[8]
Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
[14]
Mahmoud, A.M. Influence of rutin on biochemical alterations in hyperammonemia in rats. Exp. Toxicol. Pathol., 2012, 64(7-8), 783-789.
[17]
Bungau, S.; Behl, T.; Mehta, K.; Sehgal, A.; Singh, S.; Sharma, N.; Ahmadi, A.; Arora, S. Exploring the role of polyphenols in rheumatoid arthritis; Critic. Rev. Food Sci. Nutrit, 2021, pp. 1-22.
[21]
Kuwabara, T.; Ishikawa, F.; Kondo, M.; Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 3908061.
[25]
Kimura, A. Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol., 2010, 40(7), 1830-1835.
[26]
Kotake, S.; Sato, K.; Kim, K.J.; Takahashi, N.; Udagawa, N.; Nakamura, I.; Yamaguchi, A.; Kishimoto, T.; Suda, T.; Kashiwazaki, S. Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J. Bone Miner. Res., 1996, 11(1), 88-95.
[31]
Sack, U.; Kinne, R.; Marx, T.; Heppt, P.; Bender, S.; Emmrich, F. Interleukin-6 in synovial fluid is closely associated with chronic synovitis in rheumatoid arthritis. Rheumatol. Int., 1993, 13(2), 45-51.
[32]
Muraguchi, A.; Hirano, T.; Tang, B.; Matsuda, T.; Horii, Y.; Nakajima, K.; Kishimoto, T. The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. Blood, 1988, 167(2), 332-344.
[33]
Jego, G.; Bataille, R.; Pellat-Deceunynck, C.J. Interleukin-6 is a growth factor for nonmalignant human plasmablasts. Immunobiology, 2001, 97(6), 1817-1822.
[34]
Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G.; Teuscher, C.; Haynes, L.; Rincon, M. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med., 2009, 206(1), 69-78.
[35]
Chizzolini, C.; Chicheportiche, R.; Alvarez, M.; De Rham, C.; Roux-Lombard, P.; Ferrari-Lacraz, S.; Dayer, J-M. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 2008, 112(9), 3696-3703.
[36]
Lally, F.; Smith, E.; Filer, A.; Stone, M.A.; Shaw, J.S.; Nash, G.B.; Buckley, C.D.; Ed Rainger, G. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum., 2005, 52(11), 3460-3469.
[37]
Maruotti, N.; Cantatore, F.P.; Crivellato, E.; Vacca, A.; Ribatti, D.J.H. Angiogenesis in rheumatoid arthritis. Histol. Histopathol., 2006, 21, 557-566.
[39]
Ohta, S.; Imai, K.; Yamashita, K.; Matsumoto, T.; Azumano, I.; Okada, Y. Expression of matrix metalloproteinase 7 (matrilysin) in human osteoarthritic cartilage. Lab. Invest., 1998, 78(1), 79-87.
[50]
Kwon, O.S.; Han, J.H.; Yoo, H.G.; Chung, J.H.; Cho, K.H.; Eun, H.C.; Kim, K.H. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine, 2007, 14(7-8), 551-555.
[53]
Zhu, C.; Xu, Y.; Liu, Z.H.; Wan, X.C.; Li, D.X.; Tai, L.L. The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice. Biomed. Pharmacother., 2018, 97, 168-173.
[69]
Yu, N.H.; Pei, H.; Huang, Y.P.; Li, Y.F. (-)-epigallocatechin-3-gallate inhibits arsenic-induced inflammation and apoptosis through suppression of oxidative stress in mice. Cell. Physiol. Biochem., 2017, 41(5), 1788-1800.
[71]
Li, M.; Liu, J.T.; Pang, X.M.; Han, C.J.; Mao, J.J. Epigallocatechin-3-gallate inhibits angiotensin II and interleukin-6-induced C-reactive protein production in macrophages. Pharmacol. Rep., 2012, 64(4), 912-918.
[73]
Ku, W.C.; Chang, Y.L.; Wu, S.F.; Shih, H.N.; Tzeng, Y.M.; Kuo, H.R.; Chang, K.M.; Agrawal, D.C.; Liu, B.L.; Chang, C.A.; Huang, S.; Lee, M.J. A comparative proteomic study of secretomes in kaempferitrin-treated CTX TNA2 astrocytic cells. Phytomedicine, 2017, 36, 137-144.
[100]
Zhao, Z.W.; Zhang, M.; Wang, G.; Zou, J.; Gao, J.H.; Zhou, L.; Wan, X.J.; Zhang, D.W.; Yu, X.H.; Tang, C.K. Astragalin retards atherosclerosis by promoting cholesterol efflux and inhibiting the inflammatory response via up-regulating ABCA1 and ABCG1 expression in macrophages. J. Cardiovasc. Pharmacol., 2021, 77(2), 217-227.
[130]
Su, X.; Huang, Q.; Chen, J.; Wang, M.; Pan, H.; Wang, R.; Zhou, H.; Zhou, Z.; Liu, J.; Yang, F.; Li, T.; Liu, L. Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacol., Res., 2016, 113(Pt A), 695-704.
[225]
Deng, Z.; Hassan, S.; Rafiq, M.; Li, H.; He, Y.; Cai, Y.; Kang, X.; Liu, Z.; Yan, T. Pharmacological activity of eriodictyol: the major natural polyphenolic flavanone. eCAM, 2020, 2020, 6681352.
[227]
Dunstan, M.S.; Robinson, C.J.; Jervis, A.J.; Yan, C.; Carbonell, P.; Hollywood, K.A.; Currin, A.; Swainston, N.; Feuvre, R.L.; Micklefield, J.; Faulon, J.L.; Breitling, R.; Turner, N.; Takano, E.; Scrutton, N.S. Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Syn. Biol., 2020, 5(1), ysaa012.
[246]
Maher, P. Modulation of the neuroprotective and anti-inflammatory activities of the flavonol fisetin by the transition metals iron and copper. Antioxidants (Basel, Switzerland), 2020, 9(11), 1113.
[321]
Wu, X.; Song, M.; Rakariyatham, K.; Zheng, J.; Guo, S.; Tang, Z.; Zhou, S.; Xiao, H. Anti-inflammatory effects of 4'-demethylnobiletin, a major metabolite of nobiletin. J. Funct. Foods, 2015, 19(Pt A), 278-287.
[336]
Jang, M.; Kim, K.H.; Kim, G.H. Antioxidant capacity of thistle (Cirsium japonicum) in various drying methods and their protection effect on neuronal pc12 cells and Caenorhabditis elegans. Antioxidants (Basel, Switzerland), 2020, 9(3), 200.
[348]
Wang, S.P.; Lin, S.C.; Li, S.; Chao, Y.H.; Hwang, G.Y.; Lin, C.C. Potent antiarthritic properties of phloretin in murine collageninduced arthritis. eCAM, 2016, 2016, 9831263.