Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Indazole Derivatives Effective against Gastrointestinal Diseases

Author(s): Supriyo Saha*, Dilipkumar Pal and Satish Balasaheb Nimse

Volume 22, Issue 14, 2022

Published on: 03 January, 2022

Page: [1189 - 1214] Pages: 26

DOI: 10.2174/1568026621666211209155933

Price: $65

conference banner
Abstract

Background: In this fast-growing lifestyle, humans are in the race against time to cope up with busy schedule. Less exercise, consumption of high calorie-low fiber food and stress take us one step closer towards digestive dysfunction. Dysfunctional digestive system causes various gastrointestinal disorders like constipation, IBS, UC, diarrhea, gastrointestinal tract immobility, hyperglycemia, hemorrhoids, fistula, anal fissures, stomach cancer, hepatocellular carcinoma, pancreatic cancer, colon cancer and metabolic syndrome. Amongst various natural and synthetic indazole derivatives nigellicine, nigellamine, nigellidine, zanubrutinib and SCH772984 showed prominent results to cure various gastrointestinal disorders.

Objectives: In this manuscript, we focus on the importance of indazole derivatives in the treatment of various gastrointestinal diseases.

Results and Conclusion: In the treatment of IBS, four positions (R1, R2, R3 and R4) of indazole were mainly substituted with aromatic aldehyde/substituted methyl, aromatic acid/formamide, benzamide/ sulfonamide and methyl groups, respectively. In case of diarrhea and metabolic syndrome treatment, substitutions with benzyl/isopropyl/acetaldehyde (R1 position) and carboxamide/ formamide (R2 position) of indazole play a critical role. Also, in the treatment of diabetes melitus, all six positions of indazole derivative were substituted with substituted aryl/alkyl/aromatic acid, substituted formamide, substituted acetamide/hydrazide group, halo aryl, substituted aryl/aromatic acid and a long chain of alkyl-aryl alcohol groups, respectively. In the treatment of gastrointestinal cancers, all six positions of indazole derivative were substituted with benzylamide (R1), octanediamide/ benzamide/formamide (R2), carbaldehyde (R4) and substituted phenyl (R5 and R6) groups, respectively. Six receptors (6NP0, 2YME, 4EFU, 4WZ8, 5U4W and 7KKP) associated with GI disorders (co-crystallized with indazole derivative) were identified. Analysis of the receptors showed that co-crystalized ligand molecules were well-interacted with receptors via pie-pie interaction, coordinate and sigma bonding within 4 Å distance. As per Ramachandran plot analysis, more than 90% of the amino acid residues were present in the most favored region. So, if sufficient focuses are imposed on the development of newer indazole derivatives to treat gastrointestinal diseases, it will work as a boon to society.

Keywords: Indazole, Irritable bowel syndrome, Ulcerative colitis, Diarrhea, Gastrointestinal cancer, Metabolic syndrome.

« Previous
Graphical Abstract
[1]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[2]
Pal, D.; Saha, S.; Singh, S. Importance of pyrazole moiety in the field of Cancer. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 98-104.
[3]
Weaver, A.N.; Jimeno, A. Zanubrutinib: A new BTK inhibitor for treatment of relapsed/refractory mantle cell lymphoma. Drugs Today (Barc), 2020, 56(8), 531-539.
[http://dx.doi.org/10.1358/dot.2020.56.8.3158047] [PMID: 33025948]
[4]
Morris, E.J.; Jha, S.; Restaino, C.R.; Dayananth, P.; Zhu, H.; Cooper, A.; Carr, D.; Deng, Y.; Jin, W.; Black, S.; Long, B.; Liu, J.; Dinunzio, E.; Windsor, W.; Zhang, R.; Zhao, S.; Angagaw, M.H.; Pinheiro, E.M.; Desai, J.; Xiao, L.; Shipps, G.; Hruza, A.; Wang, J.; Kelly, J.; Paliwal, S.; Gao, X.; Babu, B.S.; Zhu, L.; Daublain, P.; Zhang, L.; Lutterbach, B.A.; Pelletier, M.R.; Philippar, U.; Siliphaivanh, P.; Witter, D.; Kirschmeier, P.; Bishop, W.R.; Hicklin, D.; Gilliland, D.G.; Jayaraman, L.; Zawel, L.; Fawell, S.; Samatar, A.A. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov., 2013, 3(7), 742-750.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0070] [PMID: 23614898]
[5]
Saha, S.; Pal, D.K.; Kumar, S. Design, synthesis and antiproliferative activity of hydroxyacetamide derivatives against HeLa cervical carcinoma cell and breast cancer cell line. Trop. J. Pharm. Res., 2016, 15(7), 1319-1326.
[http://dx.doi.org/10.4314/tjpr.v15i7.8]
[6]
Saha, S.; Pal, D.K.; Kumar, S. antifungal and antibacterial activities of phenyl and ortho-hydroxy phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi. Rapid. Med. Chem., 2017, 2017(2), 42-49.
[7]
Saha, S.; Pal, D. Pyrazole and its derivatives, preparation, SAR and uses as antioxidative agent. In: Pyrazole Preparartion and Uses; Pal, D., Ed.; Nova Publisher: New York, 2020; pp. 211-243.
[8]
Saha, S.; Pal, D. Role of Pyrazole Ring in Neurological Drug Discovery. In: Pyrazole Preparartion and Uses; Pal, D., Ed.; Nova Publisher: New York, 2020; pp. 245-264.
[9]
Saha, S.; Pal, D.K.; Kumar, S. Hydroxyacetamide derivatives: Cytotoxicity, antioxidative and metal chelating studies. Indian J. Exp. Biol., 2017, 55, 831-837.
[10]
Pal, D.K.; Kumar, S.; Saha, S. Antihyperglycemic activity of phenyl and ortho-hydroxy phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Int. J. Pharm. Pharm. Sci., 2017, 9(12), 247-251.
[http://dx.doi.org/10.22159/ijpps.2017v9i12.22086]
[11]
Pal, D.K.; Saha, S. Chondroitin: A natural biomarker with immense biomedical applications. RSC Advances, 2019, 9(48), 28061-28077.
[http://dx.doi.org/10.1039/C9RA05546K]
[12]
Saha, S.; Pal, D.; Nimse, S.B. Recent advances in the discovery of GSK-3 inhibitors from synthetic origin in the treatment of neurological disorders. Curr. Drug Targets, 2021, 22(12), 1437-1462.
[http://dx.doi.org/10.2174/1389450122666210120143953] [PMID: 33494672]
[13]
Kaushik, B.; Pal, D.; Saha, S. Gamma secretase inhibitor: therapeutic target via NOTCH signaling in T cell acute lymphoblastic leukemia. Curr. Drug Targets, 2021, 22(15), 1789-1798.
[http://dx.doi.org/10.2174/1389450122666210203192752] [PMID: 33538669]
[14]
Available from: https://pubchem.ncbi.nlm.nih.gov/compound/9221 (Accessed on 26.06.2021).
[15]
Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(Web Server issue), W409-14.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[16]
Catalan, J.; de Paz, J.L.; Elguero, J. Importance of aromaticity on the relative stabilities of indazole annular tautomers: An ab initio study. J. Chem. Soc. Perkin. Trans., 1996, 2, 57-60.
[http://dx.doi.org/10.1039/P29960000057]
[17]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[18]
Anandan, K.; Kolandaivel, P.; Kumaresan, R. Ab initio and DFT studies on tautomerism of indazole in gaseous and aqueous phases. J. Molecul. Struc. (Theochem), 2004, 686, 83-89.
[http://dx.doi.org/10.1016/j.theochem.2004.08.014]
[19]
Bamborough, P.; Angell, R.M.; Bhamra, I.; Brown, D.; Bull, J.; Christopher, J.A.; Cooper, A.W.; Fazal, L.H.; Giordano, I.; Hind, L.; Patel, V.K.; Ranshaw, L.E.; Sims, M.J.; Skone, P.A.; Smith, K.J.; Vickerstaff, E.; Washington, M. N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of Lck: Indazoles as phenol isosteres with improved pharmacokinetics. Bioorg. Med. Chem. Lett., 2007, 17(15), 4363-4368.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.029] [PMID: 17600705]
[20]
de Wit, J.; Al-Mossawi, M.H.; Hühn, M.H.; Arancibia-Cárcamo, C.V.; Doig, K.; Kendrick, B.; Gundle, R.; Taylor, P.; Mcclanahan, T.; Murphy, E.; Zhang, H.; Barr, K.; Miller, J.R.; Hu, X.; Aicher, T.D.; Morgan, R.W.; Glick, G.D.; Zaller, D.; Correll, C.; Powrie, F.; Bowness, P. RORγt inhibitors suppress T(H)17 responses in inflammatory arthritis and inflammatory bowel disease. J. Allergy Clin. Immunol., 2016, 137(3), 960-963.
[http://dx.doi.org/10.1016/j.jaci.2015.09.048] [PMID: 26611672]
[21]
Manning, D.D.; Cioffi, C.L.; Usyatinsky, A.; Fitzpatrick, K.; Masih, L.; Guo, C.; Zhang, Z.; Choo, S.H.; Sikkander, M.I.; Ryan, K.N.; Naginskaya, J.; Hassler, C.; Dobritsa, S.; Wierschke, J.D.; Earley, W.G.; Butler, A.S.; Brady, C.A.; Barnes, N.M.; Cohen, M.L.; Guzzo, P.R. Novel serotonin type 3 receptor partial agonists for the potential treatment of irritable bowel syndrome. Bioorg. Med. Chem. Lett., 2011, 21(1), 58-61.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.080] [PMID: 21146988]
[22]
Prior, A.; Read, N.W. Reduction of rectal sensitivity and post-prandial motility by granisetron, a 5 HT3-receptor antagonist, in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther., 1993, 7(2), 175-180.
[http://dx.doi.org/10.1111/j.1365-2036.1993.tb00087.x] [PMID: 8387353]
[23]
Schaus, J.M.; Thompson, D.C.; Bloomquist, W.E.; Susemichel, A.D.; Calligaro, D.O.; Cohen, M.L. Synthesis and structure-activity relationships of potent and orally active 5-HT4 receptor antagonists: Indazole and benzimidazolone derivatives. J. Med. Chem., 1998, 41(11), 1943-1955.
[http://dx.doi.org/10.1021/jm970857f] [PMID: 9599243]
[24]
Bhatia, M.; Landolfi, C.; Basta, F.; Bovi, G.; Ramnath, R.D.; de Joannon, A.C.; Guglielmotti, A. Treatment with bindarit, an inhibitor of MCP-1 synthesis, protects mice against trinitrobenzene sulfonic acid-induced colitis. Inflamm. Res., 2008, 57(10), 464-471.
[http://dx.doi.org/10.1007/s00011-008-7210-y] [PMID: 18827968]
[25]
Fakhfouri, G.; Rahimian, R.; Daneshmand, A.; Bahremand, A.; Rasouli, M.R.; Dehpour, A.R.; Mehr, S.E.; Mousavizadeh, K. Granisetron ameliorates acetic acid-induced colitis in rats. Hum. Exp. Toxicol., 2010, 29(4), 321-328.
[http://dx.doi.org/10.1177/0960327110362702] [PMID: 20154102]
[26]
Debnath, A.; Shahinas, D.; Bryant, C.; Hirata, K.; Miyamoto, Y.; Hwang, G.; Gut, J.; Renslo, A.R.; Pillai, D.R.; Eckmann, L.; Reed, S.L.; McKerrow, J.H. Hsp90 inhibitors as new leads to target parasitic diarrheal diseases. Antimicrob. Agents Chemother., 2014, 58(7), 4138-4144.
[http://dx.doi.org/10.1128/AAC.02576-14] [PMID: 24820073]
[27]
Long, D.D.; Armstrong, S.R.; Beattie, D.T.; Choi, S.K.; Fatheree, P.R.; Gendron, R.A.L.; Goldblum, A.A.; Humphrey, P.P.; Marquess, D.G.; Shaw, J.P.; Smith, J.A.M.; Derek Turner, S.; Vickery, R.G. Discovery, oral pharmacokinetics and in vivo efficacy of a highly selective 5-HT4 receptor agonist: Clinical compound TD-2749. Bioorg. Med. Chem. Lett., 2012, 22(14), 4849-4853.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.034] [PMID: 22683222]
[28]
Rafique, R.; Khan, K.M. Arshia; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Salar, U.; Venugopal, V.; Shamim, S.; Taha, M.; Perveen, S. Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorg. Chem., 2020, 94, 103410.
[http://dx.doi.org/10.1016/j.bioorg.2019.103410] [PMID: 31732193]
[29]
Song, F.; Xu, G.; Gaul, M.D.; Zhao, B.; Lu, T.; Zhang, R.; DesJarlais, R.L.; DiLoreto, K.; Huebert, N.; Shook, B.; Rentzeperis, D.; Santulli, R.; Eckardt, A.; Demarest, K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 2019, 29(15), 1974-1980.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.036] [PMID: 31138472]
[30]
Bagley, S.W.; Southers, J.A.; Cabral, S.; Rose, C.R.; Bernhardson, D.J.; Edmonds, D.J.; Polivkova, J.; Yang, X.; Kung, D.W.; Griffith, D.A.; Bader, S.J. Synthesis of 7-oxo-dihydrospiro[indazole-5,4¢-piperidine] acetyl-CoA carboxylase inhibitors. J. Org. Chem., 2012, 77(3), 1497-1506.
[http://dx.doi.org/10.1021/jo202377g] [PMID: 22239115]
[31]
Cheruvallath, Z.S.; Gwaltney, S.L., II; Sabat, M.; Tang, M.; Wang, H.; Jennings, A.; Hosfield, D.; Lee, B.; Wu, Y.; Halkowycz, P.; Grimshaw, C.E. Discovery of potent and orally active 1,4-disubstituted indazoles as novel allosteric glucokinase activators. Bioorg. Med. Chem. Lett., 2017, 27(12), 2678-2682.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.041] [PMID: 28512030]
[32]
Bushra.; Shamim, S.; Khan, K.M.; Ullah, N.; Mahdavi, M.; Faramarzi, M.A.; Larijani, B.; Salar, U.; Rafique, R.; Taha, M.; Perveen, S. Synthesis, in vitro, and in silico evaluation of Indazole Schiffbases as potential α-glucosidase inhibitors. J. Molecul. Str., 2021, 1242, 130826.
[http://dx.doi.org/10.1016/j.molstruc.2021.130826]
[33]
Lin, S.; Zhang, F.; Jiang, G.; Qureshi, S.A.; Yang, X.; Chicchi, G.G.; Tota, L.; Bansal, A.; Brady, E.; Trujillo, M.; Salituro, G.; Miller, C.; Tata, J.R.; Zhang, B.B.; Parmee, E.R. A novel series of indazole-/indole-based glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 2015, 25(19), 4143-4147.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.015] [PMID: 26303893]
[34]
McCoull, W.; Bailey, A.; Barton, P.; Birch, A.M.; Brown, A.J.H.; Butler, H.S.; Boyd, S.; Butlin, R.J.; Chappell, B.; Clarkson, P.; Collins, S.; Davies, R.M.D.; Ertan, A.; Hammond, C.D.; Holmes, J.L.; Lenaghan, C.; Midha, A.; Morentin-Gutierrez, P.; Moore, J.E.; Raubo, P.; Robb, G. Indazole-6-phenylcyclopropylcarboxylic Acids as Selective GPR120 Agonists with in vivo Efficacy. J. Med. Chem., 2017, 60(7), 3187-3197.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00210] [PMID: 28374589]
[35]
Mphahlele, M.J.; Magwaza, N.M.; Gildenhuys, S.; Setshedi, I.B. Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo-substituted 5-bromo-3-methylindazoles. Bioorg. Chem., 2020, 97, 103702.
[http://dx.doi.org/10.1016/j.bioorg.2020.103702] [PMID: 32146175]
[36]
Patch, R.J.; Huang, H.; Patel, S.; Cheung, W.; Xu, G.; Zhao, B.P.; Beauchamp, D.A.; Rentzeperis, D.; Geisler, J.G.; Askari, H.B.; Liu, J.; Kasturi, J.; Towers, M.; Gaul, M.D.; Player, M.R. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur. J. Med. Chem., 2017, 138, 830-853.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.015] [PMID: 28735214]
[37]
Patel, M.R.; Pandya, K.G.; Lau-Cam, C.A.; Singh, S.; Pino, M.A.; Billack, B.; Degenhardt, K.; Talele, T.T. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Chem. Biol. Drug Des., 2012, 79(4), 488-496.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01302.x] [PMID: 22177599]
[38]
Pfefferkorn, J.A.; Tu, M.; Filipski, K.J.; Guzman-Perez, A.; Bian, J.; Aspnes, G.E.; Sammons, M.F.; Song, W.; Li, J.C.; Jones, C.S.; Patel, L.; Rasmusson, T.; Zeng, D.; Karki, K.; Hamilton, M.; Hank, R.; Atkinson, K.; Litchfield, J.; Aiello, R.; Baker, L.; Barucci, N.; Bourassa, P.; Bourbonais, F.; D’Aquila, T.; Derksen, D.R.; MacDougall, M.; Robertson, A. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of type 2 diabetes mellitus. Bioorg. Med. Chem. Lett., 2012, 22(23), 7100-7105.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.082] [PMID: 23089526]
[39]
Xu, G.; Gaul, M.D.; Song, F.; Du, F.; Liang, Y.; DesJarlais, R.L.; DiLoreto, K.; Shook, B.; Rentzeperis, D.; Santulli, R.; Eckardt, A.; Demarest, K. Discovery of potent and orally bioavailable indazole-based glucagon receptor antagonists for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2019, 29(20), 126668.
[http://dx.doi.org/10.1016/j.bmcl.2019.126668] [PMID: 31519374]
[40]
Yuan, T.; Nahar, P.; Sharma, M.; Liu, K.; Slitt, A.; Aisa, H.A.; Seeram, N.P. Indazole-type alkaloids from Nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J. Nat. Prod., 2014, 77(10), 2316-2320.
[http://dx.doi.org/10.1021/np500398m] [PMID: 25299458]
[41]
Wei, Q.; Mei, L.; Chen, P.; Yuan, X.; Zhang, H.; Zhou, J. Design, synthesis and biological evaluation of novel chroman derivatives as non-selective acetyl-CoA carboxylase inhibitors. Bioorg. Chem., 2020, 101, 103943.
[http://dx.doi.org/10.1016/j.bioorg.2020.103943] [PMID: 32554277]
[42]
Cui, Y.J.; Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur. J. Med. Chem., 2020, 187, 111968.
[http://dx.doi.org/10.1016/j.ejmech.2019.111968] [PMID: 31865012]
[43]
García-Valdivia, A.A.; Jannus, F.; García-García, A.; Choquesillo-Lazarte, D.; Fernández, B.; Medina-O’donnell, M.; Lupiáñez, J.A.; Cepeda, J.; Reyes-Zurita, F.J.; Rodríguez-Diéguez, A. Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid. J. Inorg. Biochem., 2021, 215, 111308.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111308] [PMID: 33257004]
[44]
Wu, J.Y.; Shih, Y.L.; Lin, S.P.; Hsieh, T.Y.; Lin, Y.W. YC-1 antagonizes Wnt/β-catenin signaling through the EBP1 p42 isoform in hepatocellular carcinoma. Cancers (Basel), 2019, 11(5), 661.
[http://dx.doi.org/10.3390/cancers11050661] [PMID: 31086087]
[45]
Jiang, J.; Zhang, Q.; Guo, J.; Fang, S.; Zhou, R.; Zhu, J.; Chen, X.; Zhou, Y.; Zheng, C. Synthesis and biological evaluation of 7-methoxy-1-(3,4,5-trimethoxyphenyl)-4,5-dihydro-2H-benzo[e]in-dazoles as new colchicine site inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2632-2634.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.042] [PMID: 31362922]
[46]
Liu, J.; Zhou, J.; He, F.; Gao, L.; Wen, Y.; Gao, L.; Wang, P.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem., 2020, 192, 112189.
[http://dx.doi.org/10.1016/j.ejmech.2020.112189] [PMID: 32151834]
[47]
Qian, S.; He, T.; Wang, W.; He, Y.; Zhang, M.; Yang, L.; Li, G.; Wang, Z. Discovery and preliminary structure-activity relationship of 1H-indazoles with promising indoleamine-2,3-dioxygenase 1 (IDO1) inhibition properties. Bioorg. Med. Chem., 2016, 24(23), 6194-6205.
[http://dx.doi.org/10.1016/j.bmc.2016.10.003] [PMID: 27769672]
[48]
El-Zaatari, M.; Bass, A.J.; Bowlby, R.; Zhang, M.; Syu, L.J.; Yang, Y.; Grasberger, H.; Shreiner, A.; Tan, B.; Bishu, S.; Leung, W.K.; Todisco, A.; Kamada, N.; Cascalho, M.; Dlugosz, A.A.; Kao, J.Y. Indoleamine 2,3-dioxygenase 1, increased in human gastric pre-neoplasia, promotes inflammation and metaplasia in mice and is associated with type II hypersensitivity/autoimmunity. Gastroenterology, 2018, 154(1), 140-153.e17.
[http://dx.doi.org/10.1053/j.gastro.2017.09.002] [PMID: 28912017]
[49]
Song, P.; Chen, M.; Ma, X.; Xu, L.; Liu, T.; Zhou, Y.; Hu, Y. Identification of novel inhibitors of Aurora A with a 3-(pyrrolopyridin-2-yl)indazole scaffold. Bioorg. Med. Chem., 2015, 23(8), 1858-1868.
[http://dx.doi.org/10.1016/j.bmc.2015.02.004] [PMID: 25771484]
[50]
Shi, J.J.; Ji, F.H.; He, P.L.; Yang, Y.X.; Tang, W.; Zuo, J.P.; Li, Y.C. Synthesis and hepatitis C antiviral activity of 1-aminobenzyl-1H-indazole-3-carboxamide analogues. ChemMedChem, 2013, 8(5), 722-725.
[http://dx.doi.org/10.1002/cmdc.201300083] [PMID: 23512654]
[51]
Zhao, C.R.; Wang, R.Q.; Li, G.; Xue, X.X.; Sun, C.J.; Qu, X.J.; Li, W.B. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg. Med. Chem. Lett., 2013, 23(7), 1989-1992.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.034] [PMID: 23454017]
[52]
Baugh, S.D.P.; Pabba, P.K.; Barbosa, J.; Coulter, E.; Desai, U.; Gay, J.P.; Gopinathan, S.; Han, Q.; Hari, R.; Kimball, S.D.; Nguyen, H.V.; Ni, C.Y.; Powell, D.R.; Smith, A.; Terranova, K.M.; Wilson, A.; Yu, X.C.; Lombardo, V.K. Design, synthesis, and in vivo activity of novel inhibitors of delta-5 desaturase for the treatment of metabolic syndrome. Bioorg. Med. Chem. Lett., 2015, 25(18), 3836-3839.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.066] [PMID: 26235947]
[53]
Choi, S.; Keys, H.; Staples, R.J.; Yuan, J.; Degterev, A.; Cuny, G.D. Optimization of tricyclic Nec-3 necroptosis inhibitors for in vitro liver microsomal stability. Bioorg. Med. Chem. Lett., 2012, 22(17), 5685-5688.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.098] [PMID: 22832318]
[54]
Basak, S.; Gicheru, Y.; Kapoor, A.; Mayer, M.L.; Filizola, M.; Chakrapani, S. Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor. Nat. Commun., 2019, 10(1), 3225.
[http://dx.doi.org/10.1038/s41467-019-11142-8] [PMID: 31324772]
[55]
Kesters, D.; Thompson, A.J.; Brams, M.; Van Elk, R.; Spurny, R.; Geitmann, M.; Villalgordo, J.M.; Guskov, A.; Helena Danielson, U.; Lummis, S.C.R.; Smit, A.B.; Ulens, C. Structural basis of ligand recognition in 5-Ht3 Receptors. EMBO Rep., 2013, 14, 49.
[http://dx.doi.org/10.1038/embor.2012.189] [PMID: 23196367]
[56]
Buchstaller, H.P.; Eggenweiler, H.M.; Sirrenberg, C.; Graedler, U.; Musil, D.; Hoppe, E.; Zimmermann, A.; Schwartz, H.; Maerz, J.; Bomke, J.; Wegener, A.; Wolf, M. Fragment-based discovery of hydroxy-indazole-carboxamides as novel small molecule inhibitors of Hsp90. Bioorg. Med. Chem. Lett., 2012, 22(13), 4396-4403.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.121] [PMID: 22632933]
[57]
Griffith, D.A.; Kung, D.W.; Esler, W.P.; Amor, P.A.; Bagley, S.W.; Beysen, C.; Carvajal-Gonzalez, S.; Doran, S.D.; Limberakis, C.; Mathiowetz, A.M.; McPherson, K.; Price, D.A.; Ravussin, E.; Sonnenberg, G.E.; Southers, J.A.; Sweet, L.J.; Turner, S.M.; Vajdos, F.F. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J. Med. Chem., 2014, 57(24), 10512-10526.
[http://dx.doi.org/10.1021/jm5016022] [PMID: 25423286]
[58]
Ryan, K.; Bolanos, B.; Smith, M.; Palde, P.B.; Cuenca, P.D.; VanArsdale, T.L.; Niessen, S.; Zhang, L.; Behenna, D.; Ornelas, M.A.; Tran, K.T.; Kaiser, S.; Lum, L.; Stewart, A.; Gajiwala, K.S. Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1. J. Biol. Chem., 2021, 296, 100251.
[http://dx.doi.org/10.1074/jbc.RA120.016573] [PMID: 33361107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy