Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

In Vitro and In Vivo Approaches for Screening the Potential of Anticancer Agents: A Review

Author(s): Rakhi Mishra*, Prem Shankar Mishra, Shruti Varshney, Rupa Mazumder and Avijit Mazumder

Volume 19, Issue 3, 2022

Published on: 24 January, 2022

Article ID: e060122200071 Pages: 12

DOI: 10.2174/1570163819666220106122811

Price: $65

conference banner
Abstract

Background: Anticancer drug development is a tedious process, requiring several in vitro, in vivo, and clinical studies. In order to avoid chemical toxicity in animals during an experiment, it is necessary to envisage toxic doses of screened drugs in vivo at different concentrations. Several in vitro and in vivo studies have been reported to discover the management of cancer.

Materials and Methods: This study focused on bringing together a wide range of in vivo and in vitro assay methods developed to evaluate each hallmark feature of cancer.

Result: This review provides detailed information on target-based and cell-based screening of new anticancer drugs in the molecular targeting period. This would help in inciting an alteration from the preclinical screening of pragmatic compound-orientated to target-orientated drug selection.

Conclusion: Selection methodologies for finding anticancer activity have importance for tumor- specific agents. In this study, advanced rationalization of the cell-based assay is explored along with broad applications of the cell-based methodologies considering other opportunities.

Keywords: In vitro, in vivo, anticancer, screening methods, target-based, cell-based.

Graphical Abstract
[1]
World Health Organization. Cancer Fact sheet N°297. Accessed on Feb 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[2]
National Cancer Institute. Targeted cancer therapies. Available from: www.cancer.gov Retrieved 28 March 2018.
[3]
Adler S, Basketter D, Creton S, et al. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85(5): 367-485.
[http://dx.doi.org/10.1007/s00204-011-0693-2] [PMID: 21533817]
[4]
Broeders JJW, Blaauboer BJ, Hermens JLM. In vitro biokinetics of chlorpromazine and the influence of different dose metrics on effect concentrations for cytotoxicity in Balb/c 3T3, Caco-2 and HepaRG cell cultures. Toxicol In Vitro 2013; 27(3): 1057-64.
[http://dx.doi.org/10.1016/j.tiv.2013.01.010] [PMID: 23376437]
[5]
Kramer NI, Busser FJM, Oosterwijk MTT, Schirmer K, Escher BI, Hermens JLM. Development of a partition-controlled dosing system for cell assays. Chem Res Toxicol 2010; 23(11): 1806-14.
[http://dx.doi.org/10.1021/tx1002595] [PMID: 20961080]
[6]
Gazdar AF, Girard L, Lockwood WW, Lam WL, Minna JD. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst 2010; 102(17): 1310-21.
[http://dx.doi.org/10.1093/jnci/djq279] [PMID: 20679594]
[7]
Hamon J, Renner M, Jamei M, Lukas A, Kopp-Schneider A, Bois FY. Quantitative in vitro to in vivo extrapolation of tissues toxicity. Toxicol In Vitro 2015; 30(1 Pt A): 203-16.
[http://dx.doi.org/10.1016/j.tiv.2015.01.011] [PMID: 25678044]
[8]
Yoon M, Blaauboer BJ, Clewell HJ. Quantitative in vitro to in vivo extrapolation (QIVIVE): An essential element for in vitro-based risk assessment. Toxicology 2015; 332: 1-3.
[http://dx.doi.org/10.1016/j.tox.2015.02.002] [PMID: 25680635]
[9]
Dell O. Cancer rehabilitation principles and practice New York: Demos Medical. 2009; p. p. 983.
[10]
Thun MJ, Jemal A. How much of the decrease in cancer death rates in the United States is attributable to reductions in tobacco smoking? Tob Control 2006; 15(5): 345-7.
[http://dx.doi.org/10.1136/tc.2006.017749] [PMID: 16998161]
[11]
Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. Lancet 2014; 384(9945): 755-65.
[http://dx.doi.org/10.1016/S0140-6736(14)60892-8] [PMID: 25129328]
[12]
Park S, Bae J, Nam BH, Yoo KY. Aetiology of cancer in Asia. Asian Pac J Cancer Prev 2008; 9(3): 371-80.
[PMID: 18990005]
[13]
Pagano JS, Blaser M, Buendia MA, et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004; 14(6): 453-71.
[http://dx.doi.org/10.1016/j.semcancer.2004.06.009] [PMID: 15489139]
[14]
Roukos DH. Genome-wide association studies: how predictable is a person’s cancer risk? Expert Rev Anticancer Ther 2009; 9(4): 389-92.
[http://dx.doi.org/10.1586/era.09.12] [PMID: 19374592]
[15]
Bruner DW, Moore D, Parlanti A, Dorgan J, Engstrom P. Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int J Cancer 2003; 107(5): 797-803.
[http://dx.doi.org/10.1002/ijc.11466] [PMID: 14566830]
[16]
Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 2011; 12(8): 785-94.
[http://dx.doi.org/10.1016/S1470-2045(11)70154-1] [PMID: 21782509]
[17]
Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010; 10(4): 369-73. [review
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[18]
Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2): 107-16.
[http://dx.doi.org/10.1038/nrc1799] [PMID: 16491070]
[19]
Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81(4): 303-11.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[20]
Bernstein C, Nfonsam V, Prasad AR, Bernstein H. Epigenetic field defects in progression to cancer. World J Gastrointest Oncol 2013; 5(3): 43-9.
[http://dx.doi.org/10.4251/wjgo.v5.i3.43] [PMID: 23671730]
[21]
Malkin D. Li-fraumeni syndrome. Genes Cancer 2011; 2(4): 475-84.
[http://dx.doi.org/10.1177/1947601911413466] [PMID: 21779515]
[22]
Varricchio CG. A cancer source book for nurses Boston. Jones and Bartlett Publishers. 2004; p. p. 229.
[23]
Thomsen A, Kolesar JM. Chemoprevention of breast cancer. Am J Health Syst Pharm 2008; 65(23): 2221-8.
[http://dx.doi.org/10.2146/ajhp070663] [PMID: 19020189]
[24]
Wilson JMG, Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization. Public Health Pap 1968; 34.
[25]
Kumar S, Bajaj S, Bodla RB. Preclinical screening methods in cancer. Indian J Pharmacol 2016; 48(5): 481-6.
[http://dx.doi.org/10.4103/0253-7613.190716] [PMID: 27721530]
[26]
Killing Cancer Softly. New Approach halts Tumor Growth. Available from: www.medicalnewstoday.com/articles/320227 (Accessed March 18, 2020).
[27]
Aherne W, Garret M, McDonald T, Workman P. Mechanism-based high throughput screening for novel anticancer drug discovery Anticancer Drug Development. Academic Press. 2002; pp. pp. 249-67.
[28]
Gajewska M, Paini A, Sala Benito JV, et al. In vitro-to-in vivo correlation of the skin penetration, liver clearance and hepatotoxicity of caffeine. Food Chem Toxicol 2015; 75: 39-49.
[http://dx.doi.org/10.1016/j.fct.2014.10.017] [PMID: 25455898]
[29]
Sikora K, Advani S, Koroltchouk V, et al. Essential drugs for cancer therapy: A World Health Organization consultation. Ann Oncol 1999; 10(4): 385-90.
[http://dx.doi.org/10.1023/A:1008367822016] [PMID: 10370779]
[30]
van Staveren WC, Solís DY, Hébrant A, Detours V, Dumont JE, Maenhaut C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta 2009; 1795(2): 92-103.
[PMID: 19167460]
[31]
Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84(10): 1424-31.
[http://dx.doi.org/10.1054/bjoc.2001.1796] [PMID: 11355958]
[32]
Scherf U, Ross DT, Waltham M, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000; 24(3): 236-44.
[http://dx.doi.org/10.1038/73439] [PMID: 10700175]
[33]
Beveridge M, Park YW, Hermes J, Marenghi A, Brophy G, Santos A. Detection of p56(lck) kinase activity using scintillation proximity assay in 384-well format and imaging proximity assay in 384- and 1536-well format. J Biomol Screen 2000; 5(4): 205-12.
[http://dx.doi.org/10.1177/108705710000500403] [PMID: 10992041]
[34]
Kelland R L. Telomerase: biology and phase I trials. Lancet Oncol 2001; 2: 95-102.
[http://dx.doi.org/10.1016/S1470-2045(00)00226-6]
[35]
Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20(24): 6958-68.
[http://dx.doi.org/10.1093/emboj/20.24.6958] [PMID: 11742973]
[36]
Pfragner R, Behmel A, Höger H, et al. Establishment and characterization of three novel cell lines - P-STS, L-STS, H-STS - derived from a human metastatic midgut carcinoid. Anticancer Res 2009; 29(6): 1951-61.
[PMID: 19528452]
[37]
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6(10): 813-23.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[38]
Nassani I, Yamori T, Tsuruo T. Screening with COMPARE analysis for telomerase inhibitors: Telomeres and Telomerase Totowa, NJ; Humana Press. 2002; 191: pp. 197-207.
[39]
Goldman JM. Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet 2000; 355(9209): 1031-2.
[http://dx.doi.org/10.1016/S0140-6736(00)02029-8] [PMID: 10744084]
[40]
Mow BM, Chandra J, Svingen PA, et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 2002; 99(2): 664-71.
[http://dx.doi.org/10.1182/blood.V99.2.664] [PMID: 11781252]
[41]
Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 2000; 6(8): 3319-26.
[PMID: 10955819]
[42]
Kamishohara M, Kenney S, Domergue R, Vistica DT, Sausville EA. Selective accumulation of the endoplasmic reticulum-Golgi intermediate compartment induced by the antitumor drug KRN5500. Exp Cell Res 2000; 256(2): 468-79.
[http://dx.doi.org/10.1006/excr.2000.4851] [PMID: 10772819]
[43]
Kenny S, Kamishohara M, Boswell J, Sausville EA, Vistica D. An antileukemic analog of ceramide. Proc Am Assoc Cancer Res 2002; 43: 409.
[44]
Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W. Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer 2000; 29(2): 137-46.
[http://dx.doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1018>3.0.CO;2-E] [PMID: 10959093]
[45]
Lacey JV Jr, Kreimer AR, Buys SS, et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer 2009; 9: 84.
[http://dx.doi.org/10.1186/1471-2407-9-84] [PMID: 19292893]
[46]
WHO Cancer. 2015. Available from: www.who.int/mediacentre/factsheets/fs297/en
[47]
Fu X. cAMP response element binding protein (CREB) mediates, acid-induced NADPH oxidase NOX5-S expression in Barrett’s esophageal adenocarcinoma cells. J Biol Chem 186: 288-98.
[48]
Harkonen P, Laaksonen E, Valve E, et al. Cloning and characterization of an androgen-induced growth factor essential for androgen-dependent growth of mouse mammary-carcinoma cells. Proc Natl Acad Sci USA 89: 8928-32.
[49]
Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. (9th Ed). Philadelphia; Neoplasm. 2013; pp. 161-214.
[50]
Narang AS, Desai DS. Anticancer drug development; Pharmaceutical perspectives of cancer therapeutics. New York; Springer Verlag. 2009; pp. 49-92.
[http://dx.doi.org/10.1007/978-1-4419-0131-6_2]
[51]
Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 2007; 170(3): 793-804.
[http://dx.doi.org/10.2353/ajpath.2007.060929] [PMID: 17322365]
[52]
Farber S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood 1949; 4(2): 160-7.
[http://dx.doi.org/10.1182/blood.V4.2.160.160] [PMID: 18107667]
[53]
Elion GB, Singer S, Hitchings GH. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem 1954; 208(2): 477-88.
[http://dx.doi.org/10.1016/S0021-9258(18)65573-5] [PMID: 13174557]
[54]
Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957; 179(4561): 663-6.
[http://dx.doi.org/10.1038/179663a0] [PMID: 13418758]
[55]
Pinkel D. Actinomycin D in childhood cancer; a preliminary report. Pediatrics 1959; 23(2): 342-7.
[PMID: 13633349]
[56]
Teicher BA. Tumor models for efficacy determination. Mol Cancer Ther 2006; 5(10): 2435-43.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0391] [PMID: 17041086]
[57]
Hutchinson L, Kirk R. High drug attrition rates-where are we going wrong? Nat Rev Clin Oncol 2011; 8(4): 189-90.
[http://dx.doi.org/10.1038/nrclinonc.2011.34] [PMID: 21448176]
[58]
Burger AM, Fiebig HH. Preclinical screening for new anticancer agents. In: Rudek MA, Chau CH, Figg WD, McLeod HL, Eds. Handbook of Anticancer Pharmacokinetics and Pharmacodynamics (2nd Ed). Springer. 2014; pp. 22-38.
[http://dx.doi.org/10.1007/978-1-4614-9135-4_2]
[59]
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1(5): 2315-9.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[60]
Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 2005; 11(3): 971-81.
[PMID: 15709162]
[61]
Pereira S, Tettamanti M. Ahimsa and alternatives-the concept of the 4th R. The CPCSEA in India. Altern Anim Exp 2005; 22(1): 3-6.
[PMID: 15719144]
[62]
Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 1995; 34: 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[63]
Teicher BA, Andrews PA. Anticancer drug development guide preclinical screening, clinical trials and approval. New York; Humana Press. 2004; pp. 23-42.
[64]
Trojan L, Schaaf A, Steidler A, et al. Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res 2005; 25(1A): 183-91.
[PMID: 15816537]
[65]
Coleman SC, Stewart ZA, Day TA, Netterville JL, Burkey BB, Pietenpol JA. Analysis of cell-cycle checkpoint pathways in head and neck cancer cell lines: implications for therapeutic strategies. Arch Otolaryngol Head Neck Surg 2002; 128(2): 167-76.
[http://dx.doi.org/10.1001/archotol.128.2.167] [PMID: 11843726]
[66]
Albini A, Benelli R, Noonan DM, Brigati C. The “chemoinvasion assay”: A tool to study tumor and endothelial cell invasion of basement membranes. Int J Dev Biol 2004; 48(5-6): 563-71.
[http://dx.doi.org/10.1387/ijdb.041822aa] [PMID: 15349831]
[67]
Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51(10): 2515-20.
[PMID: 2021931]
[68]
Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82(13): 1107-12.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[69]
Papazisis KT, Geromichalos GD, Dimitriadis KA, Kortsaris AH. Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods 1997; 208(2): 151-8.
[http://dx.doi.org/10.1016/S0022-1759(97)00137-3] [PMID: 9433470]
[70]
Rubinstein LV, Shoemaker RH, Paull KD, et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 1990; 82(13): 1113-8.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[71]
Jones KH, Senft JA. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 1985; 33(1): 77-9.
[http://dx.doi.org/10.1177/33.1.2578146] [PMID: 2578146]
[72]
Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 1975; 66(1): 188-93.
[http://dx.doi.org/10.1083/jcb.66.1.188] [PMID: 49354]
[73]
Dengler WA, Schulte J, Berger DP, Mertelsmann R, Fiebig HH. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 1995; 6(4): 522-32.
[http://dx.doi.org/10.1097/00001813-199508000-00005] [PMID: 7579556]
[74]
Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 1993; 160(1): 81-8.
[http://dx.doi.org/10.1016/0022-1759(93)90011-U] [PMID: 7680699]
[75]
Petty RD, Sutherland LA, Hunter EM, Cree IA. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumin 1995; 10(1): 29-34.
[http://dx.doi.org/10.1002/bio.1170100105] [PMID: 7762413]
[76]
Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays. Int J Pharm 2005; 288(2): 369-76.
[http://dx.doi.org/10.1016/j.ijpharm.2004.09.018] [PMID: 15620877]
[77]
Kasinski AL, Kelnar K, Stahlhut C, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 2015; 34(27): 3547-55.
[http://dx.doi.org/10.1038/onc.2014.282] [PMID: 25174400]
[78]
Fiebig H, Maier H, Burger MA. Clonogenic assay with established human tumour xenografts. Eur J Cancer 2004; 40(6): 802-20.
[79]
Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006; 1(3): 1112-6.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[80]
Akhila J, Manikkoth S, Shyam D, Alwar M. Acute toxicity studies and determination of median lethal dose. Curr Sci 2007; 93(7): 917-20.
[81]
Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng Biotechnol 2020; 8: 322.
[http://dx.doi.org/10.3389/fbioe.2020.00322] [PMID: 32328489]
[82]
Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 2015; 16(3): 273-85.
[http://dx.doi.org/10.2217/pgs.14.170] [PMID: 25712190]
[83]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[84]
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13(2): 1951-2011.
[http://dx.doi.org/10.3390/ijms13021951] [PMID: 22408433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy