Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

2 Receptor Specific Ligand Conjugated Nanocarriers: An Effective Strategy for Targeted Therapy of Tuberculosis

Author(s): Pratiksha Prabhu, Trinette Fernandes, Mansi Damani, Pramila Chaubey, Shridhar Narayanan and Sujata Sawarkar*

Volume 19, Issue 8, 2022

Published on: 26 January, 2022

Page: [830 - 845] Pages: 16

DOI: 10.2174/1567201819666211216141942

Price: $65

conference banner
Abstract

Tuberculosis (TB) is an ancient chronic disease caused by the bacillus Mycobacterium tuberculosis, which has affected mankind for more than 4,000 years. Compliance with the standard conventional treatment can assure recovery from tuberculosis, but the emergence of drug-resistant strains poses a great challenge for the effective management of tuberculosis. The process of discovery and development of new therapeutic entities with better specificity and efficacy is unpredictable and time-consuming. Hence, delivery of pre-existing drugs with improved targetability is the need of the hour. Enhanced delivery and targetability can ascertain improved bioavailability, reduced toxicity, decreased frequency of dosing and therefore better patient compliance. Nanoformulations are being explored for effective delivery of therapeutic agents, however, optimum specificity is not guaranteed. In order to achieve specificity, ligands specific to receptors or cellular components of macrophage and Mycobacteria can be conjugated to nanocarriers. This approach can improve localization of existing drug molecules at the intramacrophageal site where the parasites reside, improve targeting to the unique cell wall structure of Mycobacterium or improve adhesion to the epithelial surface of intestine or alveolar tissue (lectins). The present review focuses on the investigation of various ligands like Mannose, Mycolic acid, Lectin, Aptamers, etc., installed nanocarriers that are being envisaged for targeting antitubercular drugs.

Keywords: Tuberculosis, nanotechnology, ligands, mannose, mycolic acid, trehalose, lectin.

Graphical Abstract
[1]
Zaman, K. Tuberculosis: a global health problem. J. Health Popul. Nutr., 2010, 28(2), 111-113.
[http://dx.doi.org/10.3329/jhpn.v28i2.4879] [PMID: 20411672]
[2]
Sandhu, G.K. Tuberculosis: Current situation, challenges and overview of its control programs in India. J. Glob. Infect. Dis., 2011, 3(2), 143-150.
[http://dx.doi.org/10.4103/0974-777X.81691] [PMID: 21731301]
[3]
Jilani, T.N.; Avula, A.; Gondal, A.Z.; Siddiqui, A.H. Active tuberculosis. In: StatPearls Publishing; Treasure Island (FL): USA, 2020.
[4]
Jain, A.; Mondal, R. Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunol. Med. Microbiol., 2008, 53(2), 145-150.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00400.x] [PMID: 18479439]
[5]
Ormerod, L.P. Multidrug-resistant tuberculosis (MDR-TB): Epidemiology, prevention and treatment. Br. Med. Bull., 2005, 73-74, 17-24.
[http://dx.doi.org/10.1093/bmb/ldh047] [PMID: 15956357]
[6]
Tang, N. Global Tuberculosis Report 2019. WHO 2019.
[7]
Gupta, S.; Kumar, P.; Gupta, M.K.; Vyas, S.P. Colloidal carriers: A rising tool for therapy of tuberculosis. Crit. Rev. Ther. Drug. Carrier Syst., 2012, 29(4), 299-253.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i4.20] [PMID: 22746187]
[8]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[9]
Fogel, N. Tuberculosis: A disease without boundaries. Tuberculosis (Edinb.), 2015, 95(5), 527-531.
[http://dx.doi.org/10.1016/j.tube.2015.05.017] [PMID: 26198113]
[10]
Hett, E.C.; Rubin, E.J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev., 2008, 72(1), 126-156.
[http://dx.doi.org/10.1128/MMBR.00028-07] [PMID: 18322037]
[11]
Philips, J.A.; Ernst, J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol., 2012, 7, 353-384.
[http://dx.doi.org/10.1146/annurev-pathol-011811-132458] [PMID: 22054143]
[12]
Bermudez, L.E.; Goodman, J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun., 1996, 64(4), 1400-1406.
[http://dx.doi.org/10.1128/iai.64.4.1400-1406.1996] [PMID: 8606107]
[13]
Glickman, M.S.; Jacobs, W.R., Jr Microbial pathogenesis of Mycobacterium tuberculosis: Dawn of a discipline. Cell, 2001, 104(4), 477-485.
[http://dx.doi.org/10.1016/S0092-8674(01)00236-7] [PMID: 11239406]
[14]
Bhowmik, D.; Chandira, Rm.; Kumar, Kps. Recent trends of drug used treatment of tuberculosis. J. Chem. Pharm. Res., 2009, 1(1), 113-133.www.jocpr.com
[15]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. Lancet, 2016, 387(10024), 1211-1226.
[http://dx.doi.org/10.1016/S0140-6736(15)00151-8] [PMID: 26377143]
[16]
Schlesinger, L.S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol., 1993, 150(7), 2920-2930.
[PMID: 8454864]
[17]
Ferguson, J.S.; Voelker, D.R.; McCormack, F.X.; Schlesinger, L.S. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol., 1999, 163(1), 312-321.
[PMID: 10384130]
[18]
Srinivasarao, M.; Low, P.S. Ligand-targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
[19]
Gurjav, U.; Burneebaatar, B.; Narmandakh, E.; Tumenbayar, O.; Ochirbat, B.; Hill-Cawthorne, G.A.; Marais, B.J.; Sintchenko, V. Spatiotemporal evidence for cross-border spread of MDR-TB along the Trans-Siberian railway line. Int. J. Tuberc. Lung Dis., 2015, 19(11), 1376-1382.
[http://dx.doi.org/10.5588/ijtld.15.0361] [PMID: 26467591]
[20]
Pulakos, E.D.; Mueller-Hanson, R.; Arad, S. The evolution of performance management: Searching for value. Annu. Rev. Organ. Psychol. Organ. Behav., 2019, 6, 249-271.
[http://dx.doi.org/10.1146/annurev-orgpsych-012218-015009]
[21]
Matteelli, A.; Migliori, G.B.; Cirillo, D.; Centis, R.; Girard, E.; Raviglion, M. Multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis: Epidemiology and control. Expert Rev. Anti Infect. Ther., 2007, 5(5), 857-871.
[http://dx.doi.org/10.1586/14787210.5.5.857] [PMID: 17914919]
[22]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[23]
Wehrli, W. Rifampin: Mechanisms of action and resistance. Rev. Infect. Dis., 1983, 5(Suppl. 3), S407-S411.
[http://dx.doi.org/10.1093/clinids/5.Supplement_3.S407] [PMID: 6356275]
[24]
Piccaro, G.; Pietraforte, D.; Giannoni, F.; Mustazzolu, A.; Fattorini, L. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(12), 7527-7533.
[http://dx.doi.org/10.1128/AAC.03169-14] [PMID: 25288092]
[25]
Zhang, Y.; Young, D.B. Molecular mechanisms of isoniazid: A drug at the front line of tuberculosis control. Trends Microbiol., 1993, 1(3), 109-113.
[http://dx.doi.org/10.1016/0966-842X(93)90117-A] [PMID: 8143118]
[26]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x] [PMID: 17074073]
[27]
Johnsson, K.; Schultz, P.G.; King, D.S. Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J. Am. Chem. Soc., 1995, 117, 5009-5010.
[http://dx.doi.org/10.1021/ja00122a038]
[28]
Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E.; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(2011), 1630-1632.
[http://dx.doi.org/10.1126/science.1208813]
[29]
Zhang, Y.; Wade, M.M.; Scorpio, A.; Zhang, H.; Sun, Z. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother., 2003, 52(5), 790-795.
[http://dx.doi.org/10.1093/jac/dkg446] [PMID: 14563891]
[30]
Lamont, E.A.; Dillon, N.A.; Baughn, A.D. The bewildering antitubercular action of pyrazinamide. Microbiol. Mol. Biol. Rev., 2020, 84(2), e00070-e00119.
[http://dx.doi.org/10.1128/MMBR.00070-19] [PMID: 32132245]
[31]
Kahana, L.M. Ethambutol in tuberculosis. Biomed. Pharmacother., 1990, 44(1), 21-23.
[http://dx.doi.org/10.1016/0753-3322(90)90065-H] [PMID: 1369688]
[32]
Pawar, A.; Jha, P.; Konwar, C.; Chaudhry, U.; Chopra, M.; Saluja, D. Ethambutol targets the glutamate racemase of Mycobacterium tuberculosis-an enzyme involved in peptidoglycan biosynthesis. Appl. Microbiol. Biotechnol., 2019, 103(2), 843-851.
[http://dx.doi.org/10.1007/s00253-018-9518-z] [PMID: 30456576]
[33]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[34]
Shakil, S.; Khan, R.; Zarrilli, R.; Khan, A.U. Aminoglycosides versus bacteria-a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci., 2008, 15(1), 5-14.
[http://dx.doi.org/10.1007/s11373-007-9194-y] [PMID: 17657587]
[35]
Dookie, N.; Rambaran, S.; Padayatchi, N.; Mahomed, S.; Naidoo, K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother., 2018, 73(5), 1138-1151.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[36]
Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C.G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections. J. Clin. Microbiol., 2010, 48(5), 1853-1858.
[http://dx.doi.org/10.1128/JCM.00240-10] [PMID: 20237102]
[37]
Bruni, G.N.; Kralj, J.M. Membrane voltage dysregulation driven by metabolic dysfunction underlies bactericidal activity of aminoglycosides. eLife, 2020, 9, e58706.
[http://dx.doi.org/10.7554/eLife.58706] [PMID: 32748785]
[38]
Schluger, N.W. Fluoroquinolones in the treatment of tuberculosis: Which is best? Am. J. Respir. Crit. Care Med., 2013, 188(7), 768-769.
[http://dx.doi.org/10.1164/rccm.201308-1446ED] [PMID: 24083858]
[39]
Miotto, P.; Cirillo, D.M.; Migliori, G.B. Drug resistance in Mycobacterium tuberculosis: Molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest, 2015, 147(4), 1135-1143.
[http://dx.doi.org/10.1378/chest.14-1286] [PMID: 25846529]
[40]
Bryskier, A.; Lowther, J. Fluoroquinolones and tuberculosis. Expert Opin. Investig. Drugs, 2002, 11(2), 233-258.
[http://dx.doi.org/10.1517/13543784.11.2.233] [PMID: 11829714]
[41]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[http://dx.doi.org/10.1016/S1473-3099(03)00671-6] [PMID: 12837348]
[42]
De Souza, M.V.; Vasconcelos, T.R.; de Almeida, M.V.; Cardoso, S.H. Fluoroquinolones: An important class of antibiotics against tuberculosis. Curr. Med. Chem., 2006, 13(4), 455-463.
[http://dx.doi.org/10.2174/092986706775527965] [PMID: 16475933]
[43]
Howe, M.D.; Kordus, S.L.; Cole, M.S.; Bauman, A.A.; Aldrich, C.C.; Baughn, A.D.; Minato, Y. Methionine Antagonizes para-aminosalicylic acid activity via affecting folate precursor biosynthesis in mycobacterium tuberculosis. Front. Cell. Infect. Microbiol., 2018, 12(8), 399.
[http://dx.doi.org/10.3389/fcimb.2018.00399] [PMID: 30483484]
[44]
Chakraborty, S.; Gruber, T.; Barry, C.E.; Boshoff, H.I.; Rhee, K.Y. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science, 2013, 339(2013), 88-91.
[http://dx.doi.org/10.1126/science.1228980]
[45]
Chem, J.B. Discovery of the mechanism of action of a critical tuberculosis drug. J. Biol. Chem., 2013, 288, 23457-23457.
[http://dx.doi.org/10.1074/jbc.P113.475798]
[46]
Mori, G.; Chiarelli, L.R.; Riccardi, G.; Pasca, M.R. New prodrugs against tuberculosis. Drug Discov. Today, 2017, 22(3), 519-525.
[http://dx.doi.org/10.1016/j.drudis.2016.09.006] [PMID: 27649942]
[47]
Wang, F.; Langley, R.; Gulten, G.; Dover, L.G.; Besra, G.S.; Jacobs, W.R.Jr.; Sacchettini, J.C. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med., 2007, 204(1), 73-78.
[http://dx.doi.org/10.1084/jem.20062100] [PMID: 17227913]
[48]
Nikiforov, P.O.; Blaszczyk, M.; Surade, S.; Boshoff, H.I.; Sajid, A.; Delorme, V.; Deboosere, N.; Brodin, P.; Baulard, A.R.; Barry, C.E., III; Blundell, T.L.; Abell, C. Fragment-sized EthR inhibitors exhibit exceptionally strong ethionamide boosting effect in whole- cell Mycobacterium tuberculosis assays. ACS Chem. Biol., 2017, 12(5), 1390-1396.
[http://dx.doi.org/10.1021/acschembio.7b00091] [PMID: 28314097]
[49]
Ang, M.L.T.; Zainul Rahim, S.Z.; de Sessions, P.F.; Lin, W.; Koh, V.; Pethe, K.; Hibberd, M.L.; Alonso, S. EthA/R-independent killing of Mycobacterium tuberculosis by ethionamide. Front. Microbiol., 2017, 8, 710.
[http://dx.doi.org/10.3389/fmicb.2017.00710] [PMID: 28487681]
[50]
Britton, W.J.; Palendira, U. Improving vaccines against tuberculosis. Immunol. Cell Biol., 2003, 81(1), 34-45.
[http://dx.doi.org/10.1046/j.0818-9641.2002.01143.x] [PMID: 12534944]
[51]
newtbdrugs. Working groups on new TB drugs. (n.d.). Available from: https://www.newtbdrugs.org/
[52]
Clinical trials.gov, New drugs for tuberculosis. 2020. Available from: https://clinicaltrials.gov/ct2/results?term=new+drugs+for+tuberculosis&Search=Search
[53]
Gualano, G.; Capone, S.; Matteelli, A.; Palmieri, F. New antituberculosis drugs: From clinical trial to programmatic use. Infect. Dis. Rep., 2016, 8(2), 6569.
[http://dx.doi.org/10.4081/idr.2016.6569] [PMID: 27403268]
[54]
Rowland, R.; McShane, H. Tuberculosis vaccines in clinical trials. Expert Rev. Vaccines, 2011, 10(5), 645-658.
[http://dx.doi.org/10.1586/erv.11.28] [PMID: 21604985]
[55]
Li, J.; Zhao, A.; Tang, J.; Wang, G.; Shi, Y.; Zhan, L.; Qin, C. Tuberculosis vaccine development: From classic to clinical candidates. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(8), 1405-1425.
[http://dx.doi.org/10.1007/s10096-020-03843-6] [PMID: 32060754]
[56]
Ahsan, M.J. Recent advances in the development of vaccines for tuberculosis. Ther. Adv. Vaccines, 2015, 3(3), 66-75.
[http://dx.doi.org/10.1177/2051013615593891] [PMID: 26288734]
[57]
Smith, J.P. Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis. Yale J. Biol. Med., 2011, 84(4), 361-369.
[PMID: 22180674]
[58]
Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med., 2005, 172(12), 1487-1490.
[http://dx.doi.org/10.1164/rccm.200504-613PP] [PMID: 16151040]
[59]
Varghese, S.; Anil, A.; Scaria, S.; Abraham, E. Nanoparticulate technology in the treatment of tuberculosis: A review. Int. J. Sci. Pharm. Sci. Res., 2018, 12(11), 4109-4116.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(10).4109-16]
[60]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[61]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[62]
Laghari, M.; Darwis, Y.; Memon, A.H.; Khan, A.A.; Abdulbaqi, I.M.T.; Assi, R.A. Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis. Trop. J. Pharm. Res., 2016, 15(1), 201-211.
[http://dx.doi.org/10.4314/tjpr.v15i1.28]
[63]
Baranyai, Z.; Soria-Carrera, H.; Alleva, M.; Millán-Placer, A.C.; Lucía, A.; Martín-Rapún, R.; Aínsa, J.A.; la Fuente, J.M. Nanotechnology-based targeted drug delivery: An emerging tool to overcome tuberculosis. Adv. Ther., 2021, 4, 2000113.
[http://dx.doi.org/10.1002/adtp.202000113]
[64]
Debnath, S.K.; Saisivam, S.; Debanth, M.; Omri, A. Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS One, 2018, 13(1), e0190976.
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[65]
Varma, J.N.; Kumar, T.S.; Prasanthi, B.; Ratna, J.V. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: Efficiency for alveolar macrophage targeting. Indian J. Pharm. Sci., 2015, 77(3), 258-266.
[http://dx.doi.org/10.4103/0250-474X.159602] [PMID: 26180270]
[66]
Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3), 630-648.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[67]
Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C.J.; Song, O.R.; Flipo, M.; Deprez, B.; Saint-André, J.P.; Hureaux, J.; Majlessi, L.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep., 2017, 7(1), 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[68]
Jahagirdar, P.S.; Gupta, P.K.; Kulkarni, S.P.; Devarajan, P.V. Intramacrophage delivery of dual drug loaded nanoparticles for effective clearance of Mycobacterium tuberculosis. J. Pharm. Sci., 2020, 109(7), 2262-2270.
[http://dx.doi.org/10.1016/j.xphs.2020.03.018] [PMID: 32240695]
[69]
Abdelghany, S.; Parumasivam, T.; Pang, A.; Roediger, B.; Tang, P.; Jahn, K.; Britton, W.J.; Chan, H.K. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 52, 642-651.
[http://dx.doi.org/10.1016/j.jddst.2019.05.025]
[70]
Abdelghany, S.; Alkhawaldeh, M.; AlKhatib, H.S. Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J. Drug Deliv. Sci. Technol., 2017, 39, 442-449.
[http://dx.doi.org/10.1016/j.jddst.2017.04.034]
[71]
Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R.; Narendra, S.; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; Azger Dustakeer, V.N.; Muthu, M.S. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J., 2020, 28(12), 1616-1625.
[http://dx.doi.org/10.1016/j.jsps.2020.10.008] [PMID: 33424254]
[72]
Pandey, R.; Khuller, G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb.), 2005, 85(4), 227-234.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[73]
Nemati, E.; Mokhtarzadeh, A.; Panahi-Azar, V.; Mohammadi, A.; Hamishehkar, H.; Mesgari-Abbasi, M.; Ezzati Nazhad Dolatabadi, J.; de la Guardia, M. Ethambutol-Loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech, 2019, 20(3), 120.
[http://dx.doi.org/10.1208/s12249-019-1334-y] [PMID: 30796625]
[74]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536(1), 478-485.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[75]
Singh, G.; Dwivedi, H.; Saraf, S.K.; Saraf, S.A. Niosomal delivery of isoniazid - development and characterization. Trop. J. Pharm. Res., 2011, 10(2), 203-210.
[http://dx.doi.org/10.4314/tjpr.v10i2.66564]
[76]
El-Ridy, M.S.; Abdelbary, A.; Nasr, E.A.; Khalil, R.M.; Mostafa, D.M.; El-Batal, A.I.; Abd El-Alim, S.H. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev. Ind. Pharm., 2011, 37(9), 1110-1118.
[http://dx.doi.org/10.3109/03639045.2011.560605] [PMID: 21417612]
[77]
Jain, C.P.; Vyas, S.P. Preparation and characterization of niosomes containing rifampicin for lung targeting. J. Microencapsul., 1995, 12(4), 401-407.
[http://dx.doi.org/10.3109/02652049509087252] [PMID: 8583314]
[78]
Pandey, R.; Sharma, S.; Khull, G.K. Lung specific stealth liposomes as antitubercul ar drug carriers in guinea pigs. Indian. J. Exp. Biol., 2004, 42(6), 562-566.
[PMID: 15260105]
[79]
El-Ridy, M.S.; Mostafa, D.M.; Shehab, A.; Nasr, E.A.; Abd El-Alim, S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm., 2007, 330(1-2), 82-88.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.017] [PMID: 17049192]
[80]
Patil, J.S.; Devi, V.K.; Devi, K.; Sarasija, S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India, 2015, 32(4), 331-338.
[http://dx.doi.org/10.4103/0970-2113.159559] [PMID: 26180381]
[81]
Matthews, O.A.; Shipway, A.N.; Stoddart, J.F. Dendrimers - branching out from curiosities into new technologies. Prog. Polym. Sci., 1998, 23(1), 1-56.
[http://dx.doi.org/10.1016/S0079-6700(97)00025-7]
[82]
Öztürk-Atar, K.; Eroğlu, H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[83]
Pieters, J. Mycobacterium tuberculosis and the macrophage: Maintaining a balance. Cell Host Microbe, 2008, 3(6), 399-407.
[http://dx.doi.org/10.1016/j.chom.2008.05.006] [PMID: 18541216]
[84]
Dal Molin, M.; Selchow, P.; Schäfle, D.; Tschumi, A.; Ryckmans, T.; Laage-Witt, S.; Sander, P. Identification of novel scaffolds targeting Mycobacterium tuberculosis. J. Mol. Med. (Berl.), 2019, 97(11), 1601-1613.
[http://dx.doi.org/10.1007/s00109-019-01840-7] [PMID: 31728550]
[85]
Davydova, A.; Vorobjeva, M.; Pyshnyi, D.; Altman, S.; Vlassov, V.; Venyaminova, A. Aptamers against pathogenic microorganisms. Crit. Rev. Microbiol., 2016, 42(6), 847-865.
[http://dx.doi.org/10.3109/1040841X.2015.1070115] [PMID: 26258445]
[86]
Singh, P.; Rameshwaram, N.R.; Ghosh, S.; Mukhopadhyay, S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol., 2018, 13, 689-710.
[http://dx.doi.org/10.2217/fmb-2017-0135] [PMID: 29771143]
[87]
Farjadian, F.; Moghoofei, M.; Mirkiani, S.; Ghasemi, A.; Rabiee, N.; Hadifar, S.; Beyzavi, A.; Karimi, M.; Hamblin, M.R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv., 2018, 36(4), 968-985.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.016] [PMID: 29499341]
[88]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[89]
Lemmer, Y.; Kalombo, L.; Pietersen, R.D.; Jones, A.T.; Semete- Makokotlela, B.; Van Wyngaardt, S.; Ramalapa, B.; Stoltz, A.C.; Baker, B.; Verschoor, J.A.; Swai, H.S.; de Chastellier, C. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J. Control. Release, 2015, 211, 94-104.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.005] [PMID: 26055640]
[90]
Shi, L.; Zhang, H.; Qiu, Y.; Wang, Q.; Wu, X.; Wang, H.; Zhang, X.; Lin, D. Biochemical characterization and ligand-binding properties of trehalose-6-phosphate phosphatase from Mycobacterium tuberculosis. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(10), 837-844.
[http://dx.doi.org/10.1093/abbs/gmt084] [PMID: 23903290]
[91]
Dkhar, H.K.; Nanduri, R.; Mahajan, S.; Dave, S.; Saini, A.; Somavarapu, A.K.; Arora, A.; Parkesh, R.; Thakur, K.G.; Mayilraj, S.; Gupta, P. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: A case of a heterologous and noncanonical ligand-receptor pair. J. Immunol., 2014, 193(1), 295-305.
[http://dx.doi.org/10.4049/jimmunol.1400092] [PMID: 24907344]
[92]
Semete, B.; Booysen, L.; Lemmer, Y.; Kalombo, L.; Katata, L.; Verschoor, J.; Swai, H.S. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine, 2010, 6(5), 662-671.
[http://dx.doi.org/10.1016/j.nano.2010.02.002] [PMID: 20230912]
[93]
Nimje, N.; Agarwal, A.; Saraogi, G.K.; Lariya, N.; Rai, G.; Agrawal, H.; Agrawal, G.P. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J. Drug Target., 2009, 17(10), 777-787.
[http://dx.doi.org/10.3109/10611860903115308] [PMID: 19938949]
[94]
Kumar, P.V.; Asthana, A.; Dutta, T.; Jain, N.K. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target., 2006, 14(8), 546-556.
[http://dx.doi.org/10.1080/10611860600825159] [PMID: 17050121]
[95]
Moretton, M.A.; Chiappetta, D.A.; Andrade, F.; das Neves, J.; Ferreira, D.; Sarmento, B.; Sosnik, A. Hydrolyzed galactomannan- modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J. Biomed. Nanotechnol., 2013, 9(6), 1076-1087.
[http://dx.doi.org/10.1166/jbn.2013.1600] [PMID: 23858973]
[96]
Hoffmann, C.; Leis, A.; Niederweis, M.; Plitzko, J.M.; Engelhardt, H. Disclosure of the mycobacterial outer membrane: Cryo- electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3963-3967.
[http://dx.doi.org/10.1073/pnas.0709530105] [PMID: 18316738]
[97]
Jayawardana, K.W.; Jayawardena, H.S.N.; Wijesundera, S.A.; De Zoysa, T.; Sundhoro, M.; Yan, M. Selective targeting of Mycobacterium smegmatis with trehalose-functionalized nanoparticles. Chem. Commun. (Camb.), 2015, 51(60), 12028-12031.
[http://dx.doi.org/10.1039/C5CC04251H] [PMID: 26121049]
[98]
Backus, K.M.; Boshoff, H.I.; Barry, C.S.; Boutureira, O.; Patel, M.K.; D’Hooge, F.; Lee, S.S.; Via, L.E.; Tahlan, K.; Barry, C.E., III; Davis, B.G. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol., 2011, 7(4), 228-235.
[http://dx.doi.org/10.1038/nchembio.539] [PMID: 21378984]
[99]
Dutta, A.K.; Choudhary, E.; Wang, X.; Záhorszka, M.; Forbak, M.; Lohner, P.; Jessen, H.J.; Agarwal, N.; Korduláková, J.; Jessen-Trefzer, C. Trehalose conjugation enhances toxicity of photosensitizers against Mycobacteria. ACS Cent. Sci., 2019, 5(4), 644-650.
[http://dx.doi.org/10.1021/acscentsci.8b00962] [PMID: 31041384]
[100]
Hajian, B.; Scocchera, E.; Shoen, C.; Krucinska, J.; Viswanathan, K.; G-Dayanandan, N.; Erlandsen, H.; Estrada, A.; Mikušová, K.; Korduláková, J.; Cynamon, M.; Wright, D. Drugging the Folate pathway in Mycobacterium tuberculosis: The role of multi-targeting agents. Cell Chem. Biol., 2019, 26(6), 781-791.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.013] [PMID: 30930162]
[101]
Gaspar, N.; Zambito, G.; Löwik, C.M.W.G.; Mezzanotte, L. Active nano-targeting of macrophages. Curr. Pharm. Des., 2019, 25(17), 1951-1961.
[http://dx.doi.org/10.2174/1381612825666190710114108] [PMID: 31291874]
[102]
Sharma, K.; Tanwar, O.; Deora, G.S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Krishna, V.S.; Sriram, D.; Akhter, M. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Bioorg. Med. Chem., 2019, 27(7), 1421-1429.
[http://dx.doi.org/10.1016/j.bmc.2019.02.053] [PMID: 30827867]
[103]
Shah, K.; Chan, L.W.; Wong, T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv., 2017, 24(1), 1631-1647.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[104]
Parmar, R.; Misra, R.; Mohanty, S. In vitro controlled release of Rifampicin through liquid-crystalline folate nanoparticles. Colloids Surf. B Biointerfaces, 2015, 129, 198-205.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.051] [PMID: 25863713]
[105]
Johnson, P.; Arif, A.A.; Lee-Sayer, S.S.M.; Dong, Y. Hyaluronan and its interactions with immune cells in the healthy and inflamed lung. Front. Immunol., 2018, 9, 2787.
[http://dx.doi.org/10.3389/fimmu.2018.02787] [PMID: 30555472]
[106]
Li, J.A.; Chen, L.; Zhang, X.Q.; Guan, S.K. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Mater. Sci. Eng. C, 2020, 109, 110607.
[http://dx.doi.org/10.1016/j.msec.2019.110607] [PMID: 32228927]
[107]
Xu, R.; Zhang, K.; Liang, J.; Gao, F.; Li, J.; Guan, F. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr. Polym., 2021, 261, 117846.
[http://dx.doi.org/10.1016/j.carbpol.2021.117846] [PMID: 33766342]
[108]
Kamat, M.; El-Boubbou, K.; Zhu, D.C.; Lansdell, T.; Lu, X.; Li, W.; Huang, X. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug. Chem., 2010, 21(11), 2128-2135.
[http://dx.doi.org/10.1021/bc100354m] [PMID: 20977242]
[109]
Gao, Y.; Sarfraz, M.K.; Clas, S.D.; Roa, W.; Löbenberg, R. Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages. J. Biomed. Nanotechnol., 2015, 11(8), 1312-1329.
[http://dx.doi.org/10.1166/jbn.2015.2091] [PMID: 26295135]
[110]
Mukhtar, M.; Pallagi, E.; Csóka, I.; Benke, E.; Farkas, Á.; Zeeshan, M.; Burián, K.; Kókai, D.; Ambrus, R. Aerodynamic properties and in silico deposition of isoniazid loaded chitosan/thiolated chitosan and hyaluronic acid hybrid nanoplex DPIs as a potential TB treatment. Int. J. Biol. Macromol., 2020, 165(Pt B), 3007-3019.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.192] [PMID: 33122070]
[111]
Rossi, I.; Buttini, F.; Sonvico, F.; Affaticati, F.; Martinelli, F.; Annunziato, G.; Machado, D.; Viveiros, M.; Pieroni, M.; Bettini, R. Sodium hyaluronate nanocomposite respirable microparticles to tackle antibiotic resistance with potential application in treatment of mycobacterial pulmonary infections. Pharmaceutics, 2019, 11(5), 1-23.
[http://dx.doi.org/10.3390/pharmaceutics11050203] [PMID: 31052403]
[112]
Silva, J.P.; Gonçalves, C.; Costa, C.; Sousa, J.; Silva-Gomes, R.; Castro, A.G.; Pedrosa, J.; Appelberg, R.; Gama, F.M. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J. Control. Release, 2016, 235, 112-124.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.064] [PMID: 27261333]
[113]
Leemans, J.C.; Florquin, S.; Heikens, M.; Pals, S.T.; van der Neut, R.; Van Der Poll, T. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J. Clin. Invest., 2003, 111(5), 681-689.
[http://dx.doi.org/10.1172/JCI200316936] [PMID: 12618522]
[114]
Mozioglu, E.; Gokmen, O.; Tamerler, C.; Kocagoz, Z.T.; Akgoz, M. Selection of nucleic acid aptamers specific for Mycobacterium tuberculosis. Appl. Biochem. Biotechnol., 2016, 178(4), 849-864.
[http://dx.doi.org/10.1007/s12010-015-1913-7] [PMID: 26541162]
[115]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[116]
Pan, Q.; Yan, J.; Liu, Q.; Yuan, C.; Zhang, X.L. A single-stranded DNA aptamer against mannose-capped lipoarabinomannan enhances anti-tuberculosis activity of macrophages through downregulation of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ expression. Microbiol. Immunol., 2017, 61(2), 92-102.
[http://dx.doi.org/10.1111/1348-0421.12470] [PMID: 28206680]
[117]
Cichorek, M.; Ronowska, A.; Gensicka-Kowalewska, M.; Deptula, M.; Pelikant-Malecka, I.; Dzierzbicka, K. Novel therapeutic compound acridine-retrotuftsin action on biological forms of melanoma and neuroblastoma. J. Cancer Res. Clin. Oncol., 2019, 145(1), 165-179.
[http://dx.doi.org/10.1007/s00432-018-2776-4] [PMID: 30367436]
[118]
Najjar, V.A. Tuftsin, a natural activator of phagocyte cells: An overview. Ann. N.Y. Acad. Sci., 1983, 419, 1-11.
[http://dx.doi.org/10.1111/j.1749-6632.1983.tb37086.x] [PMID: 6370072]
[119]
Wu, M.; Nissen, J.C.; Chen, E.I.; Tsirka, S.E. Tuftsin promotes an anti-inflammatory switch and attenuates symptoms in experimental autoimmune encephalomyelitis. PLoS One, 2012, 7(4), e34933.
[http://dx.doi.org/10.1371/journal.pone.0034933] [PMID: 22529957]
[120]
Thompson, K.K.; Nissen, J.C.; Pretory, A.; Tsirka, S.E. Tuftsin combines with remyelinating therapy and improves outcomes in models of CNS demyelinating disease. Front. Immunol., 2018, 9, 2784.
[http://dx.doi.org/10.3389/fimmu.2018.02784] [PMID: 30555470]
[121]
Agarwal, A.; Kandpal, H.; Gupta, H.P.; Singh, N.B.; Gupta, C.M. Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrob. Agents Chemother., 1994, 38(3), 588-593.
[http://dx.doi.org/10.1128/AAC.38.3.588] [PMID: 8203859]
[122]
Baranyai, Z.; Krátký, M.; Vosátka, R.; Szabó, E.; Senoner, Z.; Dávid, S.; Stolaříková, J.; Vinšová, J.; Bősze, S. In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur. J. Med. Chem., 2017, 133, 152-173.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.047] [PMID: 28384546]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy