Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Kolaviron, A Biflavonoid Compound: Its Pharmacological Activity and Therapeutic Efficacy

Author(s): Damilare Rotimi, Jennifer Chidubem Amanze, Adebola Busola Ojo, Matthew Iyobhebhe, Tobiloba Christiana Elebiyo and Oluwafemi Adeleke Ojo*

Volume 18, Issue 5, 2022

Published on: 15 February, 2022

Article ID: e311221199738 Pages: 9

DOI: 10.2174/1573407218666211231121402

Price: $65

conference banner
Abstract

The use of herbal remedies for medicinal purposes is becoming more popular around the world. As a result, plants have become viable treatment options for a variety of diseases. Garcinia kola (bitter kola) is a perennially grown plant in the Guttiferae family that has been evaluated and reported to have numerous health-promoting properties. Kolaviron is a biflavanoid and major phytochemical found in Garcinia kola that includes Garcinia Biflavanoid-1 (GB-1), kolaflavanone, and Garcinia Biflavanoid-2 (GB-2). It is obtained as a fraction extracted from Garcinia kola. Kolaviron's pharmacological properties include anti-inflammatory, anti-spasmodic, ameliorative, anti-asthmatic, anti-cancer, anti-malarial, hepatoprotective, antioxidant, anti-atherogenic, neuroprotective, anti-diabetic, and anti-amnesic properties. Kolaviron is recommended for use in clinical settings because it has been shown to have a high therapeutic efficacy in clinical trials. The purpose of this review is to assess the therapeutic efficacy of kolaviron.

Keywords: Kolaviron, Garcinia kola, pharmacological activities, natural products, therapeutic efficacy, Guttiferae.

Graphical Abstract
[1]
Iwu, M.M. Handbook of African medicinal plants; Routledge Hand books: UK, 2014.
[http://dx.doi.org/10.1201/b16292]
[2]
Joshua, O. Benefits of traditional medicine in the modern world. 2020.
[3]
Akinyemi, K.A. Antibacterial screening of five Nigerian medicinal plants against S. typhi and S. paratyphi. J. Nigerian Infect. Cont. Associ., 2000, 3(1), 30-33.
[4]
Ezekwesili-Ofili, J.O.; Okaka, A.N.C. Herbal Medicines in African Traditional Medicine. In: Herbal Medicine; Builders, Philip F., Ed.; Intech Open, 2019; p. 10.
[5]
Icheku, V.; Onianwah, F.; Nwulia, A. A descriptive cross-sectional study on various uses and outcomes of Garcinia kola among people of Oshimili North in the Delta State of Nigeria. Ayu, 2018, 39(3), 132-138.
[http://dx.doi.org/10.4103/ayu.AYU_195_16] [PMID: 31000989]
[6]
Mugendi, D.; Mucheru, M.; Kungu, J.; Otor, S.; Micheni, A.; Mugwe, J. Soil fertility improvement strategies for increased food production in the central highlands of Kenya. African Crop Sci. Confer., 2001, 5, 897-904.
[7]
Ekene, E.N. Garcinia kola: A review of its ethnomedicinal, chemical and pharmacological properties. Int. J. Curr. Res. Rev., 2014, 6(11), 1.
[8]
Ajayi, T.O.; Moody, J.O.; Fukushi, Y.; Adeyemi, T.A.; Fakeye, T.O. Antimicrobial activity of Garcinia kola (Heckel) seed extracts and isolated constituents against caries-causing microorganisms. Afr. J. Biomed. Res., 2014, 17(3), 165-171.
[9]
Iwu, M.W.; Duncan, A.R.; Okunji, C.O. New Antimicrobials of Plant Origin; ASHS Press: Alexandria, VA, 1999, pp. 457-462.
[10]
Iwu, M.M.; Igboko, O.A.; Okunji, C.O.; Tempesta, M.S. Antidiabetic and aldose reductase activities of biflavanones of Garcinia kola. J. Pharm. Pharmacol., 1990, 42(4), 290-292.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb05412.x] [PMID: 1974302]
[11]
Hussain, R.A.; Owegby, A.G.; Parimoo, P.; Waterman, P.G. Kolanone, a novel polyisoprenylated benzophenone with antimicrobial properties from the fruit of Garcinia kola. Planta Med., 1982, 44(2), 78-81.
[http://dx.doi.org/10.1055/s-2007-971406] [PMID: 7071196]
[12]
Iwu, M.; Igboko, O. Flavonoids of Garcinia kola seeds. J. Nat. Prod., 1982, 45(5), 650-651.
[http://dx.doi.org/10.1021/np50023a026]
[13]
Adaramoye, O.A.; Awogbindin, I.; Okusaga, J.O. Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on ethanol-induced oxidative stress in liver of adult wistar rats. J. Med. Food, 2009, 12(3), 584-590.
[http://dx.doi.org/10.1089/jmf.2008.0138] [PMID: 19627207]
[14]
Farombi, E.O. African indigenous plants with chemotherapeutic potentials and biotechnological approach to the production of bioactive prophylactic agents. Afr. J. Biotechnol., 2003, 2(12), 662-671.
[http://dx.doi.org/10.5897/AJB2003.000-1122]
[15]
Farombi, E.O.; Nwaokeafor, I.A. Anti-oxidant mechanisms of kolaviron: Studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats. Clin. Exp. Pharmacol. Physiol., 2005, 32(8), 667-674.
[http://dx.doi.org/10.1111/j.0305-1870.2005.04248.x] [PMID: 16120195]
[16]
World Health Organization Assessment of therapeutic efficacy of antimalarial drugs: For uncomplicated falciparum malaria in areas with intense transmission. Division of Control of Tropical Diseases., 1996.
[17]
Geiger, H.; Quinn, C.J. 77re Flawnoids-Advances in Research; Harborne, J.B.; Mabry, T.J., Eds.; , 1982, p. 505.
[18]
Lin, Y.M.; Anderson, H.; Flavin, M.T.; Pai, Y.H.S.; Mata-Greenwood, E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.C. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod., 1997, 60(9), 884-888.
[http://dx.doi.org/10.1021/np9700275] [PMID: 9322359]
[19]
Vlietinck, A.J.; De Bruyne, T.; Apers, S.; Pieters, L.A. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med., 1998, 64(2), 97-109.
[http://dx.doi.org/10.1055/s-2006-957384] [PMID: 9525100]
[20]
Bortey-Sam, N.; Ikenaka, Y.; Akoto, O.; Nakayama, S.M.M.; Asante, K.A.; Baidoo, E.; Obirikorang, C.; Mizukawa, H.; Ishizuka, M. Association between human exposure to heavy metals/metalloid and occurrences of respiratory diseases, lipid peroxidation and DNA damage in Kumasi, Ghana. Environ. Pollut., 2018, 235, 163-170.
[http://dx.doi.org/10.1016/j.envpol.2017.12.005] [PMID: 29288929]
[21]
Farombi, E.O.; Owoeye, O. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health, 2011, 8(6), 2533-2555.
[http://dx.doi.org/10.3390/ijerph8062533] [PMID: 21776245]
[22]
Ogunwa, T.H.; Fasimoye, R.Y.; Adeyelu, T.T. Studies on the interaction mechanisms of Garcinia kolaviron constituents with selected diabetes and neurodegenerative disease targets. J. Proteins Proteom., 2019, 10(3), 221-234.
[http://dx.doi.org/10.1007/s42485-019-00021-x]
[23]
Olaleye, S.B.; Farombi, E.O.; Adewoye, E.A.; Owoyele, B.V.; Onasanwo, S.A.; Elegbe, R.A. Analgesic and anti-inflammatory effects of kolaviron (a Garcinia kola seed extract). Afr. J. Biomed. Res., 2000, 3(3), 171-174.
[24]
Onasanwo, S.A.; Rotu, R.A. Antinociceptive and anti-inflammatory potentials of kolaviron: Mechanisms of action. J. Basic Clin. Physiol. Pharmacol., 2016, 27(4), 363-370.
[http://dx.doi.org/10.1515/jbcpp-2015-0075] [PMID: 26812784]
[25]
Ayepola, O.R.; Chegou, N.N.; Brooks, N.L.; Oguntibeju, O.O. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complement. Altern. Med., 2013, 13(1), 363.
[http://dx.doi.org/10.1186/1472-6882-13-363] [PMID: 24359406]
[26]
Samuel, C.L.; Norma Yolanda, H.S.; Salvador Emilio, L.C.; Pedro, C.H.; Felipe De Jesús, A.V.; María Teresa, S. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar. Freshwat. Behav. Physiol., 2019, 52(1), 1-15.
[http://dx.doi.org/10.1080/10236244.2019.1607734]
[27]
Farombi, E.O.; Adepoju, B.F.; Ola-Davies, O.E.; Emerole, G.O. Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural bioflavonoid of Garcinia kola seeds. Eur. J. Cancer Prev., 2005, 14(3), 207-214.
[http://dx.doi.org/10.1097/00008469-200506000-00003] [PMID: 15901988]
[28]
Adaramoye, O.A.; Popoola, B.O.; Farombi, E.O. Effects of Xylopia aethiopica (Annonaceae) fruit methanol extract on γ-radiation-induced oxidative stress in brain of adult male Wistar rats. Acta Biol. Hung., 2010, 61(3), 250-261.
[http://dx.doi.org/10.1556/ABiol.61.2010.3.2] [PMID: 20724272]
[29]
Adaramoye, O.A.; Adedara, I.A.; Farombi, E.O. Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats. Exp. Toxicol. Pathol., 2012, 64(4), 379-385.
[http://dx.doi.org/10.1016/j.etp.2010.10.002] [PMID: 21036568]
[30]
Farombi, E.O.; Abarikwu, S.O.; Adedara, I.A.; Oyeyemi, M.O. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin. Pharmacol. Toxicol., 2007, 100(1), 43-48.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00005.x] [PMID: 17214610]
[31]
Farombi, E.O.; Ugwuezunmba, M.C.; Ezenwadu, T.T.; Oyeyemi, M.O.; Ekor, M. Tetracycline-induced reproductive toxicity in male rats: Effects of vitamin C and N-acetylcysteine. Exp. Toxicol. Pathol., 2008, 60(1), 77-85.
[http://dx.doi.org/10.1016/j.etp.2008.02.002] [PMID: 18406588]
[32]
Adaramoye, O.A.; Lawal, S.O. Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on the antioxidant, hormonal and spermatogenic indices of diabetic male rats. Andrologia, 2014, 46(8), 878-886.
[http://dx.doi.org/10.1111/and.12160] [PMID: 24007369]
[33]
Omotoso, G.O.; Arietarhire, L.O.; Ukwubile, I.I.; Gbadamosi, I.T. The protective effect of kolaviron on molecular, cellular, and behavioral characterization of cerebellum in the rat model of demyelinating diseases. Basic Clin. Neurosci., 2020, 11(5), 609-618.
[http://dx.doi.org/10.32598/bcn.9.10.300] [PMID: 33643554]
[34]
Farombi, E.O.; Adedara, I.A.; Ajayi, B.O.; Ayepola, O.R.; Egbeme, E.E. Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic Clin. Pharmacol. Toxicol., 2013, 113(1), 49-55.
[http://dx.doi.org/10.1111/bcpt.12050] [PMID: 23336970]
[35]
Farombi, E.O.; Akanni, O.O.; Emerole, G.O. Antioxidant and scavenging activities of flavonoid extract (kolaviron) of Garcinia kola seeds. Pharm. Biol., 2002, 40(2), 107-116.
[http://dx.doi.org/10.1076/phbi.40.2.107.5838]
[36]
Coulom, H.; Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci., 2004, 24(48), 10993-10998.
[http://dx.doi.org/10.1523/JNEUROSCI.2993-04.2004] [PMID: 15574749]
[37]
Cannon, J.R.; Greenamyre, J.T. Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog. Brain Res., 2010, 184, 17-33.
[http://dx.doi.org/10.1016/S0079-6123(10)84002-6] [PMID: 20887868]
[38]
Khadrawy, Y.A.; Salem, A.M.; El-Shamy, K.A.; Ahmed, E.K.; Fadl, N.N.; Hosny, E.N. Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson’s disease induced by rotenone. J. Diet. Suppl., 2017, 14(5), 553-572.
[http://dx.doi.org/10.1080/19390211.2016.1275916] [PMID: 28301304]
[39]
Farombi, E.O.; Abolaji, A.O.; Farombi, T.H.; Oropo, A.S.; Owoje, O.A.; Awunah, M.T. Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster. Pestic. Biochem. Physiol., 2018, 145, 39-45.
[http://dx.doi.org/10.1016/j.pestbp.2018.01.002] [PMID: 29482730]
[40]
Ishola, I.O.; Adamson, F.M.; Adeyemi, O.O. Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system. Metab. Brain Dis., 2017, 32(1), 235-245.
[http://dx.doi.org/10.1007/s11011-016-9902-2] [PMID: 27631100]
[41]
Farombi, E.O.; Awogbindin, I.O.; Farombi, T.H.; Oladele, J.O.; Izomoh, E.R.; Aladelokun, O.B.; Ezekiel, I.O.; Adebambo, O.I.; Abah, V.O. Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease. Neurotoxicology, 2019, 73, 132-141.
[http://dx.doi.org/10.1016/j.neuro.2019.03.005] [PMID: 30930291]
[42]
Adedara, I.A.; Awogbindin, I.O.; Owoeye, O.; Maduako, I.C.; Ajeleti, A.O.; Owumi, S.E.; Patlolla, A.K.; Farombi, E.O. Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats. Psychopharmacology, 2020, 237(4), 1027-1040.
[http://dx.doi.org/10.1007/s00213-019-05432-8] [PMID: 31897575]
[43]
Igado, O.O.; Olopade, J.O.; Adesida, A.; Aina, O.O.; Farombi, E.O. Morphological and biochemical investigation into the possible neuroprotective effects of kolaviron (Garcinia kola bioflavonoid) on the brains of rats exposed to vanadium. Drug Chem. Toxicol., 2012, 35(4), 371-380.
[http://dx.doi.org/10.3109/01480545.2011.630005] [PMID: 22288905]
[44]
Salau, V.F.; Erukainure, O.L.; Ibeji, C.U.; Olasehinde, T.A.; Koorbanally, N.A.; Islam, M.S. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox. Res., 2020, 37(4), 944-955.
[http://dx.doi.org/10.1007/s12640-019-00099-7] [PMID: 31422569]
[45]
Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr., 2002, 14(Suppl. 1), 77-91.
[http://dx.doi.org/10.1017/S1041610203008676] [PMID: 12636181]
[46]
Melo, J.B.; Agostinho, P.; Oliveira, C.R. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci. Res., 2003, 45(1), 117-127.
[http://dx.doi.org/10.1016/S0168-0102(02)00201-8] [PMID: 12507730]
[47]
Adefegha, S.A.; Omojokun, O.S.; Oboh, G.; Fasakin, O.; Ogunsuyi, O. Modulatory effects of ferulic acid on cadmium-induced brain damage. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP56-NP61.
[http://dx.doi.org/10.1177/2156587215621726] [PMID: 26700313]
[48]
Szwajgier, D.; Borowiec, K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew., 2012, 118(1), 40-48.
[http://dx.doi.org/10.1002/jib.5]
[49]
Ijomone, O.M.; Obi, A.U. Kolaviron, isolated from Garcinia kola, inhibits acetylcholinesterase activities in the hippocampus and striatum of wistar rats. Ann. Neurosci., 2013, 20(2), 42-46.
[http://dx.doi.org/10.5214/ans.0972.7531.200203] [PMID: 25206011]
[50]
Tripathi, A.; Srivastava, U.C. Acetylcholinesterase: A versatile enzyme of nervous systems. Ann. Neurosci., 2010, 15(4), 106-111.
[http://dx.doi.org/10.5214/ans.0972.7531.2008.150403]
[51]
Freitas, R.M.; Sousa, F.C.; Viana, G.S.; Fonteles, M.M. Acetylcholinesterase activities in hippocampus, frontal cortex and striatum of Wistar rats after pilocarpine-induced status epilepticus. Neurosci. Lett., 2006, 399(1-2), 76-78.
[http://dx.doi.org/10.1016/j.neulet.2006.01.028] [PMID: 16481111]
[52]
Volpicelli-Daley, L.A.; Hrabovska, A.; Duysen, E.G.; Ferguson, S.M.; Blakely, R.D.; Lockridge, O.; Levey, A.I. Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol. Pharmacol., 2003, 64(6), 1309-1316.
[http://dx.doi.org/10.1124/mol.64.6.1309] [PMID: 14645660]
[53]
Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, 25(1), CD005593.
[PMID: 16437532]
[54]
Salau, V.F.; Erukainure, O.L.; Bharuth, V.; Ibeji, C.U.; Olasehinde, T.A.; Islam, M.S. Kolaviron stimulates glucose uptake with concomitant modulation of metabolic activities implicated in neurodegeneration in isolated rat brain, without perturbation of tissue ultrastructural morphology. Neurosci. Res., 2020, 169, 57-68.
[PMID: 32645363]
[55]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[56]
Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran, 2017, 31, 134.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[57]
Adaramoye, O.A.; Adeyemi, E.O. Hypoglycaemic and hypolipidaemic effects of fractions from kolaviron, a biflavonoid complex from Garcinia kola in streptozotocin-induced diabetes mellitus rats. J. Pharm. Pharmacol., 2006, 58(1), 121-128.
[http://dx.doi.org/10.1211/jpp.58.1.0015] [PMID: 16393472]
[58]
Damian, D.C.; Nweze, E.I.; Onyeke, C.C. The in vivo anti-plasmodium activity of Garcinia kola Heckel. J. Basic Pharmacol. Toxicol., 2017, 1(2), 27-31.
[59]
Oluwatosin, A.; Tolulope, A.; Ayokulehin, K.; Patricia, O.; Aderemi, K.; Catherine, F.; Olusegun, A. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac. J. Trop. Med., 2014, 7(2), 97-104.
[http://dx.doi.org/10.1016/S1995-7645(14)60003-1] [PMID: 24461521]
[60]
Agarwal, R. Severe asthma with fungal sensitization. Curr. Allergy Asthma Rep., 2011, 11(5), 403-413.
[http://dx.doi.org/10.1007/s11882-011-0217-4] [PMID: 21789577]
[61]
Ibulubo, M.T.; Eze, G.I.; Ozolua, R.I.; Baxter-Grillo, D.; Uwaya, D.O. Evaluation of the protective and ameliorative properties of Garcinia kola on histamine-induced bronchoconstriction in guinea pigs. Pharmacognosy Res., 2012, 4(4), 203-207.
[http://dx.doi.org/10.4103/0974-8490.102262] [PMID: 23225963]
[62]
Wogan, G.N.; Paglialunga, S.; Newberne, P.M. Carcinogenic effects of low dietary levels of aflatoxin B1 in rats. Food Cosmet. Toxicol., 1974, 12(5-6), 681-685.
[http://dx.doi.org/10.1016/0015-6264(74)90239-9] [PMID: 4375655]
[63]
Wang, H.; Dick, R.; Yin, H.; Licad-Coles, E.; Kroetz, D.L.; Szklarz, G.; Harlow, G.; Halpert, J.R.; Correia, M.A. Structure-function relationships of human liver cytochromes P450 3A: Aflatoxin B1 metabolism as a probe. Biochemistry, 1998, 37(36), 12536-12545.
[http://dx.doi.org/10.1021/bi980895g] [PMID: 9730826]
[64]
Nwankwo, J.O.; Tahnteng, J.G.; Emerole, G.O. Inhibition of aflatoxin B1 genotoxicity in human liver-derived HepG2 cells by kolaviron biflavonoids and molecular mechanisms of action. Eur. J. Cancer Prev., 2000, 9(5), 351-361.
[http://dx.doi.org/10.1097/00008469-200010000-00010] [PMID: 11075889]
[65]
Alabi, Q.K.; Akomolafe, R.O.; Olukiran, O.S.; Nafiu, A.O.; Omole, J.G.; Adefisayo, A.M.; Oladele, A.A. Assessment of haematological and biochemical effects of kolaviron in male Wistar rats. J. Pharm. Res. Int., 2017, 16(3), 1-14.
[66]
Goldstein, J.L. Familial hypercholesterolemia. The Metabolic Basis of Inherited Disease; MC Graw Hill: New York, 2001.
[67]
Civeira, F. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis, 2004, 173(1), 55-68.
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.11.010] [PMID: 15177124]
[68]
Jacques, P.F.; Sulsky, S.I.; Perrone, G.E.; Jenner, J.; Schaefer, E.J. Effect of vitamin C supplementation on lipoprotein cholesterol, apolipoprotein, and triglyceride concentrations. Ann. Epidemiol., 1995, 5(1), 52-59.
[http://dx.doi.org/10.1016/1047-2797(94)00041-Q] [PMID: 7728285]
[69]
Adaramoye, O.A.; Nwaneri, V.O.; Anyanwu, K.C.; Farombi, E.O.; Emerole, G.O. Possible anti-atherogenic effect of kolaviron (a Garcinia kola seed extract) in hypercholesterolaemic rats. Clin. Exp. Pharmacol. Physiol., 2005, 32(1-2), 40-46.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04146.x] [PMID: 15730433]
[70]
Omole, J.G.; Ayoka, O.A.; Alabi, Q.K.; Adefisayo, M.A.; Asafa, M.A.; Olubunmi, B.O.; Fadeyi, B.A. Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J. Evid. Based Integr. Med., 2018, 23, 2156587218757649.
[http://dx.doi.org/10.1177/2156587218757649] [PMID: 29468886]
[71]
De Souza, C.A.; Santini, G.; Marino, G.; Nati, S.; Congiu, A.M.; Vigorito, A.C.; Damasio, E. Amifostine (WR-2721), a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin’s lymphomas: A phase II study. Braz. J. Med. Biol. Res., 2000, 33(7), 791-798.
[http://dx.doi.org/10.1590/S0100-879X2000000700009] [PMID: 10881054]
[72]
Kasdallah-Grissa, A.; Mornagui, B.; Aouani, E.; Hammami, M.; Gharbi, N.; Kamoun, A.; El-Fazaa, S. Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol Alcohol., 2006, 41(3), 236-239.
[http://dx.doi.org/10.1093/alcalc/agh256] [PMID: 16517551]
[73]
Kasdallah-Grissa, A.; Mornagui, B.; Aouani, E.; Hammami, M.; El May, M.; Gharbi, N.; Kamoun, A.; El-Fazaâ, S. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci., 2007, 80(11), 1033-1039.
[http://dx.doi.org/10.1016/j.lfs.2006.11.044] [PMID: 17258234]
[74]
Adedara, I.A.; Farombi, E.O. Chemoprotection of ethylene glycol monoethyl ether-induced reproductive toxicity in male rats by kolaviron, isolated biflavonoid from Garcinia kola seed. Hum. Exp. Toxicol., 2012, 31(5), 506-517.
[http://dx.doi.org/10.1177/0960327111424301] [PMID: 22027498]
[75]
Adedara, I.A.; Vaithinathan, S.; Jubendradass, R.; Mathur, P.P.; Farombi, E.O. Kolaviron prevents carbendazim-induced steroidogenic dysfunction and apoptosis in testes of rats. Environ. Toxicol. Pharmacol., 2013, 35(3), 444-453.
[http://dx.doi.org/10.1016/j.etap.2013.01.010] [PMID: 23474402]
[76]
Akinmoladun, A.C.; Akinrinola, B.L.; Olaleye, M.T.; Farombi, E.O. Kolaviron, a Garcinia kola biflavonoid complex, protects against ischemia/reperfusion injury: Pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem. Res., 2015, 40(4), 777-787.
[http://dx.doi.org/10.1007/s11064-015-1527-z] [PMID: 25638229]
[77]
Ulubay, M.; Yurt, K.K.; Kaplan, A.A.; Atilla, M.K. The use of diclofenac sodium in urological practice: A structural and neurochemical based review. J. Chem. Neuroanat., 2018, 87, 32-36.
[http://dx.doi.org/10.1016/j.jchemneu.2017.02.005] [PMID: 28179185]
[78]
Brogden, R.N.; Heel, R.C.; Pakes, G.E.; Speight, T.M.; Avery, G.S. Diclofenac sodium: A review of its pharmacological properties and therapeutic use in rheumatic diseases and pain of varying origin. Drugs, 1980, 20(1), 24-48.
[http://dx.doi.org/10.2165/00003495-198020010-00002] [PMID: 6772422]
[79]
Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs, 2015, 75(8), 859-877.
[http://dx.doi.org/10.1007/s40265-015-0392-z] [PMID: 25963327]
[80]
Hamza, A.A. Curcuma longa, Glycyrrhiza glabra and Moringa oleifera ameliorate diclofenac-induced hepatoxicity in rats. Am. J. Pharmacol. Toxicol., 2007, 2(2), 80-88.
[http://dx.doi.org/10.3844/ajptsp.2007.80.88]
[81]
Alabi, Q.K.; Akomolafe, R.O.; Adefisayo, M.A.; Olukiran, O.S.; Nafiu, A.O.; Fasanya, M.K.; Oladele, A.A. Kolaviron attenuates diclofenac-induced nephrotoxicity in male Wistar rats. Appl. Physiol. Nutr. Metab., 2018, 43(9), 956-968.
[http://dx.doi.org/10.1139/apnm-2017-0788] [PMID: 29847737]
[82]
Farombi, E.O.; Shrotriya, S.; Surh, Y.J. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-kappaB and AP-1. Life Sci., 2009, 84(5-6), 149-155.
[http://dx.doi.org/10.1016/j.lfs.2008.11.012] [PMID: 19081081]
[83]
Nanji, A.A.; Jokelainen, K.; Tipoe, G.L.; Rahemtulla, A.; Thomas, P.; Dannenberg, A.J. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-κ B-dependent genes. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(2), G321-G327.
[http://dx.doi.org/10.1152/ajpgi.00230.2002] [PMID: 12388178]
[84]
Kusakabe, T.; Nakajima, K.; Nakazato, K.; Suzuki, K.; Takada, H.; Satoh, T.; Oikawa, M.; Arakawa, K.; Nagamine, T. Changes of heavy metal, metallothionein and heat shock proteins in Sertoli cells induced by cadmium exposure. Toxicol. In Vitro, 2008, 22(6), 1469-1475.
[http://dx.doi.org/10.1016/j.tiv.2008.04.021] [PMID: 18556172]
[85]
Li, J.L.; Gao, R.; Li, S.; Wang, J.T.; Tang, Z.X.; Xu, S.W. Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals, 2010, 23(4), 695-705.
[http://dx.doi.org/10.1007/s10534-010-9334-0] [PMID: 20372978]
[86]
Akinloye, O.; Arowojolu, A.O.; Shittu, O.B.; Anetor, J.I. Cadmium toxicity: A possible cause of male infertility in Nigeria. Reprod. Biol., 2006, 6(1), 17-30.
[PMID: 16604149]
[87]
Maduabuchi, J.M.; Nzegwu, C.N.; Adigba, E.O.; Aloke, R.U.; Ezomike, C.N.; Okocha, C.E.; Obi, E.; Orisakwe, O.E. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern. Sci. Total Environ., 2006, 366(2-3), 621-626.
[http://dx.doi.org/10.1016/j.scitotenv.2005.12.015] [PMID: 16442590]
[88]
Farombi, E.O.; Adedara, I.A.; Akinrinde, S.A.; Ojo, O.O.; Eboh, A.S. Protective effects of kolaviron and quercetin on cadmium-induced testicular damage and endocrine pathology in rats. Andrologia, 2012, 44(4), 273-284.
[http://dx.doi.org/10.1111/j.1439-0272.2012.01279.x] [PMID: 22356231]
[89]
Adeloye, D. An estimate of the incidence and prevalence of stroke in Africa: A systematic review and meta-analysis. PLoS One, 2014, 9(6), e100724.
[http://dx.doi.org/10.1371/journal.pone.0100724] [PMID: 24967899]
[90]
Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res., 2017, 120(3), 439-448.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308413] [PMID: 28154096]
[91]
Mestre, H.; Cohen-Minian, Y.; Zajarias-Fainsod, D.; Ibarra, A. Pharmacological treatment of acute ischemic stroke. Neurodegenerative diseases; IntechOpen, 2013.
[http://dx.doi.org/10.5772/53774]
[92]
Radaelli, A.; Mancia, G.; Ferrarese, C.; Beretta, S. Eds.; New Concepts in Stroke Diagnosis and Therapy; Bentham Science Publishers, 2017.
[93]
Ojo, O.B.; Amoo, Z.A.; Saliu, I.O.; Olaleye, M.T.; Farombi, E.O.; Akinmoladun, A.C. Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomed. Pharmacother., 2019, 111, 859-872.
[http://dx.doi.org/10.1016/j.biopha.2018.12.144] [PMID: 30841465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy