdi, A.A. Neuroprotective effects of Bacopa monnieri in Parkinson’s disease model. Metab. Brain Dis., 2020, 35(3), 517-525.
[http://dx.doi.org/10.1007/s11011-019-00526-w] [PMID: 31834548]
[64]
Singh, B.; Mahdi, A.A.; Pandey, S. Bacopa monnieri promotor of anioxidant property in MPTP-induced Parkinson’s disease., 2014, 2(2), 1-7.
[65]
Nellore, J.; Pauline, C.; Amarnath, K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1, 2, 3, 6 tetrahydropyridine-induced experimental parkinsonism in zebrafish. J. Neurodegener. Dis, 2013, 2013
[66]
Giramkar, S.A.; Kulkarni, O.P.; Jagtap, S.D.; Kuvalekar, A.A.; Mukherjee, S.; Jagtap, R.R.; Wagh, A.R.; Bandawane, D.D.; Nipate, S.S. Anticonvulsant potential of commonly practiced formulations of Brahmi (Bacopa monnieri Linn.) in Wistar rats. J. Pharm. Res., 2013, 7(9), 787-791.
[http://dx.doi.org/10.1016/j.jopr.2013.09.008]
[67]
Mathew, J.; Soman, S.; Sadanandan, J.; Paulose, C.S. Decreased GABA receptor in the striatum and spatial recognition memory deficit in epileptic rats: Effect of Bacopa monnieri and bacoside-A. J. Ethnopharmacol., 2010, 130(2), 255-261.
[http://dx.doi.org/10.1016/j.jep.2010.04.043] [PMID: 20451596]
[68]
Krishnakumar, A.; Anju, T.R.; Abraham, P.M.; Paulose, C.S. Alteration in 5-HT2C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri. Neurochem. Res., 2015, 40(1), 216-225.
[http://dx.doi.org/10.1007/s11064-014-1472-2] [PMID: 25503823]
[69]
Mathew, J.; Gangadharan, G.; Kuruvilla, K.P.; Paulose, C.S. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: Effect of Bacopa monnieri. Neurochem. Res., 2011, 36(1), 7-16.
[http://dx.doi.org/10.1007/s11064-010-0253-9] [PMID: 20821261]
[70]
Mathew, J.; Peeyush Kumar, T.; Khan, R.S.; Paulose, C.S. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: Effect of Bacopa monnieri and bacoside A. Epilepsy Behav., 2010, 17(4), 441-447.
[http://dx.doi.org/10.1016/j.yebeh.2010.01.012] [PMID: 20153260]
[71]
Mathew, J.; Balakrishnan, S.; Antony, S.; Abraham, P.M.; Paulose, C.S. Decreased GABA receptor in the cerebral cortex of epileptic rats: Effect of Bacopa monnieri and Bacoside-A. J. Biomed. Sci., 2012, 19(1), 25.
[http://dx.doi.org/10.1186/1423-0127-19-25] [PMID: 22364254]
[72]
Kaushik, D.; Tripathi, A.; Tripathi, R.; Ganachari, M.; Khan, S.A. Anticonvulsant activity of Bacopa monniera in rodents. Braz. J. Pharm. Sci., 2009, 45(4), 643-649.
[http://dx.doi.org/10.1590/S1984-82502009000400006]
[73]
Paulose, C.S.; Chathu, F.; Khan, S.R.; Krishnakumar, A. Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: Glutamate receptor gene expression. Neurochem. Res., 2008, 33(9), 1663-1671.
[http://dx.doi.org/10.1007/s11064-007-9513-8] [PMID: 17940877]
[74]
Komali, E.; Venkataramaiah, C.; Rajendra, W. Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. J. Tradit. Complement. Med., 2020, 11(2), 137-143.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.011] [PMID: 33728274]
[75]
Mathew, J.; Paul, J.; Nandhu, M.S.; Paulose, C.S. Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral. Fitoterapia, 2010, 81(5), 315-322.
[http://dx.doi.org/10.1016/j.fitote.2009.11.005] [PMID: 19944749]
[76]
Saraf, M.K.; Prabhakar, S.; Anand, A. Neuroprotective effect of Bacopa monniera on ischemia induced brain injury. Pharmacol. Biochem. Behav., 2010, 97(2), 192-197.
[http://dx.doi.org/10.1016/j.pbb.2010.07.017] [PMID: 20678517]
[77]
Liu, X.; Yue, R.; Zhang, J.; Shan, L.; Wang, R.; Zhang, W. Neuroprotective effects of bacopaside I in ischemic brain injury. Restor. Neurol. Neurosci., 2013, 31(2), 109-123.
[http://dx.doi.org/10.3233/RNN-120228] [PMID: 23160060]
[78]
Ozlu, H.; Cakir Gundogdu, A.; Elmazoglu, Z.; Take Kaplanoglu, G.; Oktar, L.; Karasu, C. Bacopa monnieri protects the directly affected organ as well as distant organs against I/R injury by modulating anti-inflammatory and anti-nitrosative pathways in a rat model for infra-renal aortic occlusion. J. Invest. Surg., 2021, 34(9), 935-946.
[PMID: 32003261]
[79]
Sairam, K.; Dorababu, M.; Goel, R.K.; Bhattacharya, S.K. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine, 2002, 9(3), 207-211.
[http://dx.doi.org/10.1078/0944-7113-00116] [PMID: 12046860]
[80]
Hazra, S.; Kumar, S.; Saha, G.K.; Mondal, A.C. Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: Effects of phytochemical, Bacopa monnieri. Psychiatry Investig., 2017, 14(1), 74-80.
[http://dx.doi.org/10.4306/pi.2017.14.1.74] [PMID: 28096878]
[81]
Kumar, S.; Mondal, A.C. Neuroprotective, neurotrophic and anti-oxidative role of Bacopa monnieri on CUS induced model of depression in rat. Neurochem. Res., 2016, 41(11), 3083-3094.
[http://dx.doi.org/10.1007/s11064-016-2029-3] [PMID: 27506204]
[82]
Singh, H.K. Brain enhancing ingredients from Āyurvedic medicine: Quintessential example of Bacopa monniera, a narrative review. Nutrients, 2013, 5(2), 478-497.
[http://dx.doi.org/10.3390/nu5020478] [PMID: 23389306]
[83]
Pardridge, W.M. Blood-brain barrier biology and methodology. J. Neurovirol., 1999, 5(6), 556-569.
[http://dx.doi.org/10.3109/13550289909021285] [PMID: 10602397]
[84]
De, K.; Chandra, S.; Misra, M. Evaluation of the biological effect of brahmi (Bacopa monnieri Linn) extract on the biodistribution of technetium-99m radiopharmaceuticals. Life Sci. J., 2008, 5, 45-49.
[85]
Prisila Dulcy, C.; Singh, H.K.; Preethi, J.; Rajan, K.E. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat’s brain induced by D-galactose. J. Neurosci. Res., 2012, 90(10), 2053-2064.
[http://dx.doi.org/10.1002/jnr.23080] [PMID: 22715050]
[86]
Preethi, J.; Singh, H.K.; Charles, P.D.; Rajan, K.E. Participation of microRNA 124-CREB pathway: A parallel memory enhancing mechanism of standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res., 2012, 37(10), 2167-2177.
[http://dx.doi.org/10.1007/s11064-012-0840-z] [PMID: 22837048]
[87]
Konar, A.; Gautam, A.; Thakur, M. Bacopa monniera (CDRI-08) upregulates the expression of neuronal and glial plasticity markers in the brain of scopolamine induced amnesic mice. Evid. Based Complement. Alternat. Med, 2015, 2015
[88]
Rai, R.; Singh, H.K.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GluN2B in the brain of scopolamine-induced amnesic mice. Evid. Based Complement. Alternat. Med, 2015, 2015
[89]
Preethi, J.; Singh, H.K.; Venkataraman, J.S.; Rajan, K.E. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus. Cell. Mol. Neurobiol., 2014, 34(4), 577-589.
[http://dx.doi.org/10.1007/s10571-014-0042-0] [PMID: 24610280]
[90]
Singh, R.; Singh, L. Studies on the anti-anxiety effect of the medyha rasayana drug Brahmi (Bacopa monniera Wettst.). Res. Ayur. Siddha, 1980, 1, 133-148.
[91]
Sharma, R.; Chaturvedi, C.; Tewari, P. Efficacy of Bacopa monniera in revitalizing intellectual functions in children. J. Res. Educ. Indian Med., 1987, 1, 12.
[92]
Negi, K.; Singh, Y.; Kushwaha, K.; Rastogi, C.; Rathi, A.; Srivastava, J.; Asthana, O.; Gupta, R. Clinical evaluation of memory enhancing properties of memory plus in children with attention deficit hyperactivity disorder. Indian J. Psychiatry, 2000, 42(2), 4.
[93]
Kean, J.D.; Kaufman, J.; Lomas, J.; Goh, A.; White, D.; Simpson, D.; Scholey, A.; Singh, H.; Sarris, J.; Zangara, A.; Stough, C. A randomized controlled trial investigating the effects of a special extract of Bacopa monnieri (CDRI 08) on hyperactivity and inattention in male children and adolescents: BACHI study protocol (ANZCTRN12612000827831). Nutrients, 2015, 7(12), 9931-9945.
[http://dx.doi.org/10.3390/nu7125507] [PMID: 26633481]
[94]
Benson, S.; Downey, L.A.; Stough, C.; Wetherell, M.; Zangara, A.; Scholey, A. An acute, double-blind, placebo-controlled cross-over study of 320 mg and 640 mg doses of Bacopa monnieri (CDRI 08) on multitasking stress reactivity and mood. Phytother. Res., 2014, 28(4), 551-559.
[http://dx.doi.org/10.1002/ptr.5029] [PMID: 23788517]
[95]
Sathyanarayanan, V.; Thomas, T.; Einöther, S.J.; Dobriyal, R.; Joshi, M.K.; Krishnamachari, S. Brahmi for the better? New findings challenging cognition and anti-anxiety effects of Brahmi (Bacopa monniera) in healthy adults. Psychopharmacology (Berl.), 2013, 227(2), 299-306.
[http://dx.doi.org/10.1007/s00213-013-2978-z] [PMID: 23354535]
[96]
Kongkeaw, C.; Dilokthornsakul, P.; Thanarangsarit, P.; Limpeanchob, N.; Norman Scholfield, C. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. J. Ethnopharmacol., 2014, 151(1), 528-535.
[http://dx.doi.org/10.1016/j.jep.2013.11.008] [PMID: 24252493]
[97]
Stough, C.; Scholey, A.; Cropley, V.; Wesnes, K.; Zangara, A.; Pase, M.; Savage, K.; Nolidin, K.; Lomas, J.; Downey, L. Examining the cognitive effects of a special extract of Bacopa monniera (CDRI08: Keenmnd): A review of ten years of research at Swinburne University. J. Pharm. Pharm. Sci., 2013, 16(2), 254-258.
[http://dx.doi.org/10.18433/J35G6M] [PMID: 23958194]
[98]
Neale, C.; Camfield, D.; Reay, J.; Stough, C.; Scholey, A. Cognitive effects of two nutraceuticals Ginseng and Bacopa benchmarked against modafinil: A review and comparison of effect sizes. Br. J. Clin. Pharmacol., 2013, 75(3), 728-737.
[http://dx.doi.org/10.1111/bcp.12002] [PMID: 23043278]
[99]
Sireeratawong, S.; Jaijoy, K.; Khonsung, P.; Lertprasertsuk, N.; Ingkaninan, K. Acute and chronic toxicities of Bacopa monnieri extract in Sprague-Dawley rats. BMC Complement. Altern. Med., 2016, 16(1), 249.
[http://dx.doi.org/10.1186/s12906-016-1236-4] [PMID: 27460904]
[100]
Joshua Allan, J.; Damodaran, A.; Deshmukh, N.S.; Goudar, K.S.; Amit, A. Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague-Dawley rats. Food Chem. Toxicol., 2007, 45(10), 1928-1937.
[http://dx.doi.org/10.1016/j.fct.2007.04.010] [PMID: 17560704]
[101]
Pravina, K.; Ravindra, K.R.; Goudar, K.S.; Vinod, D.R.; Joshua, A.J.; Wasim, P.; Venkateshwarlu, K.; Saxena, V.S.; Amit, A. Safety evaluation of BacoMind in healthy volunteers: A phase I study. Phytomedicine, 2007, 14(5), 301-308.
[http://dx.doi.org/10.1016/j.phymed.2007.03.010] [PMID: 17442556]
[102]
Agarwal, A. A synergistic herbal composition from bacopa species for management of neurodegenerative disorders and a process of preparation thereof. WO Patents 2007111807, (2007),
[103]
Deepak, P. Development of new formulation of Bacopa monnieri to improve its pharmacokinetic properties., PhD Thesis, IFTM University: India, 2017
[104]
Ramasamy, S.; Kiew, L.V.; Chung, L.Y. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents. Molecules, 2014, 19(2), 2588-2601.
[http://dx.doi.org/10.3390/molecules19022588] [PMID: 24566323]
[105]
Khurshid, F.; Govindasamy, J.; Khalilullah, H.; Nomani, M.S.; Shahid, M.; Ain, M.R.; Alsultan, M.S. Effect of herb-drug interactions of Bacopa monnieri Linn.(Brahmi) formulation on the pharmacokinetics of amitriptyline in rats. Braz. J. Pharm. Sci., 2017, 53(4)
[http://dx.doi.org/10.1590/s2175-97902017000417072]
[106]
Charoenphon, N.; Kangwanrangsan, N.; Jiraungkoorskul, W. Artemia salina lethality and histopathological studies on Bacopa monnieri leaf extract. Indian J. Anim. Res., 2018, 52(4), 610-614.
[107]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[108]
Habbu, P.; Madagundi, S.; Kulkarni, R.; Jadav, S.; Vanakudri, R.; Kulkarni, V. Preparation and evaluation of Bacopa-phospholipid complex for antiamnesic activity in rodents. Drug Invent. today, 2013, 5(1), 13-21.
[109]
Saoji, S.D.; Dave, V.S.; Dhore, P.W.; Bobde, Y.S.; Mack, C.; Gupta, D.; Raut, N.A. The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri. Eur. J. Pharm. Sci., 2017, 108, 23-35.
[http://dx.doi.org/10.1016/j.ejps.2016.08.056] [PMID: 27590125]
[110]
Tirumanyam, M.; Nadella, R.; Kondammagari, S.; Borelli, D.P.R.; Nannepaga, J.S. Bacopa phospholipid complex retrieves aluminum maltolate complex-induced oxidative stress and apoptotic alterations in the brain regions of albino rat. Environ. Sci. Pollut. Res. Int., 2019, 26(12), 12071-12079.
[http://dx.doi.org/10.1007/s11356-019-04624-1] [PMID: 30827024]
[111]
Madhavi, T. Ameliorative role of Bacopa phospholipid complex against aluminum induced neurotoxicity: Evaluation of aluminum accumulation by ICP-OES and cholinergic studies in albino rats. 2018, 5(4), 961-970.
[112]
Jose, S.; Sowmya, S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. Surface modified PLGA nanoparticles for brain targeting of bacoside-A. Eur. J. Pharm. Sci., 2014, 63, 29-35.
[http://dx.doi.org/10.1016/j.ejps.2014.06.024] [PMID: 25010261]
[113]
Vitthal, K.U.; Pillai, M.; Kininge, P. Study of solid lipid nanoparticles as a carrier for bacoside. Int. J. Pharma Bio Sci., 2013, 3, 414-426.
[114]
Rabhi, C.; Cariel, L.; Ouazzani, J.; Arcile, G. Use of a Withania extract for the treatment of amyloid-related diseases. U.S. Patent No. 10,596,216, 2020.
[115]
Zanotta, D.; Puricelli, S.; Bonoldi, G. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: A noncomparative, exploratory clinical study. Neuropsychiatr. Dis. Treat., 2014, 10, 225-230.
[http://dx.doi.org/10.2147/NDT.S51092] [PMID: 24523587]
[116]
Mitra-Ganguli, T.; Kalita, S.; Bhushan, S.; Stough, C.; Kean, J.; Wang, N.; Sethi, V.; Khadilkar, A. A randomized, double-blind study assessing changes in cognitive function in Indian school children receiving a combination of Bacopa monnieri and micronutrient supplementation vs. placebo. Front. Pharmacol., 2017, 8, 678.
[http://dx.doi.org/10.3389/fphar.2017.00678] [PMID: 29204115]
[117]
Rabovsky, A.B.; Lvie, J. Dietary supplement compositions. US Patent 20110038848, 2019.
[118]
Castelli, V.; Melani, F.; Ferri, C.; d’Angelo, M.; Catanesi, M.; Grassi, D.; Benedetti, E.; Giordano, A.; Cimini, A.; Desideri, G. Neuroprotective activities of bacopa, lycopene, astaxanthin, and vitamin B12 combination on oxidative stress-dependent neuronal death. J. Cell. Biochem., 2020, 121(12), 4862-4869.
[http://dx.doi.org/10.1002/jcb.29722] [PMID: 32449987]
[119]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[120]
Dasari, V.; Dasari, K. Nutraceuticals to support immunity: COVID-19 pandemic-a wake-up call. J. Clin. Diagn. Res., 2020, 14(7), OE05-OE09.
[http://dx.doi.org/10.7860/JCDR/2020/44898.13843]
[121]
Rai, D.; Bhatia, G.; Palit, G.; Pal, R.; Singh, S.; Singh, H.K. Adaptogenic effect of Bacopa monniera (Brahmi). Pharmacol. Biochem. Behav., 2003, 75(4), 823-830.
[http://dx.doi.org/10.1016/S0091-3057(03)00156-4] [PMID: 12957224]
[122]
Kaur, P. Robin; Makanjuola, V.O.; Arora, R.; Singh, B.; Arora, S. Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed. Pharmacother., 2017, 95, 1815-1829.
[http://dx.doi.org/10.1016/j.biopha.2017.09.081] [PMID: 28968926]
[123]
Kumar, R.; Harilal, S.; Sabitha, M.; Pappachan, L.K.; Mathew, B.; Mathew, B.; Roshni, P.R. Current perspective of COVID-19 on neurology: A mechanistic insight. Comb. Chem. High Throughput Screen., 2021. Online Ahead of Print
[http://dx.doi.org/10.2174/1386207324666210805121828] [PMID: 34353250]
[124]
Joshi, H.; Parle, M. Brahmi rasayana improves learning and memory in mice. Evid. Based Complement. Alternat. Med., 2006, 3(1), 79-85.
[http://dx.doi.org/10.1093/ecam/nek014] [PMID: 16550227]
[125]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[126]
Anand, T.; Pandareesh, M.; Manu, T.M.; Khanum, F.; Roopa, N.; Madhukar, N.; Nagaraju, N. Brahmi herbal drink mitigates aluminium chloride induced cognitive impairments. Def. Life Sci. J., 2017, 2(2), 152.
[http://dx.doi.org/10.14429/dlsj.2.11365]
[127]
Saini, N.; Singh, D.; Sandhir, R. Bacopa monnieri prevents colchicine-induced dementia by anti-inflammatory action. Metab. Brain Dis., 2019, 34(2), 505-518.
[http://dx.doi.org/10.1007/s11011-018-0332-1] [PMID: 30604025]
[128]
Pham, H.T.N.; Phan, S.V.; Tran, H.N.; Phi, X.T.; Le, X.T.; Nguyen, K.M.; Fujiwara, H.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; Matsumoto, K. Bacopa monnieri (L.) ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice. Biol. Pharm. Bull., 2019, 42(8), 1384-1393.
[http://dx.doi.org/10.1248/bpb.b19-00288] [PMID: 31366873]
[129]
Piyabhan, P.; Tingpej, P.; Duansak, N. Effect of pre- and post-treatment with Bacopa monnieri (Brahmi) on phencyclidine-induced disruptions in object recognition memory and cerebral calbindin, parvalbumin, and calretinin immunoreactivity in rats. Neuropsychiatr. Dis. Treat., 2019, 15, 1103-1117.
[http://dx.doi.org/10.2147/NDT.S193222] [PMID: 31118643]
[130]
Singh, B.; Pandey, S.; Yadav, S.K.; Verma, R.; Singh, S.P.; Mahdi, A.A. Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res. Bull., 2017, 135, 120-128.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.007] [PMID: 29032054]
[131]
Hardy Daniel, L.; Rajan, R. Neuro-behavioral modification of Bacopa monnieri in rotenone induced hemi-Parkinson’s disease model of male Wistar albino rats. J. Pharmacogn. Phytochem., 2019, 8(4), 1275-1280.
[132]
Suseela, P.; Swathi, G.; Rajendra, W. Anticonvulsant effect of different extracts of Bacopa monnieri on cholinergic metabolism during pentylenetetrazole-induced epilepsy. Int. J. Pharm. Biol. Sci., 2013, 3, 194-200.
[133]
Suseela, P.; Swathi, G.; Rajendra, W. Protective role of different extracts of Bacopa monnieri on Protein and free amino acid metabolism during pentylenetetrazole-induced epilepsy. Int. J. Pharmaceut. Sci. Health Care, 2017, 7(2), 21-30.
[134]
Rehni, A.K.; Pantlya, H.S.; Shri, R.; Singh, M. Effect of chlorophyll and aqueous extracts of Bacopa monniera and Valeriana wallichii on ischaemia and reperfusion-induced cerebral injury in mice. Indian J. Exp. Biol., 2007, 45(9), 764-749.
[135]
Ramesh Kumar, R.; Kathiravan, K.; Muthusamy, R. Bacopa monniera a potent neuroprotector against transient global cerebral ischemia induced hippocampal damage and memory function. Int. J. Anat. Sci, 2012, 3, 26-32.
[136]
Bhattacharya, S.K.; Ghosal, S. Anxiolytic activity of a standardized extract of Bacopa monniera: An experimental study. Phytomedicine, 1998, 5(2), 77-82.
[http://dx.doi.org/10.1016/S0944-7113(98)80001-9] [PMID: 23195757]
[137]
Zhou, Y.; Shen, Y-H.; Zhang, C.; Su, J.; Liu, R-H.; Zhang, W-D. Triterpene saponins from Bacopa monnieri and their antidepressant effects in two mice models. J. Nat. Prod., 2007, 70(4), 652-655.
[http://dx.doi.org/10.1021/np060470s] [PMID: 17343408]
[138]
Banerjee, R.; Hazra, S.; Ghosh, A.K.; Mondal, A.C. Chronic administration of Bacopa monniera increases BDNF protein and mRNA expressions: A study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig., 2014, 11(3), 297-306.
[http://dx.doi.org/10.4306/pi.2014.11.3.297] [PMID: 25110503]
[139]
Kadali, S.L.D.V.R.M.; Das, M.C.; Rao, A.S.R.; Karuna Sri, G. Antidepressant activity of brahmi in albino mice. J. Clin. Diagn. Res., 2014, 8(3), 35-37.
[http://dx.doi.org/10.7860/JCDR/2014/7482.4098] [PMID: 24783074]
[140]
Hazra, S.; Kumar, S.; Saha, G.K.; Mondal, A.C. Chronic administration of Bacopa monniera alleviates depressive like behavior and increases the expression of ERK1/2 in hippocampus and pre-frontal cortex of chronic unpredictable stress induced rats. Int. Neuropsychiatr. Dis. J., 2015, 3008, 47-58.
[http://dx.doi.org/10.9734/INDJ/2015/14414]
[141]
Mannan, A.; Abir, A.B.; Rahman, R. Antidepressant-like effects of methanolic extract of Bacopa monniera in mice. BMC Complement. Altern. Med., 2015, 15(1), 337.
[http://dx.doi.org/10.1186/s12906-015-0866-2] [PMID: 26407565]
[142]
Sharma, L.; Sharma, A.; Gupta, G.L.; Bisht, G.S. Pharmacological evaluation of Bacopa monnieri extract against depressive like behavior induced by ethanol withdrawal in rats. Pharmacogn. J., 2018, 10(6s)
[http://dx.doi.org/10.5530/pj.2018.6s.9]
[143]
Sudershan, B.; Chowta, M.N.; Ullal, S.D.; Rajeshwari, S.; Sayeli, V.K.; Shivaprasad, S.; Srivastava, P. Effect of Bacopa monnieri on ethanol-induced anxiolysis and withdrawal anxiety in wistar rats. Indian J. Physiol. Pharmacol., 2018, 62(3), 339-346.
[144]
Habib, M.A.; Akter, S.; Rahman, A.; Sikder, J.; Khatun, F.; Furkanur, M.; Mizan, R.; Ashrafudoulla, M.; Hannan, M.A. Evaluation of neuropharmacological activities of methanolic extract of Bacopa monnieri L. in mice model. Eur. J. Med. Health Sci., 2019, 1(6), 41-49.
[145]
Micheli, L.; Spitoni, S.; Di Cesare Mannelli, L.; Bilia, A.R.; Ghelardini, C.; Pallanti, S. Bacopa monnieri as augmentation therapy in the treatment of anhedonia, preclinical and clinical evaluation. Phytother. Res., 2020, 34(9), 2331-2340.
[http://dx.doi.org/10.1002/ptr.6684] [PMID: 32236999]
[146]
Rajan, K.E.; Singh, H.K.; Parkavi, A.; Charles, P.D. Attenuation of 1-(m-chlorophenyl)-biguanide induced hippocampus-dependent memory impairment by a standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res., 2011, 36(11), 2136-2144.
[http://dx.doi.org/10.1007/s11064-011-0538-7] [PMID: 21735137]
[147]
Rani, A.; Prasad, S. A special extract of Bacopa monnieri (CDRI08)-restored memory in CoCl2-hypoxia mimetic mice is associated with upregulation of Fmr-1 gene expression in hippocampus. Evid. Based Complement. Alternat. Med, 2015, 2015
[148]
Verma, P.; Gupta, R.K.; Gandhi, B.S.; Singh, P. CDRI-08 attenuates REST/NRSF-mediated expression of NMDAR1 gene in PBDE-209-exposed mice brain. Evid. Based Complement. Alternat. Med, 2015, 2015
[149]
Pandey, S.P.; Singh, H.K.; Prasad, S. Alterations in hippocampal oxidative stress, expression of AMPA receptor GluR2 subunit and associated spatial memory loss by Bacopa monnieri extract (CDRI-08) in streptozotocin-induced diabetes mellitus type 2 mice. PLoS One, 2015, 10(7), e0131862.
[http://dx.doi.org/10.1371/journal.pone.0131862] [PMID: 26161865]
[150]
Preethi, J.; Singh, H.K.; Rajan, K.E. Possible involvement of standardized Bacopa monniera extract (CDRI-08) in epigenetic regulation of reelin and brain-derived neurotrophic factor to enhance memory. Front. Pharmacol., 2016, 7, 166.
[http://dx.doi.org/10.3389/fphar.2016.00166] [PMID: 27445807]
[151]
Nathan, P.J.; Clarke, J.; Lloyd, J.; Hutchison, C.W.; Downey, L.; Stough, C. The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects. Hum. Psychopharmacol., 2001, 16(4), 345-351.
[http://dx.doi.org/10.1002/hup.306] [PMID: 12404571]
[152]
Stough, C.; Lloyd, J.; Clarke, J.; Downey, L.; Hutchison, C.; Rodgers, T.; Nathan, P. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human. Psychopharmacology (Berl.), 2001, 156(4), 481-484.
[153]
Roodenrys, S.; Booth, D.; Bulzomi, S.; Phipps, A.; Micallef, C.; Smoker, J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology, 2002, 27(2), 279-281.
[http://dx.doi.org/10.1016/S0893-133X(01)00419-5] [PMID: 12093601]
[154]
Stough, C.; Downey, L.A.; Lloyd, J.; Silber, B.; Redman, S.; Hutchison, C.; Wesnes, K.; Nathan, P.J. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial. Phytother. Res., 2008, 22(12), 1629-1634.
[http://dx.doi.org/10.1002/ptr.2537] [PMID: 18683852]
[155]
Dave, U.; Wasim, P.; Joshua, J.; Geetharani, P.; Murali, B.; Mayachari, A.; Venkateshwarlu, K.; Saxena, V.; Deepak, M.; Amit, A.B. A cognitive enhancer in children requiring individual education programme. J. Pharmacol. Toxicol, 2008, 3, 302-310.
[http://dx.doi.org/10.3923/jpt.2008.302.310]
[156]
Calabrese, C.; Gregory, W.L.; Leo, M.; Kraemer, D.; Bone, K.; Oken, B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: A randomized, double-blind, placebo-controlled trial. J. Altern. Complement. Med., 2008, 14(6), 707-713.
[http://dx.doi.org/10.1089/acm.2008.0018] [PMID: 18611150]
[157]
Morgan, A.; Stevens, J. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J. Altern. Complement. Med., 2010, 16(7), 753-759.
[http://dx.doi.org/10.1089/acm.2009.0342] [PMID: 20590480]
[158]
Goswami, S.; Kumar, N.; Thawani, V.; Tiwari, M.; Thawani, M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int. J. Collab. Res. Intern. Med. Public Health, 2011, 3(4), 285-293.
[159]
Hingorani, L.; Patel, S.; Ebersole, B. Sustained cognitive effects and safety of HPLC-standardized Bacopa monnieri extract: A randomized, placebo controlled clinical trial. Planta Med., 2012, 78(11), PH22.
[http://dx.doi.org/10.1055/s-0032-1320681]
[160]
Downey, L.A.; Kean, J.; Nemeh, F.; Lau, A.; Poll, A.; Gregory, R.; Murray, M.; Rourke, J.; Patak, B.; Pase, M.P.; Zangara, A.; Lomas, J.; Scholey, A.; Stough, C. An acute, double-blind, placebo-controlled crossover study of 320 mg and 640 mg doses of a special extract of Bacopa monnieri (CDRI 08) on sustained cognitive performance. Phytother. Res., 2013, 27(9), 1407-1413.
[http://dx.doi.org/10.1002/ptr.4864] [PMID: 23281132]
[161]
Kumar, N.; Abichandani, L.; Thawani, V.; Gharpure, K.; Naidu, M.; Venkat Ramana, G. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: A six-week, randomized placebo-controlled trial. Evid. Based Complement. Alternat. Med., 2016, 2016
[162]
Dave, U.P.; Chauvan, V.; Dalvi, J. Evaluation of BR-16 A (Mentat) in cognitive and behavioural dysfunction of mentally retarded children-a placebo-controlled study. Indian J. Pediatr., 1993, 60(3), 423-428.
[http://dx.doi.org/10.1007/BF02751207] [PMID: 8253492]
[163]
Nathan, P.J.; Tanner, S.; Lloyd, J.; Harrison, B.; Curran, L.; Oliver, C.; Stough, C. Effects of a combined extract of Ginkgo biloba and Bacopa monniera on cognitive function in healthy humans. Hum. Psychopharmacol., 2004, 19(2), 91-96.
[http://dx.doi.org/10.1002/hup.544] [PMID: 14994318]
[164]
Sadhu, A.; Upadhyay, P.; Agrawal, A.; Ilango, K.; Karmakar, D.; Singh, G.P.I.; Dubey, G.P. Management of cognitive determinants in senile dementia of Alzheimer’s type: Therapeutic potential of a novel polyherbal drug product. Clin. Drug Investig., 2014, 34(12), 857-869.
[http://dx.doi.org/10.1007/s40261-014-0235-9] [PMID: 25316430]
[165]
Cicero, A.F.; Bove, M.; Colletti, A.; Rizzo, M.; Fogacci, F.; Giovannini, M.; Borghi, C. Short-term impact of a combined nutraceutical on cognitive function, perceived stress and depression in young elderly with cognitive impairment: A pilot, double-blind, randomized clinical trial. J. Prev. Alzheimers Dis., 2017, 4(1), 12-15.
[PMID: 29188854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy