Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Review Article

Micronutrient Deficiency in Pulmonary Tuberculosis - Perspective on Hepatic Drug Metabolism and Pharmacokinetic Variability of First-line Anti- Tuberculosis Drugs: Special Reference to Fat-soluble Vitamins A, D, & E and Nutri-epigenetics

Author(s): Jeyakumar Shanmugam Murugaiha*

Volume 14, Issue 3, 2021

Published on: 17 December, 2021

Page: [166 - 176] Pages: 11

DOI: 10.2174/1872312814999211130093625

Price: $65

Abstract

Abstract: The liver plays a crucial role in endogenous metabolic activity and homeostasis of macro and micronutrients. Further, it acts as a metabolic hub in mammals, where the ingested food-derived nutrients and xenobiotics or drugs are metabolized for utilization and/or excretion through its enzymatic and non-enzymatic machinery. Nutritional deficiency, one of the major public health problems, is associated with global disease burden, including pulmonary tuberculosis (PTB) caused by Mycobacterium tuberculosis (Mtb) infection. Though it is a curable and preventable infectious disease, millions of people succumb to death, and people in numbers larger than this are still suffering. This scenario is further complicated by the addition of new cases, disease recurrence, and the emergence of drug-resistant, all of which contribute to the spread of this epidemic. Though the manifestation of TB disease has multiple aetiologies, poor nutritional status and sub-optimal therapeutic concentrations of first-line anti-TB drugs are considered as potential contributors to its widespread prevalence. Among various factors, the pharmacokinetic variability of anti-TB drugs is one of the main causes for sub-optimal therapeutic drug concentration in TB patients, which is influenced by the host’s genetic make-up and nutritional status, besides several others. However, the role of epigenetic changes in hepatic drug metabolic pathways and their transcript levels is largely unexplored. Therefore, in this review, an attempt has been made to understand the role of micronutrient deficiencies with special reference to fat-soluble vitamins, namely vitamin A, D, & E in pulmonary TB, their possible impact on epigenetic changes on the drug-metabolizing pathway genes, thus their expression levels and plausible influence on pharmacokinetic variability of anti-TB drugs, besides discussing the limitations and emerging potential opportunities. Eventually, this would help in developing the host-directed/personalized therapeutic strategies for the elimination of pulmonary tuberculosis (PTB).

Keywords: Cytochrome, liver, retinol, epigenetic, gene, enzyme, xenobiotic.

Graphical Abstract
[1]
World Health Organization. Global tuberculosis report 2020, 2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf
[2]
Bloom, B.R.; Atun, R.; Cohen, T.; Dye, C.; Fraser, H.; Gomez, G.B.; Knight, G.; Murray, M.; Nardell, E.; Rubin, E.; Salomon, J.; Vassall, A.; Volchenkov, G.; Richard White, R.; Wilson, D.; Yadav, P. Tuberculosis. In: Major Infectious Diseases, 3rd ed.; Holmes, K.K.; Bertozzi, S.; Bloom, B.R.; Jha, P.; Laxminarayan, R.; Mock, C.N., Eds.; World Bank Group: Washington (DC), 2017; 6, pp. 232-313. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525174/doi:10.1596/978-1-4648-0524-0_ch1
[3]
Bansal, R.; Sharma, D.; Singh, R. Tuberculosis and its treatment: An overview. Mini Rev. Med. Chem., 2018, 18(1), 58-71.
[PMID: 27553018]
[4]
Matteelli, A.; Rendon, A.; Tiberi, S.; Al-Abri, S.; Voniatis, C.; Carvalho, A.C.C.; Centis, R.; D’Ambrosio, L.; Visca, D.; Spanevello, A.; Battista Migliori, G. Tuberculosis elimination: Where are we now? Eur. Respir. Rev., 2018, 27(148), 180035.
[http://dx.doi.org/10.1183/16000617.0035-2018] [PMID: 29898905]
[5]
Verbeeck, R.K.; Günther, G.; Kibuule, D.; Hunter, C.; Rennie, T.W. Optimizing treatment outcome of first-line anti-tuberculosis drugs: The role of therapeutic drug monitoring. Eur. J. Clin. Pharmacol., 2016, 72(8), 905-916.
[http://dx.doi.org/10.1007/s00228-016-2083-4] [PMID: 27305904]
[6]
Reynolds, J.; Heysell, S.K. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin. Drug Metab. Toxicol., 2014, 10(6), 813-823.
[http://dx.doi.org/10.1517/17425255.2014.895813] [PMID: 24597717]
[7]
Zhang, F.F.; Barr, S.I.; McNulty, H.; Li, D.; Blumberg, J.B. Health effects of vitamin and mineral supplements. BMJ, 2020, 369, m2511.
[http://dx.doi.org/10.1136/bmj.m2511] [PMID: 32601065]
[8]
Rees, W.D. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc. Nutr. Soc., 2019, 78(1), 88-96.
[http://dx.doi.org/10.1017/S0029665118002537] [PMID: 30378511]
[9]
Inui, T.; Hanley, B.; Tee, E.S.; Nishihira, J.; Tontisirin, K.; Van Dael, P.; Eggersdorfer, M. The role of micronutrients in ageing asia: What can be implemented with the existing insights. Nutrients, 2021, 13(7), 2222.
[http://dx.doi.org/10.3390/nu13072222] [PMID: 34209491]
[10]
da Cruz, B.O.; Cardozo, L.F.M.F.; Magliano, D.C.; Stockler-Pinto, M.B. Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr. Rev., 2020, 78(3), 207-214.
[PMID: 31584650]
[11]
Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, 2020, 12(2), 334.
[http://dx.doi.org/10.3390/nu12020334] [PMID: 32012681]
[12]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[13]
Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.J.; Zhang, W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients, 2020, 12(2), 381.
[http://dx.doi.org/10.3390/nu12020381] [PMID: 32023943]
[14]
Cerdó, T.; Diéguez, E.; Campoy, C. Early nutrition and gut microbiome: Interrelationship between bacterial metabolism, immune system, brain structure, and neurodevelopment. Am. J. Physiol. Endocrinol. Metab., 2019, 317(4), E617-E630.
[http://dx.doi.org/10.1152/ajpendo.00188.2019] [PMID: 31361544]
[15]
Minemura, M.; Shimizu, Y. Gut microbiota and liver diseases. World J. Gastroenterol., 2015, 21(6), 1691-1702.
[http://dx.doi.org/10.3748/wjg.v21.i6.1691] [PMID: 25684933]
[16]
Bawa, M.; Saraswat, V.A. Gut-liver axis: Role of inflammasomes. J. Clin. Exp. Hepatol., 2013, 3(2), 141-149.
[http://dx.doi.org/10.1016/j.jceh.2013.03.225] [PMID: 25755488]
[17]
Gonmei, Z.; Toteja, G.S. Micronutrient status of Indian population. Indian J. Med. Res., 2018, 148(5), 511-521.
[http://dx.doi.org/10.4103/ijmr.IJMR_1768_18] [PMID: 30666978]
[18]
Singh, P. Treatment of vitamin D deficiency and comorbidities: A review. J. Assoc. Physicians India, 2018, 66(1), 75-82.
[PMID: 30341848]
[19]
Marwaha, R.K.; Dabas, A. Interventions for prevention and control of epidemic of vitamin D deficiency. Indian J. Pediatr., 2019, 86(6), 532-537.
[http://dx.doi.org/10.1007/s12098-019-02857-z] [PMID: 30648226]
[20]
Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; Ueland, P.M.; Yajnik, C. Vitamin B12 deficiency. Nat. Rev. Dis. Primers, 2017, 3, 17040.
[http://dx.doi.org/10.1038/nrdp.2017.40] [PMID: 28660890]
[21]
Benziger, C.P.; Roth, G.A.; Moran, A.E. The global burden of disease study and the preventable burden of NCD. Glob. Heart, 2016, 11(4), 393-397.
[http://dx.doi.org/10.1016/j.gheart.2016.10.024] [PMID: 27938824]
[22]
Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One, 2017, 12(4), e0175149.
[http://dx.doi.org/10.1371/journal.pone.0175149] [PMID: 28448503]
[23]
Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.R.; Hochberg, N.S. Undernutrition and tuberculosis: Public health implications. J. Infect. Dis., 2019, 219(9), 1356-1363.
[http://dx.doi.org/10.1093/infdis/jiy675] [PMID: 30476125]
[24]
Si, Z.L.; Kang, L.L.; Shen, X.B.; Zhou, Y.Z. Adjuvant efficacy of nutrition support during pulmonary tuberculosis treating course: Systematic review and meta-analysis. Chin. Med. J. (Engl.), 2015, 128(23), 3219-3230.
[http://dx.doi.org/10.4103/0366-6999.170255] [PMID: 26612299]
[25]
Cassotta, M.; Forbes-Hernández, T.Y.; Calderón Iglesias, R.; Ruiz, R.; Elexpuru Zabaleta, M.; Giampieri, F.; Battino, M. Links between nutrition, infectious diseases, and microbiota: Emerging technologies and opportunities for human-focused research. Nutrients, 2020, 12(6), 1827.
[http://dx.doi.org/10.3390/nu12061827] [PMID: 32575399]
[26]
Hanekom, W.A.; Potgieter, S.; Hughes, E.J.; Malan, H.; Kessow, G.; Hussey, G.D. Vitamin A status and therapy in childhood pulmonary tuberculosis. J. Pediatr., 1997, 131(6), 925-927.
[http://dx.doi.org/10.1016/S0022-3476(97)70046-5] [PMID: 9427903]
[27]
Rwangabwoba, J.M.; Fischman, H.; Semba, R.D. Serum vitamin A levels during tuberculosis and human immunodeficiency virus infection. Int. J. Tuberc. Lung Dis., 1998, 2(9), 771-773.
[PMID: 9755933]
[28]
Mugusi, F.M.; Rusizoka, O.; Habib, N.; Fawzi, W. Vitamin A status of patients presenting with pulmonary tuberculosis and asymptomatic HIV-infected individuals, Dar es Salaam, Tanzania. Int. J. Tuberc. Lung Dis., 2003, 7(8), 804-807.
[PMID: 12921158]
[29]
Karyadi, E.; Schultink, W.; Nelwan, R.H.; Gross, R.; Amin, Z.; Dolmans, W.M.; van der Meer, J.W.; Hautvast, J.G.; West, C.E. Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia. J. Nutr., 2000, 130(12), 2953-2958.
[http://dx.doi.org/10.1093/jn/130.12.2953] [PMID: 11110853]
[30]
Keflie, T.S.; Samuel, A.; Woldegiorgis, A.Z.; Mihret, A.; Abebe, M.; Biesalski, H.K. Vitamin A and zinc deficiencies among tuberculosis patients in Ethiopia. J. Clin. Tuberc. Other Mycobact. Dis., 2018, 12, 27-33.
[http://dx.doi.org/10.1016/j.jctube.2018.05.002] [PMID: 31720395]
[31]
Ramachandran, G.; Santha, T.; Garg, R.; Baskaran, D.; Iliayas, S.A.; Venkatesan, P.; Fathima, R.; Narayanan, P.R. Vitamin A levels in sputum-positive pulmonary tuberculosis patients in comparison with household contacts and healthy ‘normals’. Int. J. Tuberc. Lung Dis., 2004, 8(9), 1130-1133.
[PMID: 15455600]
[32]
Aibana, O.; Franke, M.F.; Huang, C.C.; Galea, J.T.; Calderon, R.; Zhang, Z.; Becerra, M.C.; Smith, E.R.; Ronnenberg, A.G.; Contreras, C.; Yataco, R.; Lecca, L.; Murray, M.B. Impact of vitamin A and carotenoids on the risk of tuberculosis progression. Clin. Infect. Dis., 2017, 65(6), 900-909.
[http://dx.doi.org/10.1093/cid/cix476] [PMID: 28531276]
[33]
Huang, S.J.; Wang, X.H.; Liu, Z.D.; Cao, W.L.; Han, Y.; Ma, A.G.; Xu, S.F. Vitamin D deficiency and the risk of tuberculosis: A meta-analysis. Drug Des. Devel. Ther., 2016, 11, 91-102.
[http://dx.doi.org/10.2147/DDDT.S79870] [PMID: 28096657]
[34]
Keflie, T.S.; Nölle, N.; Lambert, C.; Nohr, D.; Biesalski, H.K. Vitamin D deficiencies among tuberculosis patients in Africa: A systematic review. Nutrition, 2015, 31(10), 1204-1212.
[http://dx.doi.org/10.1016/j.nut.2015.05.003] [PMID: 26333888]
[35]
Gou, X.; Pan, L.; Tang, F.; Gao, H.; Xiao, D. The association between vitamin D status and tuberculosis in children: A meta-analysis. Medicine (Baltimore), 2018, 97(35), e12179. [Baltimore
[http://dx.doi.org/10.1097/MD.0000000000012179] [PMID: 30170465]
[36]
Aibana, O.; Huang, C.C.; Aboud, S.; Arnedo-Pena, A.; Becerra, M.C.; Bellido-Blasco, J.B.; Bhosale, R.; Calderon, R.; Chiang, S.; Contreras, C.; Davaasambuu, G.; Fawzi, W.W.; Franke, M.F.; Galea, J.T.; Garcia-Ferrer, D.; Gil-Fortuño, M.; Gomila-Sard, B.; Gupta, A.; Gupte, N.; Hussain, R.; Iborra-Millet, J.; Iqbal, N.T.; Juan-Cerdán, J.V.; Kinikar, A.; Lecca, L.; Mave, V.; Meseguer- Ferrer, N.; Montepiedra, G.; Mugusi, F.M.; Owolabi, O.A.; Parsonnet, J.; Roach-Poblete, F.; Romeu-García, M.A.; Spector, S.A.; Sudfeld, C.R.; Tenforde, M.W.; Togun, T.O.; Yataco, R.; Zhang, Z.; Murray, M.B. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med., 2019, 16(9), e1002907.
[http://dx.doi.org/10.1371/journal.pmed.1002907] [PMID: 31509529]
[37]
Madebo, T.; Lindtjørn, B.; Aukrust, P.; Berge, R.K. Circulating antioxidants and lipid peroxidation products in untreated tuberculosis patients in Ethiopia. Am. J. Clin. Nutr., 2003, 78(1), 117-122.
[http://dx.doi.org/10.1093/ajcn/78.1.117] [PMID: 12816780]
[38]
Vijayamalini, M.; Manoharan, S. Lipid peroxidation, vitamins C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem. Funct., 2004, 22(1), 19-22.
[http://dx.doi.org/10.1002/cbf.1039] [PMID: 14695649]
[39]
(a) Lamsal, M.; Gautam, N.; Bhatta, N.; Toora, B.D.; Bhattacharya, S.K.; Baral, N. Evaluation of lipid peroxidation product, nitrite and antioxidant levels in newly diagnosed and two months follow-up patients with pulmonary tuberculosis. Southeast Asian J. Trop. Med. Public Health, 2007, 38(4), 695-703.
(b) Aibana, O.; Franke, M.F.; Huang, C.C.; Galea, J.T.; Calderon, R.; Zhang, Z.; Becerra, M.C.; Contreras, C.; Yataco, R.; Lecca, L.; Murray, M.B. Vitamin E status is inversely associated with risk of incident tuberculosis disease among household contacts. J. Nutr., 2018, 148(1), 56-62.
[PMID: 17883009] [http://dx.doi.org/10.1093/jn/nxx006] [PMID: 29378042]
[40]
Oh, J.; Choi, R.; Park, H.D.; Lee, H.; Jeong, B.H.; Park, H.Y.; Jeon, K.; Kwon, O.J.; Koh, W.J.; Lee, S.Y. Evaluation of vitamin status in patients with pulmonary tuberculosis. J. Infect., 2017, 74(3), 272-280.
[http://dx.doi.org/10.1016/j.jinf.2016.10.009] [PMID: 27838523]
[41]
Kant, S.; Gupta, H.; Ahluwalia, S. Significance of nutrition in pulmonary tuberculosis. Crit. Rev. Food Sci. Nutr., 2015, 55(7), 955-963.
[http://dx.doi.org/10.1080/10408398.2012.679500] [PMID: 24915351]
[42]
Sasidharan, P.K.; Rajeev, E.; Vijayakumari, V. Tuberculosis and vitamin D deficiency. J. Assoc. Physicians India, 2002, 50, 554-558.
[PMID: 12164408]
[43]
Bhargava, A.; Chatterjee, M.; Jain, Y.; Chatterjee, B.; Kataria, A.; Bhargava, M.; Kataria, R.; D’Souza, R.; Jain, R.; Benedetti, A.; Pai, M.; Menzies, D. Nutritional status of adult patients with pulmonary tuberculosis in rural central India and its association with mortality. PLoS One, 2013, 8(10), e77979.
[http://dx.doi.org/10.1371/journal.pone.0077979] [PMID: 24205052]
[44]
Bhargava, A.; Benedetti, A.; Oxlade, O.; Pai, M.; Menzies, D. Undernutrition and the incidence of tuberculosis in India: National and subnational estimates of the population-attributable fraction related to undernutrition. Natl. Med. J. India, 2014, 27(3), 128-133.
[PMID: 25668081]
[45]
Swaminathan, S.; Padmapriyadarsini, C. Undernutrition and tuberculosis: Strongly linked, but ignored. Natl. Med. J. India, 2014, 27(3), 125-127.
[PMID: 25668080]
[46]
Rajamanickam, A.; Munisankar, S.; Dolla, C.K.; Babu, S. Undernutrition is associated with perturbations in T cell-, B cell-, monocyte- and dendritic cell- subsets in latent Mycobacterium tuberculosis infection. PLoS One, 2019, 14(12), e0225611.
[http://dx.doi.org/10.1371/journal.pone.0225611] [PMID: 31821327]
[47]
Hoyt, K.J.; Sarkar, S.; White, L.; Joseph, N.M.; Salgame, P.; Lakshminarayanan, S.; Muthaiah, M.; Vinod Kumar, S.; Ellner, J.J.; Roy, G.; Horsburgh, C.R., Jr; Hochberg, N.S. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis. PLoS One, 2019, 14(3), e0214011.
[http://dx.doi.org/10.1371/journal.pone.0214011] [PMID: 30917170]
[48]
Padmapriyadarsini, C.; Shobana, M.; Lakshmi, M.; Beena, T.; Swaminathan, S. Undernutrition & tuberculosis in India: Situation analysis & the way forward. Indian J. Med. Res., 2016, 144(1), 11-20.
[http://dx.doi.org/10.4103/0971-5916.193278] [PMID: 27834321]
[49]
Shukla, M.; Sharma, A.; Jaiswal, S.; Lal, J. Insights into the pharmacokinetic properties of antitubercular drugs. Expert Opin. Drug Metab. Toxicol., 2016, 12(7), 765-778.
[http://dx.doi.org/10.1080/17425255.2016.1183643] [PMID: 27120703]
[50]
Pasipanodya, J.G.; McIlleron, H.; Burger, A.; Wash, P.A.; Smith, P.; Gumbo, T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J. Infect. Dis., 2013, 208(9), 1464-1473.
[http://dx.doi.org/10.1093/infdis/jit352] [PMID: 23901086]
[51]
Wynn, V. Vitamins and oral contraceptive use. Lancet, 1975, 1(7906), 561-564.
[http://dx.doi.org/10.1016/S0140-6736(75)91570-6] [PMID: 47028]
[52]
Matsui, M.S.; Rozovski, S.J. Drug-nutrient interaction. Clin. Ther., 1982, 4(6), 423-440.
[PMID: 7046936]
[53]
Roe, D.A. Drug-food and drug-nutrient interactions. J. Environ. Pathol. Toxicol. Oncol., 1985, 5(6), 115-135.
[PMID: 3900336]
[54]
Williams, L.; Davis, J.A.; Lowenthal, D.T. The influence of food on the absorption and metabolism of drugs. Med. Clin. North Am., 1993, 77(4), 815-829.
[http://dx.doi.org/10.1016/S0025-7125(16)30226-7] [PMID: 8321071]
[55]
Williams, L.; Hill, D.P., Jr; Davis, J.A.; Lowenthal, D.T. The influence of food on the absorption and metabolism of drugs: An update. Eur. J. Drug Metab. Pharmacokinet., 1996, 21(3), 201-211.
[http://dx.doi.org/10.1007/BF03189714] [PMID: 8980916]
[56]
Zent, C.; Smith, P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber. Lung Dis., 1995, 76(2), 109-113.
[http://dx.doi.org/10.1016/0962-8479(95)90551-0] [PMID: 7780091]
[57]
Saktiawati, A.M.; Sturkenboom, M.G.; Stienstra, Y.; Subronto, Y.W.; Sumardi, ; Kosterink, J.G.; van der Werf, T.S.; Alffenaar, J.W. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: A randomized cross-over trial. J. Antimicrob. Chemother., 2016, 71(3), 703-710.
[http://dx.doi.org/10.1093/jac/dkv394] [PMID: 26661397]
[58]
Kmieć, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol., 2001, 161, III-XIII, 1-151.
[http://dx.doi.org/10.1007/978-3-642-56553-3_7] [PMID: 11729749]
[59]
Jensen-Cody, S.O.; Potthoff, M.J. Hepatokines and metabolism: Deciphering communication from the liver. Mol. Metab., 2021, 44, 101138.
[http://dx.doi.org/10.1016/j.molmet.2020.101138] [PMID: 33285302]
[60]
Panzitt, K.; Wagner, M. FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(7), 166133.
[http://dx.doi.org/10.1016/j.bbadis.2021.166133] [PMID: 33771667]
[61]
Pickett-Blakely, O.; Young, K.; Carr, R.M. Micronutrients in nonalcoholic fatty liver disease pathogenesis. Cell. Mol. Gastroenterol. Hepatol., 2018, 6(4), 451-462.
[http://dx.doi.org/10.1016/j.jcmgh.2018.07.004] [PMID: 30294653]
[62]
Susa, S.T.; Preuss, C.V. Drug Metabolism. StatPearls, 2021, Available from: https://www.ncbi.nlm.nih.gov/books/NBK442023/
[63]
Corless, J.K.; Middleton, H.M., III Normal liver function. A basis for understanding hepatic disease. Arch. Intern. Med., 1983, 143(12), 2291-2294.
[http://dx.doi.org/10.1001/archinte.1983.00350120085018] [PMID: 6360063]
[64]
Saunders, W.B. Liver. In Canine and Feline Gastroenterology; Washabau, R.J.; Day, M.J., Eds.; , 2013, pp. 849-957.
[65]
Bhagavan, N.V.; Ha, C. Vitamin Metabolism. In Essentials of Medical Biochemistry, 2nd ed.; Bhagavan, N.V.; Ha, C., Eds.; , 2015, pp. 683-699.
[66]
Parry, S.A.; Hodson, L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J. Investig. Med., 2017, 65(8), 1102-1115.
[http://dx.doi.org/10.1136/jim-2017-000524] [PMID: 28947639]
[67]
Kozeniecki, M.; Ludke, R.; Kerner, J.; Patterson, B. Micronutrients in liver disease: Roles, risk factors for deficiency, and recommendations for supplementation. Nutr. Clin. Pract., 2020, 35(1), 50-62.
[http://dx.doi.org/10.1002/ncp.10451] [PMID: 31840874]
[68]
Blomhoff, R.; Green, M.H.; Berg, T.; Norum, K.R. Transport and storage of vitamin A. Science, 1990, 250(4979), 399-404.
[http://dx.doi.org/10.1126/science.2218545] [PMID: 2218545]
[69]
Zúñiga, S.; Firrincieli, D.; Housset, C.; Chignard, N. Vitamin D and the vitamin D receptor in liver pathophysiology. Clin. Res. Hepatol. Gastroenterol., 2011, 35(4), 295-302.
[http://dx.doi.org/10.1016/j.clinre.2011.02.003] [PMID: 21440524]
[70]
Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug metabolism in the liver. Clin. Liver Dis., 2017, 21(1), 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[71]
Furge, L.L.; Guengerich, F.P. Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem. Mol. Biol. Educ., 2006, 34(2), 66-74.
[http://dx.doi.org/10.1002/bmb.2006.49403402066] [PMID: 21638641]
[72]
Lu, H. Crosstalk of HNF4α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm. Sin. B, 2016, 6(5), 393-408.
[http://dx.doi.org/10.1016/j.apsb.2016.07.003] [PMID: 27709008]
[73]
Stavropoulou, E.; Pircalabioru, G.G.; Bezirtzoglou, E. The role of cytochromes P450 in infection. Front. Immunol., 2018, 9, 89.
[http://dx.doi.org/10.3389/fimmu.2018.00089] [PMID: 29445375]
[74]
Devaleenal Daniel, B.; Ramachandran, G.; Swaminathan, S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev. Clin. Pharmacol., 2017, 10(1), 47-58.
[http://dx.doi.org/10.1080/17512433.2017.1246179] [PMID: 27724114]
[75]
Du Preez, I.; Loots, D.T. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab. Rev., 2018, 50(4), 466-481.
[http://dx.doi.org/10.1080/03602532.2018.1559184] [PMID: 30558443]
[76]
Mthiyane, T.; Millard, J.; Adamson, J.; Balakrishna, Y.; Connolly, C.; Owen, A.; Rustomjee, R.; Dheda, K.; McIlleron, H.; Pym, A.S. N-Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment. Antimicrob. Agents Chemother., 2020, 64(4), e02376-e19.
[http://dx.doi.org/10.1128/AAC.02376-19] [PMID: 31964788]
[77]
Hemanth Kumar, A.K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, H.; Lavanya, J.; Swaminathan, S.; Ramachandran, G. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis. Indian J. Med. Res., 2017, 145(1), 118-123.
[http://dx.doi.org/10.4103/ijmr.IJMR_2013_15] [PMID: 28574024]
[78]
Khan, S.; Mandal, R.K.; Elasbali, A.M.; Dar, S.A.; Jawed, A.; Wahid, M.; Mahto, H.; Lohani, M.; Mishra, B.N.; Akhter, N.; Rabaan, A.A.; Haque, S. Pharmacogenetic association between NAT2 gene polymorphisms and isoniazid induced hepatotoxicity: Trial sequence meta-analysis as evidence. Biosci. Rep., 2019, 39(1), BSR20180845.
[http://dx.doi.org/10.1042/BSR20180845] [PMID: 30509962]
[79]
Gupta, V.H.; Amarapurkar, D.N.; Singh, M.; Sasi, P.; Joshi, J.M.; Baijal, R.; Ramegowda, P.H.; Amarapurkar, A.D.; Joshi, K.; Wangikar, P.P. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J. Gastroenterol. Hepatol., 2013, 28(8), 1368-1374.
[http://dx.doi.org/10.1111/jgh.12194] [PMID: 23875638]
[80]
Kim, E.S.; Kwon, B.S.; Park, J.S.; Chung, J.Y.; Seo, S.H.; Park, K.U.; Song, J.; Yoon, S.; Lee, J.H. Relationship among genetic polymorphism of SLCO1B1, rifampicin exposure and clinical outcomes in patients with active pulmonary tuberculosis. Br. J. Clin. Pharmacol., 2021, 87(9), 3492-3500.
[http://dx.doi.org/10.1111/bcp.14758] [PMID: 33538008]
[81]
Thomas, L.; Sekhar Miraj, S.; Surulivelrajan, M.; Varma, M.; Sanju, C.S.V.; Rao, M. Influence of single nucleotide polymorphisms on rifampin pharmacokinetics in tuberculosis patients. Antibiotics (Basel), 2020, 9(6), 307. [Basel
[http://dx.doi.org/10.3390/antibiotics9060307] [PMID: 32521634]
[82]
Mukonzo, J.K.; Kengo, A.; Kutesa, B.; Nanzigu, S.; Pohanka, A.; McHugh, T.D.; Zumla, A.; Aklillu, E. Role of pharmacogenetics in rifampicin pharmacokinetics and the potential effect on TB-rifampicin sensitivity among Ugandan patients. Trans. R. Soc. Trop. Med. Hyg., 2020, 114(2), 107-114.
[http://dx.doi.org/10.1093/trstmh/trz108] [PMID: 31789383]
[83]
Naidoo, A.; Chirehwa, M.; Ramsuran, V.; McIlleron, H.; Naidoo, K.; Yende-Zuma, N.; Singh, R.; Ncgapu, S.; Adamson, J.; Govender, K.; Denti, P.; Padayatchi, N. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics, 2019, 20(4), 225-240.
[http://dx.doi.org/10.2217/pgs-2018-0166] [PMID: 30767706]
[84]
Wu, S.; Zhang, J.; Li, F.; Du, W.; Zhou, X.; Wan, M.; Fan, Y.; Xu, X.; Zhou, X.; Zheng, L.; Zhou, Y. One-carbon metabolism links nutrition intake to embryonic development via epigenetic mechanisms. Stem Cells Int., 2019, 2019, 3894101.
[http://dx.doi.org/10.1155/2019/3894101] [PMID: 30956668]
[85]
Viscarra, J.; Sul, H.S. Epigenetic regulation of hepatic lipogenesis: Role in hepatosteatosis and diabetes. Diabetes, 2020, 69(4), 525-531.
[http://dx.doi.org/10.2337/dbi18-0032] [PMID: 32198196]
[86]
Sapienza, C.; Issa, J.P. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr., 2016, 36, 665-681.
[http://dx.doi.org/10.1146/annurev-nutr-121415-112634] [PMID: 27022771]
[87]
Gomez-Verjan, J.C.; Barrera-Vázquez, O.S.; García-Velázquez, L.; Samper-Ternent, R.; Arroyo, P. Epigenetic variations due to nutritional status in early-life and its later impact on aging and disease. Clin. Genet., 2020, 98(4), 313-321.
[http://dx.doi.org/10.1111/cge.13748] [PMID: 32246454]
[88]
Kalea, A.Z.; Drosatos, K.; Buxton, J.L. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care, 2018, 21(4), 252-259.
[http://dx.doi.org/10.1097/MCO.0000000000000477] [PMID: 29847446]
[89]
Campisano, S.; La Colla, A.; Echarte, S.M.; Chisari, A.N. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr. Res. Rev., 2019, 32(1), 128-145.
[http://dx.doi.org/10.1017/S0954422418000239] [PMID: 30707092]
[90]
Ramos-Lopez, O.; Milagro, F.I.; Riezu-Boj, J.I.; Martinez, J.A. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm. Res., 2021, 70(1), 29-49.
[http://dx.doi.org/10.1007/s00011-020-01425-y] [PMID: 33231704]
[91]
Nur, S.M.; Rath, S.; Ahmad, V.; Ahmad, A.; Ateeq, B.; Khan, M.I. Nutritive vitamins as epidrugs. Crit. Rev. Food Sci. Nutr., 2021, 61(1), 1-13.
[http://dx.doi.org/10.1080/10408398.2020.1712674] [PMID: 32023132]
[92]
Blaner, W.S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol. Ther., 2019, 197, 153-178.
[http://dx.doi.org/10.1016/j.pharmthera.2019.01.006] [PMID: 30703416]
[93]
Haaker, M.W.; Vaandrager, A.B.; Helms, J.B. Retinoids in health and disease: A role for hepatic stellate cells in affecting retinoid levels. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(6), 158674.
[http://dx.doi.org/10.1016/j.bbalip.2020.158674] [PMID: 32105672]
[94]
Vajreswari, A.; Jeyakumar, S.M. Retinoids: Impact on adiposity, lipids and lipoprotein metabolism. Recent Pat. Endocr. Metab. Immune Drug Discov., 2008, 2(2), 109-122.
[http://dx.doi.org/10.2174/187221408784534295]
[95]
Bar-El Dadon, S.; Reifen, R. Vitamin A and the epigenome. Crit. Rev. Food Sci. Nutr., 2017, 57(11), 2404-2411.
[http://dx.doi.org/10.1080/10408398.2015.1060940] [PMID: 26565606]
[96]
Urvalek, A.; Laursen, K.B.; Gudas, L.J. The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes. Subcell. Biochem., 2014, 70, 129-149.
[http://dx.doi.org/10.1007/978-94-017-9050-5_7] [PMID: 24962884]
[97]
Wan, L.Y.; Zhang, Y.Q.; Chen, M.D.; Liu, C.B.; Wu, J.F. Relationship of structure and function of DNA-binding domain in vitamin D receptor. Molecules, 2015, 20(7), 12389-12399.
[http://dx.doi.org/10.3390/molecules200712389] [PMID: 26198224]
[98]
Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci., 2020, 21(18), 6573.
[http://dx.doi.org/10.3390/ijms21186573] [PMID: 32911795]
[99]
Wang, M.; Kong, W.; He, B.; Li, Z.; Song, H.; Shi, P.; Wang, J. Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis. Clin. Epigenetics, 2018, 10(1), 118.
[http://dx.doi.org/10.1186/s13148-018-0552-6] [PMID: 30208925]
[100]
Wimalawansa, S.J.; Vitamin, D. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel), 2019, 8(2), 30. [Basel
[http://dx.doi.org/10.3390/biology8020030] [PMID: 31083546]
[101]
Zingg, J.M.; Vitamin, E. Vitamin E: Regulatory role on signal transduction. IUBMB Life, 2019, 71(4), 456-478.
[http://dx.doi.org/10.1002/iub.1986] [PMID: 30556637]
[102]
Ferrero, G.; Carpi, S.; Polini, B.; Pardini, B.; Nieri, P.; Impeduglia, A.; Grioni, S.; Tarallo, S.; Naccarati, A. Intake of natural compounds and circulating microrna expression levels: Their relationship investigated in healthy subjects with different dietary habits. Front. Pharmacol., 2021, 11, 619200.
[http://dx.doi.org/10.3389/fphar.2020.619200] [PMID: 33519486]
[103]
Passador, J.; Toffoli, L.V.; Fernandes, K.B.; Neves-Souza, R.D.; Pelosi, G.G.; Gomes, M.V. Dietary ingestion of calories and micronutrients modulates the DNA methylation profile of leukocytes from older individuals. J. Nutr. Health Aging, 2018, 22(10), 1281-1285.
[http://dx.doi.org/10.1007/s12603-018-1085-6] [PMID: 30498838]
[104]
Fiorino, S.; Bacchi-Reggiani, L.; Sabbatani, S.; Grizzi, F.; di Tommaso, L.; Masetti, M.; Fornelli, A.; Bondi, A.; de Biase, D.; Visani, M.; Cuppini, A.; Jovine, E.; Pession, A. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: A systematic review. Br. J. Nutr., 2014, 112(11), 1751-1768.
[http://dx.doi.org/10.1017/S0007114514002839] [PMID: 25325563]
[105]
Coupland, K.G.; Mellick, G.D.; Silburn, P.A.; Mather, K.; Armstrong, N.J.; Sachdev, P.S.; Brodaty, H.; Huang, Y.; Halliday, G.M.; Hallupp, M.; Kim, W.S.; Dobson-Stone, C.; Kwok, J.B. DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov. Disord., 2014, 29(13), 1606-1614.
[http://dx.doi.org/10.1002/mds.25784] [PMID: 24375821]
[106]
Ross, A.C.; Zolfaghari, R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu. Rev. Nutr., 2011, 31, 65-87.
[http://dx.doi.org/10.1146/annurev-nutr-072610-145127] [PMID: 21529158]
[107]
Stevison, F.; Jing, J.; Tripathy, S.; Isoherranen, N. Role of retinoic acid-metabolizing cytochrome P450s, CYP26, in inflammation and cancer. Adv. Pharmacol., 2015, 74, 373-412.
[http://dx.doi.org/10.1016/bs.apha.2015.04.006] [PMID: 26233912]
[108]
Le Vee, M.; Jouan, E.; Stieger, B.; Fardel, O. Differential regulation of drug transporter expression by all-trans retinoic acid in hepatoma HepaRG cells and human hepatocytes. Eur. J. Pharm. Sci., 2013, 48(4-5), 767-774.
[http://dx.doi.org/10.1016/j.ejps.2013.01.005] [PMID: 23352986]
[109]
Landes, N.; Pfluger, P.; Kluth, D.; Birringer, M.; Rühl, R.; Böl, G.F.; Glatt, H.; Brigelius-Flohé, R. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol., 2003, 65(2), 269-273.
[http://dx.doi.org/10.1016/S0006-2952(02)01520-4] [PMID: 12504802]
[110]
Parker, R.S.; Sontag, T.J.; Swanson, J.E. Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. Biochem. Biophys. Res. Commun., 2000, 277(3), 531-534.
[http://dx.doi.org/10.1006/bbrc.2000.3706] [PMID: 11061988]
[111]
Sontag, T.J.; Parker, R.S. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J. Biol. Chem., 2002, 277(28), 25290-25296.
[http://dx.doi.org/10.1074/jbc.M201466200] [PMID: 11997390]
[112]
Raja Gopal Reddy, M.; Pavan Kumar, C.; Mahesh, M.; Sravan Kumar, M.; Mullapudi Venkata, S.; Putcha, U.K.; Vajreswari, A.; Jeyakumar, S.M. Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels. Biochim. Biophys. Acta, 2016, 1861(3), 156-165.
[http://dx.doi.org/10.1016/j.bbalip.2015.11.005] [PMID: 26597784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy