Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Effects of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Structural and Electrical Remodeling: From Myocardial Cytology to Cardiodiabetology

Author(s): Maria Marketou*, Joanna Kontaraki, Spyros Maragkoudakis, Christos Danelatos, Sofia Papadaki, Stelios Zervakis, Anthoula Plevritaki, Panos Vardas,, Fragiskos Parthenakis and George Kochiadakis

Volume 20, Issue 2, 2022

Published on: 03 February, 2022

Page: [178 - 188] Pages: 11

DOI: 10.2174/1570161120666211227125033

Price: $65

conference banner
Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have changed the clinical landscape of diabetes mellitus (DM) therapy through their favourable effects on cardiovascular outcomes. Notably, the use of SGLT2i has been linked to cardiovascular benefits regardless of DM status, while their pleiotropic actions remain to be fully elucidated. What we do know is that SGLT2i exert beneficial effects even at the level of the myocardial cell and that these are linked to an improvement in the energy substrate, resulting in less inflammation and fibrosis. SGLT2i ameliorates myocardial extracellular matrix remodeling, cardiomyocyte stiffness and concentric hypertrophy, achieving beneficial remodeling of the left ventricle with significant implications for the pathogenesis and outcome of heart failure. Most studies show a significant improvement in markers of diastolic dysfunction along with a reduction in left ventricular hypertrophy. In addition to these effects, there is electrophysiological remodeling, which explains initial data suggesting that SGLT2i have an antiarrhythmic action against both atrial and ventricular arrhythmias. However, future studies need to clarify not only the exact mechanisms of this beneficial functional, structural, and electrophysiological cardiac remodeling but also its magnitude to determine whether this is a class or a drug effect.

Keywords: Sodium–glucose cotransporter-2 inhibitors, diabetes, remodelling, myocardial cytology, cardiodiabetology.

Graphical Abstract
[1]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 2011; 22(1): 104-12.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[2]
Jabbour SA, Goldstein BJ. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes. Int J Clin Pract 2008; 62(8): 1279-84.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01829.x] [PMID: 18705823]
[3]
Arnott C, Li JW, Cannon CP, et al. The effects of canagliflozin on heart failure and cardiovascular death by baseline participant characteristics: Analysis of the CREDENCE trial. Diabetes Obes Metab 2021; 23(7): 1652-9.
[http://dx.doi.org/10.1111/dom.14386] [PMID: 33769679]
[4]
Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[5]
Wiviott SD, Raz I, Bonaca MP, et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[6]
Kosiborod M, Cavender MA, Fu AZ, et al. CVD-REAL Investigators and Study Group. . Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL study (Comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[7]
Zelniker TA, Braunwald E. Clinical benefit of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75(4): 435-47.
[http://dx.doi.org/10.1016/j.jacc.2019.11.036] [PMID: 32000956]
[8]
Wang X, Ni J, Guo R, et al. SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev 2021. [Online ahead of print]
[http://dx.doi.org/10.1007/s10741-021-10096-8]
[9]
Butler J, Usman MS, Khan MS, et al. Efficacy and safety of SGLT2 inhibitors in heart failure: systematic review and meta-analysis. ESC Heart Fail 2020; 7(6): 3298-309.
[http://dx.doi.org/10.1002/ehf2.13169] [PMID: 33586910]
[10]
Lu Y, Li F, Fan Y, Yang Y, Chen M, Xi J. Effect of SGLT-2 inhibitors on cardiovascular outcomes in heart failure patients: A meta-analysis of randomized controlled trials. Eur J Intern Med 2021; 87: 20-8.
[http://dx.doi.org/10.1016/j.ejim.2021.03.020] [PMID: 33824055]
[11]
Vlasschaert C, Sidhu B, Silver SA. Sodium/glucose cotransporter 2 inhibitors in chronic kidney disease and heart failure: ready for prime time in patients without diabetes. Curr Opin Nephrol Hypertens 2021; 30(3): 361-8.
[http://dx.doi.org/10.1097/MNH.0000000000000703] [PMID: 33767064]
[12]
Chai Q, Miao J, Liu M, Zhang Z, Meng Z, Wu W. Knockdown of SGLT1 prevents the apoptosis of cardiomyocytes induced by glucose fluctuation via relieving oxidative stress and mitochondrial dysfunction. Biochem Cell Biol 2021; 99(3): 356-63.
[http://dx.doi.org/10.1139/bcb-2020-0491] [PMID: 33259229]
[13]
Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol 2020; 133-134: 106779.
[http://dx.doi.org/10.1016/j.vph.2020.106779] [PMID: 32814163]
[14]
Ren C, Sun K, Zhang Y, et al. Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol 2021; 12: 664181.
[http://dx.doi.org/10.3389/fphar.2021.664181] [PMID: 33995090]
[15]
Packer M. Molecular, cellular, and clinical evidence that sodium-glucose cotransporter 2 inhibitors act as neurohormonal antagonists when used for the treatment of chronic heart failure. J Am Heart Assoc 2020; 9(16): e016270.
[http://dx.doi.org/10.1161/JAHA.120.016270] [PMID: 32791029]
[16]
Kim SR, Lee SG, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 2020; 11(1): 2127.
[http://dx.doi.org/10.1038/s41467-020-15983-6] [PMID: 32358544]
[17]
Hess DA, Terenzi DC, Trac JZ, et al. SGLT2 inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus. Cell Metab 2019; 30(4): 609-13.
[http://dx.doi.org/10.1016/j.cmet.2019.08.015] [PMID: 31477497]
[18]
Lescano CH, Leonardi G, Torres PHP, et al. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem Pharmacol 2020; 182: 114276.
[http://dx.doi.org/10.1016/j.bcp.2020.114276] [PMID: 33039417]
[19]
Madonna R, Doria V, Minnucci I, Pucci A, Pierdomenico DS, De Caterina R. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J Cell Mol Med 2020; 24(21): 12331-40.
[http://dx.doi.org/10.1111/jcmm.15699] [PMID: 32940423]
[20]
Philippaert K, Kalyaanamoorthy S, Fatehi M, et al. The cardiac late sodium channel current is a molecular target for the sodium-glucose co-transporter 2 inhibitor empagliflozin. Circulation 2021; 143(22): 2188-204.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.053350] [PMID: 33832341]
[21]
Trum M, Riechel J, Lebek S, et al. Empagliflozin inhibits Na+ /H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail 2020; 7: 4429-37.
[http://dx.doi.org/10.1002/ehf2.13024] [PMID: 32946200]
[22]
Zhang H, Uthman L, Bakker D, et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases α-ketoglutarate synthesis from palmitate in type II diabetic mouse hearts. Front Cardiovasc Med 2020; 7: 592233.
[http://dx.doi.org/10.3389/fcvm.2020.592233] [PMID: 33344518]
[23]
Mustroph J, Wagemann O, Lücht CM, et al. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Fail 2018; 5(4): 642-8.
[http://dx.doi.org/10.1002/ehf2.12336] [PMID: 30117720]
[24]
Sayour AA, Celeng C, Oláh A, Ruppert M, Merkely B, Radovits T. Sodium-glucose cotransporter 2 inhibitors reduce myocardial infarct size in preclinical animal models of myocardial ischaemia-reperfusion injury: a meta-analysis. Diabetologia 2021; 64(4): 737-48.
[http://dx.doi.org/10.1007/s00125-020-05359-2] [PMID: 33483761]
[25]
Andreadou I, Bell RM, Bøtker HE, Zuurbier CJ. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim Biophys Acta Mol Basis Dis 2020; 1866(7): 165770.
[http://dx.doi.org/10.1016/j.bbadis.2020.165770] [PMID: 32194159]
[26]
Lee SY, Lee TW, Park GT, et al. Sodium/glucose co-transporter 2 inhibitor, empagliflozin, alleviated transient expression of SGLT2 after myocardial infarction. Korean Circ J 2021; 51(3): 251-62.
[http://dx.doi.org/10.4070/kcj.2020.0303] [PMID: 33655725]
[27]
Hammoudi N, Jeong D, Singh R, et al. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther 2017; 31(3): 233-46.
[http://dx.doi.org/10.1007/s10557-017-6734-1] [PMID: 28643218]
[28]
Arow M, Waldman M, Yadin D, et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol 2020; 19(1): 7.
[http://dx.doi.org/10.1186/s12933-019-0980-4] [PMID: 31924211]
[29]
Goerg J, Sommerfeld M, Greiner B, et al. Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: Regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 2021; 22(11): 5437.
[http://dx.doi.org/10.3390/ijms22115437] [PMID: 34063987]
[30]
Lin YW, Chen CY, Shih JY, et al. Dapagliflozin improves cardiac hemodynamics and mitigates arrhythmogenesis in mitral regurgitation-induced myocardial dysfunction. J Am Heart Assoc 2021; 10(7): e019274.
[http://dx.doi.org/10.1161/JAHA.120.019274] [PMID: 33749310]
[31]
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study. JACC Cardiovasc Imaging 2021; 14(2): 393-407.
[http://dx.doi.org/10.1016/j.jcmg.2020.07.042] [PMID: 33129742]
[32]
Yildiz BO, Haznedaroglu IC. Rethinking leptin and insulin action: therapeutic opportunities for diabetes. Int J Biochem Cell Biol 2006; 38(5-6): 820-30.
[http://dx.doi.org/10.1016/j.biocel.2005.09.013] [PMID: 16236542]
[33]
Abe Y, Ono K, Kawamura T, et al. Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol 2007; 292(5): H2387-96.
[http://dx.doi.org/10.1152/ajpheart.00579.2006] [PMID: 17220191]
[34]
Wu P, Wen W, Li J, et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res 2019; 51(8): 487-94.
[http://dx.doi.org/10.1055/a-0958-2441] [PMID: 31408894]
[35]
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 2018; 85: 32-7.
[http://dx.doi.org/10.1016/j.metabol.2018.02.002] [PMID: 29452178]
[36]
Ugusman A, Kumar J, Aminuddin A. Endothelial function and dysfunction: Impact of sodium-glucose cotransporter 2 inhibitors. Pharmacol Ther 2021; 224: 107832.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107832] [PMID: 33662450]
[37]
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci 2020; 5(6): 632-44.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[38]
Papadopoulou E, Loutradis C, Tzatzagou G, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens 2021; 39(4): 749-58.
[http://dx.doi.org/10.1097/HJH.0000000000002690] [PMID: 33186325]
[39]
Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens 2017; 35(10): 2059-68.
[http://dx.doi.org/10.1097/HJH.0000000000001434] [PMID: 28598954]
[40]
Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018; 17(1): 132.
[http://dx.doi.org/10.1186/s12933-018-0775-z] [PMID: 30296931]
[41]
Eickhoff MK, Olsen FJ, Frimodt-Møller M, et al. Effect of dapagliflozin on cardiac function in people with type 2 diabetes and albuminuria - A double blind randomized placebo-controlled crossover trial. J Diabetes Complications 2020; 34(7): 107590.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107590] [PMID: 32340841]
[42]
Sakai T, Miura S. Effects of sodium-glucose cotransporter 2 inhibitor on vascular endothelial and diastolic function in heart failure with preserved ejection fraction - Novel prospective cohort study. Circ Rep 2019; 1(7): 286-95.
[http://dx.doi.org/10.1253/circrep.CR-19-0018] [PMID: 33693152]
[43]
Hiramatsu T, Ito H, Okumura S, Asano Y, Iguchi D, Furuta S. Impact of glucagon like peptide-1 receptor agonist and sodium glucose cotransporter 2 inhibitors on type 2 diabetes patients with renal impairment. Diab Vasc Dis Res 2020; 17(6): 1479164120971220.
[http://dx.doi.org/10.1177/1479164120971220] [PMID: 33371732]
[44]
Rau M, Thiele K, Hartmann NK, et al. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: a randomized controlled study. Cardiovasc Diabetol 2021; 20(1): 6.
[http://dx.doi.org/10.1186/s12933-020-01175-5] [PMID: 33413355]
[45]
Scheffer M, Driessen-Waaijer A, Hamdani N, et al. Stratified treatment of heart failure with preserved ejection fraction: rationale and design of the STADIA-HFpEF trial. ESC Heart Fail 2020; 7: 4478-87.
[http://dx.doi.org/10.1002/ehf2.13055] [PMID: 33073523]
[46]
Shim CY, Seo J, Cho I, et al. Randomized, controlled trial to evaluate the effect of dapagliflozin on left ventricular diastolic function in patients with type 2 diabetes mellitus: The IDDIA Trial. Circulation 2021; 143(5): 510-2.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.051992] [PMID: 33186508]
[47]
Tanaka H, Soga F, Tatsumi K, et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol 2020; 19(1): 6.
[http://dx.doi.org/10.1186/s12933-019-0985-z] [PMID: 31910853]
[48]
Lan NSR, Yeap BB, Fegan PG, Green G, Rankin JM, Dwivedi G. Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes. Int J Cardiovasc Imaging 2021; 37(2): 517-27.
[http://dx.doi.org/10.1007/s10554-020-02034-w] [PMID: 32959096]
[49]
Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. EMPA-TROPISM (ATRU-4) Investigators. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2021; 77(3): 243-55.
[http://dx.doi.org/10.1016/j.jacc.2020.11.008] [PMID: 33197559]
[50]
Sezai A, Sekino H, Unosawa S, Taoka M, Osaka S, Tanaka M. Canagliflozin for Japanese patients with chronic heart failure and type II diabetes. Cardiovasc Diabetol 2019; 18(1): 76.
[http://dx.doi.org/10.1186/s12933-019-0877-2] [PMID: 31167663]
[51]
Higashikawa T, Ito T, Mizuno T, et al. Effects of tofogliflozin on cardiac function in elderly patients with diabetes mellitus. J Clin Med Res 2020; 12(3): 165-71.
[http://dx.doi.org/10.14740/jocmr4098] [PMID: 32231752]
[52]
Verma S, Garg A, Yan AT, et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 2016; 39(12): e212-3.
[http://dx.doi.org/10.2337/dc16-1312] [PMID: 27679584]
[53]
Cohen ND, Gutman SJ, Briganti EM, Taylor AJ. Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: a cardiac magnetic resonance study. Intern Med J 2019; 49(8): 1006-10.
[http://dx.doi.org/10.1111/imj.14260] [PMID: 30784160]
[54]
Matsutani D, Sakamoto M, Kayama Y, Takeda N, Horiuchi R, Utsunomiya K. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol 2018; 17(1): 73.
[http://dx.doi.org/10.1186/s12933-018-0717-9] [PMID: 29788955]
[55]
Kosugi D, Inaba H, Kaido Y, et al. Beneficial effects of sodium glucose cotransporter 2 inhibitors on left ventricular mass in patients with diabetes mellitus. Diabetes 2021; 13(11): 847-56.
[http://dx.doi.org/10.1111/1753-0407.13209]
[56]
Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 2019; 140(21): 1693-702.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042375] [PMID: 31434508]
[57]
Mason T, Coelho-Filho OR, Verma S, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging 2021; 14(6): 1164-73.
[http://dx.doi.org/10.1016/j.jcmg.2020.10.017] [PMID: 33454272]
[58]
Hsu JC, Wang CY, Su MM, Lin LY, Yang WS. Effect of empagliflozin on cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes mellitus. Sci Rep 2019; 9(1): 15348.
[http://dx.doi.org/10.1038/s41598-019-51949-5] [PMID: 31653956]
[59]
Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 2018; 17(1): 6.
[http://dx.doi.org/10.1186/s12933-017-0658-8] [PMID: 29301516]
[60]
Gaborit B, Ancel P, Abdullah AE, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol 2021; 20(1): 57.
[http://dx.doi.org/10.1186/s12933-021-01237-2] [PMID: 33648515]
[61]
Hiruma S, Shigiyama F, Hisatake S, et al. A prospective randomized study comparing effects of empagliflozin to sitagliptin on cardiac fat accumulation, cardiac function, and cardiac metabolism in patients with early-stage type 2 diabetes: the ASSET study. Cardiovasc Diabetol 2021; 20(1): 32.
[http://dx.doi.org/10.1186/s12933-021-01228-3] [PMID: 33530982]
[62]
Bouchi R, Terashima M, Sasahara Y, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol 2017; 16(1): 32.
[http://dx.doi.org/10.1186/s12933-017-0516-8] [PMID: 28253918]
[63]
Braha A, Timar B, Diaconu L, et al. Dynamics of epicardiac fat and heart function in type 2 diabetic patients initiated with SGLT-2 inhibitors. Diabetes Metab Syndr Obes 2019; 12: 2559-66.
[http://dx.doi.org/10.2147/DMSO.S223629] [PMID: 31824184]
[64]
Özgür Barış V, Dinçsoy B, Gedikli E, Erdemb A. Empagliflozin significantly attenuates sotalol-induced QTc prolongation in rats. Kardiol Pol 2021; 79(1): 53-7.
[http://dx.doi.org/10.33963/KP.15666] [PMID: 33146500]
[65]
Jhuo SJ, Liu IH, Tasi WC, et al. Characteristics of ventricular electrophysiological substrates in metabolic mice treated with empagliflozin. Int J Mol Sci 2021; 22(11): 6105.
[http://dx.doi.org/10.3390/ijms22116105] [PMID: 34198942]
[66]
Azam MA, Chakraborty P, Si D, et al. Anti-arrhythmic and inotropic effects of empagliflozin following myocardial ischemia. Life Sci 2021; 276: 119440.
[http://dx.doi.org/10.1016/j.lfs.2021.119440] [PMID: 33781832]
[67]
Li HL, Lip GYH, Feng Q, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol 2021; 20(1): 100.
[http://dx.doi.org/10.1186/s12933-021-01293-8] [PMID: 33962654]
[68]
Fernandes GC, Fernandes A, Cardoso R, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm 2021; 18(7): 1098-105.
[http://dx.doi.org/10.1016/j.hrthm.2021.03.028] [PMID: 33757845]
[69]
Nishinarita R, Niwano S, Niwano H, et al. Canagliflozin suppresses atrial remodeling in a canine atrial fibrillation model. J Am Heart Assoc 2021; 10(2): e017483.
[http://dx.doi.org/10.1161/JAHA.119.017483] [PMID: 33399004]
[70]
Tanaka H, Tatsumi K, Matsuzoe H, Soga F, Matsumoto K, Hirata KI. Association of type 2 diabetes mellitus with the development of new-onset atrial fibrillation in patients with non-ischemic dilated cardiomyopathy: impact of SGLT2 inhibitors. Int J Cardiovasc Imaging 2021; 37(4): 1333-41.
[http://dx.doi.org/10.1007/s10554-020-02122-x] [PMID: 33392879]
[71]
Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol 2020; 19(1): 130.
[http://dx.doi.org/10.1186/s12933-020-01105-5] [PMID: 32847602]
[72]
Zelniker TA, Bonaca MP, Furtado RHM, et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation 2020; 141(15): 1227-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044183] [PMID: 31983236]
[73]
Chen HY, Huang JY, Siao WZ, Jong GP. The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol 2020; 19(1): 73.
[http://dx.doi.org/10.1186/s12933-020-01048-x] [PMID: 32503541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy