Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Selected Natural and Synthetic Agents Effective against Parkinson’s Disease with Diverse Mechanisms

Author(s): Hayrettin Ozan Gulcan*

Volume 22, Issue 3, 2022

Published on: 14 December, 2021

Page: [199 - 208] Pages: 10

DOI: 10.2174/1568026621666211129141316

Price: $65

conference banner
Abstract

Similar to other neurodegenerative diseases, Parkinson’s disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.

Keywords: Parkinson’s disease, Dopaminergic agonists, α-synuclein, MAO-B inhibitors, COMT inhibitors, Natural products.

Graphical Abstract
[1]
Fahn, S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov. Disord., 2015, 30(1), 4-18.
[http://dx.doi.org/10.1002/mds.26102] [PMID: 25491387]
[2]
Leverenz, J.B.; Quinn, J.F.; Zabetian, C.; Zhang, J.; Montine, K.S.; Montine, T.J. Cognitive impairment and dementia in patients with Parkinson disease. Curr. Top. Med. Chem., 2009, 9(10), 903-912.
[PMID: 19754405]
[3]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson’s disease: a review. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[4]
Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci., 2017, 18(7), 435-450.
[http://dx.doi.org/10.1038/nrn.2017.62] [PMID: 28592904]
[5]
Mery, V.P.; Gros, P.; Lafontaine, A.L.; Robinson, A.; Benedetti, A.; Kimoff, R.J.; Kaminska, M. Reduced cognitive function in patients with Parkinson disease and obstructive sleep apnea. Neurology, 2017, 88(12), 1120-1128.
[http://dx.doi.org/10.1212/WNL.0000000000003738] [PMID: 28228566]
[6]
Savica, R.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Rocca, W.A. Time trends in the incidence of Parkinson’s disease. JAMA Neurol., 2016, 73(8), 981-989.
[http://dx.doi.org/10.1001/jamaneurol.2016.0947] [PMID: 27323276]
[7]
Mehanna, R.; Moore, S.; Hou, J.G.; Sarwar, A.I.; Lai, E.C. Comparing clinical features of young onset, middle onset and late onset Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(5), 530-534.
[http://dx.doi.org/10.1016/j.parkreldis.2014.02.013] [PMID: 24631501]
[8]
Hornykiewicz, O. Ageing and neurotoxins as causative factors in idiopathic Parkinson’s disease--a critical analysis of the neurochemical evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1989, 13(3-4), 319-328.
[http://dx.doi.org/10.1016/0278-5846(89)90121-8] [PMID: 2664888]
[9]
Sayre, L.M.; Smith, M.A.; Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem., 2001, 8(7), 721-738.
[http://dx.doi.org/10.2174/0929867013372922] [PMID: 11375746]
[10]
Deng, H.; Wang, P.; Jankovic, J. The genetics of Parkinson disease. Ageing Res. Rev., 2018, 42, 72-85.
[http://dx.doi.org/10.1016/j.arr.2017.12.007] [PMID: 29288112]
[11]
Karimi-Moghadam, A.; Charsouei, S.; Bell, B.; Jabalameli, M.R. Parkinson’s disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell. Mol. Neurobiol., 2018, 38(6), 1153-1178.
[http://dx.doi.org/10.1007/s10571-018-0587-4] [PMID: 29700661]
[12]
Nussbaum, R.L. The identification of alpha-synuclein as the first Parkinson’s disease gene. J. Parkinsons Dis., 2017, 7(s1), S43-S49.
[http://dx.doi.org/10.3233/JPD-179003] [PMID: 28282812]
[13]
Glass, T.J.; Kelm-Nelson, C.A.; Szot, J.C.; Lake, J.M.; Connor, N.P.; Ciucci, M.R. Functional characterization of extrinsic tongue muscles in the Pink1-/- rat model of Parkinson disease. PLoS One, 2020, 15(10)e0240366
[http://dx.doi.org/10.1371/journal.pone.0240366] [PMID: 33064741]
[14]
Cogo, S.; Manzoni, C.; Lewis, P.A.; Greggio, E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J. Neurochem., 2020, 152(3), 273-283.
[http://dx.doi.org/10.1111/jnc.14908] [PMID: 31693760]
[15]
Goodwin, B.L.; Kite, G.C. Environmental MPTP as a factor in the aetiology of Parkinson’s disease? J. Neural Transm. (Vienna), 1998, 105(10-12), 1265-1269.
[http://dx.doi.org/10.1007/s007020050129] [PMID: 9928895]
[16]
Forno, L.S.; DeLanney, L.E.; Irwin, I.; Langston, J.W. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv. Neurol., 1993, 60, 600-608.
[PMID: 8380528]
[17]
Henchcliffe, C.; Beal, M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol., 2008, 4(11), 600-609.
[http://dx.doi.org/10.1038/ncpneuro0924] [PMID: 18978800]
[18]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[19]
Zhang, Y.; Dawson, V.L.; Dawson, T.M. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis., 2000, 7(4), 240-250.
[http://dx.doi.org/10.1006/nbdi.2000.0319] [PMID: 10964596]
[20]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[21]
Gaspar, A.; Milhazes, N.; Santana, L.; Uriarte, E.; Borges, F.; Matos, M.J. Oxidative stress and neurodegenerative diseases: Looking for a therapeutic solution inspired on benzopyran chemistry. Curr. Top. Med. Chem., 2015, 15(5), 432-445.
[http://dx.doi.org/10.2174/1568026614666141229124141] [PMID: 25658803]
[22]
Chinta, S.J.; Andersen, J.K. Redox imbalance in Parkinson’s disease. Biochim. Biophys. Acta, 2008, 1780(11), 1362-1367.
[http://dx.doi.org/10.1016/j.bbagen.2008.02.005] [PMID: 18358848]
[23]
Cohen, G. Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann. N. Y. Acad. Sci., 2000, 899(1), 112-120.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06180.x] [PMID: 10863533]
[24]
Perlow, M.J.; Freed, W.J.; Hoffer, B.J.; Seiger, A.; Olson, L.; Wyatt, R.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979, 204(4393), 643-647.
[http://dx.doi.org/10.1126/science.571147] [PMID: 571147]
[25]
Hirsch, E.; Graybiel, A.M.; Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 1988, 334(6180), 345-348.
[http://dx.doi.org/10.1038/334345a0] [PMID: 2899295]
[26]
Spina, M.B.; Cohen, G. Dopamine turnover and glutathione oxidation: Implications for Parkinson disease. Proc. Natl. Acad. Sci. USA, 1989, 86(4), 1398-1400.
[http://dx.doi.org/10.1073/pnas.86.4.1398] [PMID: 2919185]
[27]
Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov., 2018, 17(11), 804-822.
[http://dx.doi.org/10.1038/nrd.2018.136] [PMID: 30262889]
[28]
Torti, M.; Bravi, D.; Vacca, L.; Stocchi, F. Are all dopamine agonists essentially the same? Drugs, 2019, 79(7), 693-703.
[http://dx.doi.org/10.1007/s40265-019-01103-2] [PMID: 30968290]
[29]
You, H.; Mariani, L.L.; Mangone, G.; Le Febvre de Nailly, D.; Charbonnier-Beaupel, F.; Corvol, J.C. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 111-135.
[http://dx.doi.org/10.1007/s00441-018-2813-2] [PMID: 29516217]
[30]
Finberg, J.P.M. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. (Vienna), 2019, 126(4), 433-448.
[http://dx.doi.org/10.1007/s00702-018-1952-7] [PMID: 30386930]
[31]
Lyytinen, J.; Kaakkola, S.; Ahtila, S.; Tuomainen, P.; Teräväinen, H. Simultaneous MAO-B and COMT inhibition in L-dopa-treated patients with Parkinson’s disease. Mov. Disord., 1997, 12(4), 497-505.
[http://dx.doi.org/10.1002/mds.870120404] [PMID: 9251066]
[32]
Espay, A.J.; LeWitt, P.A.; Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement. Mov. Disord., 2014, 29(14), 1710-1719.
[http://dx.doi.org/10.1002/mds.26048] [PMID: 25297066]
[33]
Bulens, C.; Meerwaldt, J.D.; van der Wildt, G.J.; Keemink, C.J. Contrast sensitivity in Parkinson’s disease. Neurology, 1986, 36(8), 1121-1125.
[http://dx.doi.org/10.1212/WNL.36.8.1121] [PMID: 3736881]
[34]
Ferreira, R.N.; de Miranda, A.S.; Rocha, N.P.; Simoes, E. Silva, A.C.; Teixeira, A.L.; da Silva Camargos, E.R. Neurotrophic factors in Parkinson’s disease: what have we learned from pre-clinical and clinical studies? Curr. Med. Chem., 2018, 25(31), 3682-3702.
[http://dx.doi.org/10.2174/0929867325666180313101536] [PMID: 29532753]
[35]
Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019, 18(6)e13031
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[36]
Bauckneht, M.; Arnaldi, D.; Nobili, F.; Aarsland, D.; Morbelli, S. New tracers and new perspectives for molecular imaging in Lewy body diseases. Curr. Med. Chem., 2018, 25(26), 3105-3130.
[http://dx.doi.org/10.2174/0929867324666170609080000] [PMID: 28595550]
[37]
Cavaliere, F.; Cerf, L.; Dehay, B.; Ramos-Gonzalez, P.; De Giorgi, F.; Bourdenx, M.; Bessede, A.; Obeso, J.A.; Matute, C.; Ichas, F.; Bezard, E. In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol. Dis., 2017, 103, 101-112.
[http://dx.doi.org/10.1016/j.nbd.2017.04.011] [PMID: 28411117]
[38]
Peelaerts, W.; Bousset, L.; Baekelandt, V.; Melki, R. ɑ-Synuclein strains and seeding in Parkinson’s disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res., 2018, 373(1), 195-212.
[http://dx.doi.org/10.1007/s00441-018-2839-5] [PMID: 29704213]
[39]
Heman-Ackah, S.M.; Manzano, R.; Hoozemans, J.J.M.; Scheper, W.; Flynn, R.; Haerty, W.; Cowley, S.A.; Bassett, A.R.; Wood, M.J.A. Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum. Mol. Genet., 2017, 26(22), 4441-4450.
[http://dx.doi.org/10.1093/hmg/ddx331] [PMID: 28973645]
[40]
Román-Vendrell, C.; Medeiros, A.T.; Sanderson, J.B.; Jiang, H.; Bartels, T.; Morgan, J.R. Effects of excess brain-derived human α-synuclein on synaptic vesicle trafficking. Front. Neurosci., 2021, 15639414
[http://dx.doi.org/10.3389/fnins.2021.639414] [PMID: 33613189]
[41]
Ono, K. The oligomer hypothesis in α-synucleinopathy. Neurochem. Res., 2017, 42(12), 3362-3371.
[http://dx.doi.org/10.1007/s11064-017-2382-x] [PMID: 28828740]
[42]
Mikolaenko, I.; Pletnikova, O.; Kawas, C.H.; O’Brien, R.; Resnick, S.M.; Crain, B.; Troncoso, J.C. Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J. Neuropathol. Exp. Neurol., 2005, 64(2), 156-162.
[http://dx.doi.org/10.1093/jnen/64.2.156] [PMID: 15751230]
[43]
Uversky, V.N.; Eliezer, D. Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein. Curr. Protein Pept. Sci., 2009, 10(5), 483-499.
[http://dx.doi.org/10.2174/138920309789351921] [PMID: 19538146]
[44]
Bonini, N.M.; Giasson, B.I. Snaring the function of α-synuclein. Cell, 2005, 123(3), 359-361.
[http://dx.doi.org/10.1016/j.cell.2005.10.017] [PMID: 16269324]
[45]
Bellani, S.; Sousa, V.L.; Ronzitti, G.; Valtorta, F.; Meldolesi, J.; Chieregatti, E. The regulation of synaptic function by α-synuclein. Commun. Integr. Biol., 2010, 3(2), 106-109.
[http://dx.doi.org/10.4161/cib.3.2.10964] [PMID: 20585500]
[46]
Nakamura, K. α-Synuclein and mitochondria: partners in crime? Neurotherapeutics, 2013, 10(3), 391-399.
[http://dx.doi.org/10.1007/s13311-013-0182-9] [PMID: 23512373]
[47]
Guardia-Laguarta, C.; Area-Gomez, E.; Rüb, C.; Liu, Y.; Magrané, J.; Becker, D.; Voos, W.; Schon, E.A.; Przedborski, S. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci., 2014, 34(1), 249-259.
[http://dx.doi.org/10.1523/JNEUROSCI.2507-13.2014] [PMID: 24381286]
[48]
Cole, N.B.; Dieuliis, D.; Leo, P.; Mitchell, D.C.; Nussbaum, R.L. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification. Exp. Cell Res., 2008, 314(10), 2076-2089.
[http://dx.doi.org/10.1016/j.yexcr.2008.03.012] [PMID: 18440504]
[49]
Cookson, M.R.; van der Brug, M. Cell systems and the toxic mechanism(s) of α-synuclein. Exp. Neurol., 2008, 209(1), 5-11.
[http://dx.doi.org/10.1016/j.expneurol.2007.05.022] [PMID: 17603039]
[50]
Parihar, M.S.; Parihar, A.; Fujita, M.; Hashimoto, M.; Ghafourifar, P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell. Mol. Life Sci., 2008, 65(7-8), 1272-1284.
[http://dx.doi.org/10.1007/s00018-008-7589-1] [PMID: 18322646]
[51]
Mullin, S.; Schapira, A. α-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol. Neurobiol., 2013, 47(2), 587-597.
[http://dx.doi.org/10.1007/s12035-013-8394-x] [PMID: 23361255]
[52]
Yahr, M.D.; Duvoisin, R.C.; Schear, M.J.; Barrett, R.E.; Hoehn, M.M. Treatment of parkinsonism with levodopa. Arch. Neurol., 1969, 21(4), 343-354.
[http://dx.doi.org/10.1001/archneur.1969.00480160015001] [PMID: 5820999]
[53]
Haddad, F.; Sawalha, M.; Khawaja, Y.; Najjar, A.; Karaman, R. Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules, 2017, 23(1), 40.
[http://dx.doi.org/10.3390/molecules23010040] [PMID: 29295587]
[54]
Abrams, W.B.; Coutinho, C.B.; Leon, A.S.; Spiegel, H.E. Absorption and metabolism of levodopa. JAMA, 1971, 218(13), 1912-1914.
[http://dx.doi.org/10.1001/jama.1971.03190260028007] [PMID: 5171067]
[55]
Hauser, R.A. Levodopa: Past, present, and future. Eur. Neurol., 2009, 62(1), 1-8.
[http://dx.doi.org/10.1159/000215875] [PMID: 19407449]
[56]
Dingemanse, J.; Jorga, K.; Zürcher, G.; Schmitt, M.; Sedek, G.; Da Prada, M.; Van Brummelen, P. Pharmacokinetic-pharmacodynamic interaction between the COMT inhibitor tolcapone and single-dose levodopa. Br. J. Clin. Pharmacol., 1995, 40(3), 253-262.
[http://dx.doi.org/10.1111/j.1365-2125.1995.tb05781.x] [PMID: 8527287]
[57]
Gülcan, H.O.; Orhan, I.E. The Neurodegenerative Characteristics of Alzheimer’s Disease and Related Multi-Target Drug Design Studies.Pharmaceutical Biocatalysis, Peter Grunwald; Jenny Stanford Publishing: Boca Raton, 2019, Vol. 6, pp. 473-504.
[http://dx.doi.org/10.1201/9780429295034-12]
[58]
Gulcan, H.O.; Orhan, I.E. A recent look into natural products that have potential to inhibit cholinesterases and monoamine oxidase B: update for 2010-2019. Comb. Chem. High Throughput Screen., 2020, 23(9), 862-876.
[http://dx.doi.org/10.2174/1386207323666200127145246] [PMID: 31985374]
[59]
Szökő, É.; Tábi, T.; Riederer, P.; Vécsei, L.; Magyar, K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J. Neural Transm. (Vienna), 2018, 125(11), 1735-1749.
[http://dx.doi.org/10.1007/s00702-018-1853-9] [PMID: 29417334]
[60]
Shukur, K.T.; Ercetin, T.; Luise, C.; Sippl, W.; Sirkecioglu, O.; Ulgen, M.; Coskun, G.P.; Yarim, M.; Gazi, M.; Gulcan, H.O. Design, synthesis, and biological evaluation of new urolithin amides as multitarget agents against Alzheimer’s disease. Arch. Pharm. (Weinheim), 2021, 354(5)e2000467
[http://dx.doi.org/10.1002/ardp.202000467] [PMID: 33511649]
[61]
Gal, S.; Zheng, H.; Fridkin, M.; Youdim, M.B. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J. Neurochem., 2005, 95(1), 79-88.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03341.x] [PMID: 16181414]
[62]
Zeuner, K.E.; Schäffer, E.; Hopfner, F.; Brüggemann, N.; Berg, D. Progress of pharmacological approaches in Parkinson’s disease. Clin. Pharmacol. Ther., 2019, 105(5), 1106-1120.
[http://dx.doi.org/10.1002/cpt.1374] [PMID: 30661251]
[63]
Kon, T.; Ueno, T.; Haga, R.; Tomiyama, M. The factors associated with impulse control behaviors in Parkinson’s disease: a 2-year longitudinal retrospective cohort study. Brain Behav., 2018, 8(8)e01036
[http://dx.doi.org/10.1002/brb3.1036] [PMID: 29956879]
[64]
El-Shorbagi, A.N.; Chaudhary, S.; Alshemali, K.A.; Alabdulrazzaq, R.F.; Alqahtani, F.Y. A comprehensive review on management of Parkinson’s disease, inclusive of drug discovery and pharmacological approaches. J. Appl. Pharm. Sci., 2020, 10(10), 130-150.
[65]
Contin, M.; Lopane, G.; Mohamed, S.; Calandra-Buonaura, G.; Capellari, S.; De Massis, P.; Nassetti, S.; Perrone, A.; Riva, R.; Sambati, L.; Scaglione, C.; Cortelli, P. Clinical pharmacokinetics of pramipexole, ropinirole and rotigotine in patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2019, 61, 111-117.
[http://dx.doi.org/10.1016/j.parkreldis.2018.11.007] [PMID: 30446407]
[66]
Latt, M.D.; Lewis, S.; Zekry, O.; Fung, V.S.C. Factors to consider in the selection of dopamine agonists for older persons with Parkinson’s disease. Drugs Aging, 2019, 36(3), 189-202.
[http://dx.doi.org/10.1007/s40266-018-0629-0] [PMID: 30623310]
[67]
Rinne, U.K. Problems associated with long-term levodopa treatment of Parkinson’s disease. Acta Neurol. Scand. Suppl., 1983, 95, 19-26.
[http://dx.doi.org/10.1111/j.1600-0404.1983.tb01513.x] [PMID: 6587715]
[68]
Nonnekes, J.; Bereau, M.; Bloem, B.R. Freezing of gait and its levodopa paradox. JAMA Neurol., 2020, 77(3), 287-288.
[http://dx.doi.org/10.1001/jamaneurol.2019.4006] [PMID: 31841600]
[69]
Cotzias, G.C.; Papavasiliou, P.S.; Fehling, C.; Kaufman, B.; Mena, I. Similarities between neurologic effects of L-dopa and of apomorphine. N. Engl. J. Med., 1970, 282(1), 31-33.
[http://dx.doi.org/10.1056/NEJM197001012820107] [PMID: 4901383]
[70]
Lees, A.J. Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam. Clin. Pharmacol., 1993, 7(3-4), 121-128.
[http://dx.doi.org/10.1111/j.1472-8206.1993.tb00226.x] [PMID: 8500783]
[71]
Grünblatt, E.; Mandel, S.; Maor, G.; Youdim, M.B. Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. J. Neurochem., 2001, 77(1), 146-156.
[http://dx.doi.org/10.1046/j.1471-4159.2001.t01-1-00227.x] [PMID: 11279270]
[72]
Arroyo-García, L.E.; Vázquez-Roque, R.A.; Díaz, A.; Treviño, S.; De La Cruz, F.; Flores, G.; Rodríguez-Moreno, A. The effects of non-selective dopamine receptor activation by apomorphine in the mouse hippocampus. Mol. Neurobiol., 2018, 55(11), 8625-8636.
[http://dx.doi.org/10.1007/s12035-018-0991-2] [PMID: 29582396]
[73]
Liu, Z.D.; Hider, R.C. Design of clinically useful iron(III)-selective chelators. Med. Res. Rev., 2002, 22(1), 26-64.
[http://dx.doi.org/10.1002/med.1027] [PMID: 11746175]
[74]
Hulvová, H.; Galuszka, P.; Frébortová, J.; Frébort, I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol. Adv., 2013, 31(1), 79-89.
[http://dx.doi.org/10.1016/j.biotechadv.2012.01.005] [PMID: 22261014]
[75]
Spano, P.F.; Trabucchi, M. Interaction of ergot alkaloids with dopaminergic receptors in the rat striatum and nucleus accumbens. Gerontology, 1978, 24(Suppl. 1), 106-114.
[http://dx.doi.org/10.1159/000212304] [PMID: 618775]
[76]
Strange, P.G. New insights into dopamine receptors in the central nervous system. Neurochem. Int., 1993, 22(3), 223-236.
[http://dx.doi.org/10.1016/0197-0186(93)90050-F] [PMID: 8095172]
[77]
Mantegani, S.; Brambilla, E.; Varasi, M. Ergoline derivatives: Receptor affinity and selectivity. Farmaco, 1999, 54(5), 288-296.
[http://dx.doi.org/10.1016/S0014-827X(99)00028-2] [PMID: 10418123]
[78]
Kaasinen, V.; Någren, K.; Hietala, J.; Oikonen, V.; Vilkman, H.; Farde, L.; Halldin, C.; Rinne, J.O. Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson’s disease. Neurology, 2000, 54(7), 1482-1487.
[http://dx.doi.org/10.1212/WNL.54.7.1482] [PMID: 10751262]
[79]
Kassel, S.; Schwed, J.S.; Stark, H. Dopamine D3 receptor agonists as pharmacological tools. Eur. Neuropsychopharmacol., 2015, 25(9), 1480-1499.
[http://dx.doi.org/10.1016/j.euroneuro.2014.11.005] [PMID: 25498414]
[80]
Malo, M.; Brive, L.; Luthman, K.; Svensson, P. Investigation of D1 receptor-agonist interactions and D1/D2 agonist selectivity using a combination of pharmacophore and receptor homology modeling. ChemMedChem, 2012, 7(3), 483-494.
[http://dx.doi.org/10.1002/cmdc.201100546] [PMID: 22315216]
[81]
Cortés, A.; Moreno, E.; Rodríguez-Ruiz, M.; Canela, E.I.; Casadó, V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin. Drug Discov., 2016, 11(7), 641-664.
[http://dx.doi.org/10.1080/17460441.2016.1185413] [PMID: 27135354]
[82]
Boeckler, F.; Gmeiner, P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol. Ther., 2006, 112(1), 281-333.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.007] [PMID: 16905195]
[83]
Cacciari, B.; Spalluto, G.; Federico, S. A2A adenosine receptor antagonists as therapeutic candidates: are they still an interesting challenge? Mini Rev. Med. Chem., 2018, 18(14), 1168-1174.
[http://dx.doi.org/10.2174/1389557518666180423113051] [PMID: 29692248]
[84]
Blair, H.A.; Dhillon, S. Safinamide: a review in Parkinson’s disease. CNS Drugs, 2017, 31(2), 169-176.
[http://dx.doi.org/10.1007/s40263-017-0408-1] [PMID: 28110399]
[85]
Pisanò, C.A.; Brugnoli, A.; Novello, S.; Caccia, C.; Keywood, C.; Melloni, E.; Vailati, S.; Padoani, G.; Morari, M. Safinamide inhibits in vivo glutamate release in a rat model of Parkinson’s disease. Neuropharmacology, 2020, 167108006
[http://dx.doi.org/10.1016/j.neuropharm.2020.108006] [PMID: 32086070]
[86]
Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Isaacson, S.H.; Nausieda, P.A.; Truong, D.D.; Agarwal, P.; Hull, K.L.; Lyons, K.E.; Johnson, R.; Stempien, M.J. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID study): a randomized clinical trial. JAMA Neurol., 2017, 74(8), 941-949.
[http://dx.doi.org/10.1001/jamaneurol.2017.0943] [PMID: 28604926]
[87]
Spilovska, K.; Zemek, F.; Korabecny, J.; Nepovimova, E.; Soukup, O.; Windisch, M.; Kuca, K. Adamantane-a lead structure for drugs in clinical practice. Curr. Med. Chem., 2016, 23(29), 3245-3266.
[http://dx.doi.org/10.2174/0929867323666160525114026] [PMID: 27222266]
[88]
Ossola, B.; Schendzielorz, N.; Chen, S.H.; Bird, G.S.; Tuominen, R.K.; Männistö, P.T.; Hong, J.S. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology, 2011, 61(4), 574-582.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.030] [PMID: 21586298]
[89]
Paik, J.; Keam, S.J. Amantadine extended-release (GOCOVRI™): a review in levodopa-induced dyskinesia in Parkinson’s disease. CNS Drugs, 2018, 32(8), 797-806.
[http://dx.doi.org/10.1007/s40263-018-0552-2] [PMID: 30088203]
[90]
Yoshikawa, T.; Naito, Y.; Kondo, M. Ginkgo biloba leaf extract: review of biological actions and clinical applications. Antioxid. Redox Signal., 1999, 1(4), 469-480.
[http://dx.doi.org/10.1089/ars.1999.1.4-469] [PMID: 11233145]
[91]
Wu, W.R.; Zhu, X.Z. Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C57 mice. Life Sci., 1999, 65(2), 157-164.
[http://dx.doi.org/10.1016/S0024-3205(99)00232-5] [PMID: 10416821]
[92]
Kuang, S.; Yang, L.; Rao, Z.; Zhong, Z.; Li, J.; Zhong, H.; Dai, L.; Tang, X. Effects of Ginkgo biloba extract on A53T α-synuclein transgenic mouse models of Parkinson’s disease. Can. J. Neurol. Sci., 2018, 45(2), 182-187.
[http://dx.doi.org/10.1017/cjn.2017.268] [PMID: 29506601]
[93]
Hua, J.; Yin, N.; Xu, S.; Chen, Q.; Tao, T.; Zhang, J.; Ding, J.; Fan, Y.; Hu, G. Enhancing the astrocytic clearance of extracellular α-synuclein aggregates by ginkgolides attenuates neural cell injury. Cell. Mol. Neurobiol., 2019, 39(7), 1017-1028.
[http://dx.doi.org/10.1007/s10571-019-00696-2] [PMID: 31165943]
[94]
Cho, I.H. Effects of Panax ginseng in neurodegenerative diseases. J. Ginseng Res., 2012, 36(4), 342-353.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[95]
González-Burgos, E.; Fernandez-Moriano, C.; Gómez-Serranillos, M.P. Potential neuroprotective activity of Ginseng in Parkinson’s disease: a review. J. Neuroimmune Pharmacol., 2015, 10(1), 14-29.
[http://dx.doi.org/10.1007/s11481-014-9569-6] [PMID: 25349145]
[96]
de Oliveria, D.M.; Barreto, G.; De Andrade, D.V.G.; Saraceno, E.; Aon-Bertolino, L.; Capani, F.; Dos Santos El Bachá, R.; Giraldez, L.D. Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem. Res., 2009, 34(2), 215-220.
[http://dx.doi.org/10.1007/s11064-008-9749-y] [PMID: 18512151]
[97]
Al-kuraishy, H.; Alwindy, S.; Al-Gareeb, A. Beneficial neuro-pharmacological effect of passionflower (Passiflora Incarnate L). J. Neurol. Brain Disord., 2020, 3, 285-289.
[98]
Shrivastava, M.; Dwivedi, L. Therapeutic potential of Hypericum Perforatum: a review. Int. J. Pharm. Sci. Res., 2015, 6(12), 4982-4988.
[99]
Zhao, J.; Liang, Q.; Sun, Q.; Chen, C.; Xu, L.; Ding, Y.; Zhou, P. (−)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of α-synuclein, and protects PC12 cells against α-synuclein-induced toxicity. RSC Advances, 2017, 7(52), 32508-32517.
[http://dx.doi.org/10.1039/C7RA03752J]
[100]
Hu, Q.; Uversky, V.N.; Huang, M.; Kang, H.; Xu, F.; Liu, X.; Lian, L.; Liang, Q.; Jiang, H.; Liu, A.; Zhang, C.; Pan-Montojo, F.; Zhu, S. Baicalein inhibits α-synuclein oligomer formation and prevents progression of α-synuclein accumulation in a rotenone mouse model of Parkinson’s disease. Biochim. Biophys. Acta, 2016, 1862(10), 1883-1890.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.008] [PMID: 27425033]
[101]
Caruana, M.; Högen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett., 2011, 585(8), 1113-1120.
[http://dx.doi.org/10.1016/j.febslet.2011.03.046] [PMID: 21443877]
[102]
Meng, X.; Munishkina, L.A.; Fink, A.L.; Uversky, V.N. Molecular mechanisms underlying the flavonoid-induced inhibition of α-synuclein fibrillation. Biochemistry, 2009, 48(34), 8206-8224.
[http://dx.doi.org/10.1021/bi900506b] [PMID: 19634918]
[103]
Singh, P.K.; Kotia, V.; Ghosh, D.; Mohite, G.M.; Kumar, A.; Maji, S.K. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem. Neurosci., 2013, 4(3), 393-407.
[http://dx.doi.org/10.1021/cn3001203] [PMID: 23509976]
[104]
Zhang, L.F.; Yu, X.L.; Ji, M.; Liu, S.Y.; Wu, X.L.; Wang, Y.J.; Liu, R.T. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct., 2018, 9(12), 6414-6426.
[http://dx.doi.org/10.1039/C8FO00964C] [PMID: 30462117]
[105]
Temsamani, H.; Krisa, S.; Decossas-Mendoza, M.; Lambert, O.; Mérillon, J.M.; Richard, T. Piceatannol and other wine stilbenes: a pool of inhibitors against α-synuclein aggregation and cytotoxicity. Nutrients, 2016, 8(6), 367.
[http://dx.doi.org/10.3390/nu8060367] [PMID: 27314384]
[106]
Maioli, E.; Torricelli, C.; Valacchi, G. Rottlerin and curcumin: a comparative analysis. Ann. N. Y. Acad. Sci., 2012, 1259(1), 65-76.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06514.x] [PMID: 22758638]
[107]
Mani, S.; Sekar, S.; Barathidasan, R.; Manivasagam, T.; Thenmozhi, A.J.; Sevanan, M.; Chidambaram, S.B.; Essa, M.M.; Guillemin, G.J.; Sakharkar, M.K. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotox. Res., 2018, 33(3), 656-670.
[http://dx.doi.org/10.1007/s12640-018-9869-3] [PMID: 29427283]
[108]
Poetini, M.R.; Araujo, S.M.; Trindade de Paula, M.; Bortolotto, V.C.; Meichtry, L.B.; Polet de Almeida, F.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact., 2018, 279, 177-186.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[109]
Bournival, J.; Quessy, P.; Martinoli, M.G. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell. Mol. Neurobiol., 2009, 29(8), 1169-1180.
[http://dx.doi.org/10.1007/s10571-009-9411-5] [PMID: 19466539]
[110]
Ara, G.; Afzal, M.; Jyoti, S.; Naz, F.; Siddique, Y.H. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease. Curr. Drug Ther., 2019, 14(1), 58-64.
[http://dx.doi.org/10.2174/1574885513666180529114546]
[111]
Shiying, L.; Xinhui, Q.; Guanghua, J.; Feng, N.; Feng, L.; Shumei, C.; Fan, H. Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed. Pharmacother., 2018, 106, 1236-1242.
[http://dx.doi.org/10.1016/j.biopha.2018.07.058] [PMID: 30119192]
[112]
Yang, J.S.; Wu, X.H.; Yu, H.G.; Teng, L.S. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology, 2017, 25(4), 471-484.
[http://dx.doi.org/10.1007/s10787-017-0348-x] [PMID: 28577132]
[113]
Kim, H.G.; Ju, M.S.; Ha, S.K.; Lee, H.; Lee, H.; Kim, S.Y.; Oh, M.S. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol. Pharm. Bull., 2012, 35(8), 1287-1294.
[http://dx.doi.org/10.1248/bpb.b12-00127] [PMID: 22863927]
[114]
Jeong, K.H.; Jeon, M.T.; Kim, H.D.; Jung, U.J.; Jang, M.C.; Chu, J.W.; Yang, S.J.; Choi, I.Y.; Choi, M.S.; Kim, S.R. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson’s disease. J. Med. Food, 2015, 18(4), 409-414.
[http://dx.doi.org/10.1089/jmf.2014.3241] [PMID: 25325362]
[115]
Petzer, A.; Pienaar, A.; Petzer, J.P. The interactions of caffeine with monoamine oxidase. Life Sci., 2013, 93(7), 283-287.
[http://dx.doi.org/10.1016/j.lfs.2013.06.020] [PMID: 23850513]
[116]
Zarmouh, N.; Eyunni, S.; Mazzio, E.; Messeha, S.; Elshami, F.; Soliman, K. Bavachinin and genistein, two novel human monoamine oxidase‐b (mao‐b) inhibitors in the Psoralea corylifolia seeds. FASEB J., 2015, 29, 771-772.
[http://dx.doi.org/10.1096/fasebj.29.1_supplement.771.2]
[117]
Carradori, S.; D’Ascenzio, M.; Chimenti, P.; Secci, D.; Bolasco, A. Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers., 2014, 18(1), 219-243.
[http://dx.doi.org/10.1007/s11030-013-9490-6] [PMID: 24218136]
[118]
Hwang, J.S.; Lee, S.A.; Hong, S.S.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch. Pharm. Res., 2005, 28(2), 190-194.
[http://dx.doi.org/10.1007/BF02977714] [PMID: 15789750]
[119]
Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Oh, S.R.; Kim, H. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg. Med. Chem. Lett., 2016, 26(19), 4714-4719.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.044] [PMID: 27575476]
[120]
Gnerre, C.; Thull, U.; Gaillard, P.; Carrupt, P.A.; Testa, B.; Fernandes, E.; Cruciani, G. Natural and synthetic xanthones as monoamine oxidase inhibitors: biological assay and 3D‐QSAR. Helv. Chim. Acta, 2001, 84(3), 552-570.
[http://dx.doi.org/10.1002/1522-2675(20010321)84:3<552:AID-HLCA552>3.0.CO;2-X]
[121]
Han, X.H.; Hong, S.S.; Lee, D.; Lee, J.J.; Lee, M.S.; Moon, D.C.; Han, K.; Oh, K.W.; Lee, M.K.; Ro, J.S.; Hwang, B.Y. Quinolone alkaloids from evodiae fructus and their inhibitory effects on monoamine oxidase. Arch. Pharm. Res., 2007, 30(4), 397-401.
[http://dx.doi.org/10.1007/BF02980210] [PMID: 17489352]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy