Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Angelica archangelica and Ginkgo biloba Extracts Recover Functional Blood Hemoglobin Derivatives in Rabbits Exposed to High Altitude

Author(s): Bassem M. Raafat, Amira M. Gamal-Eldeen*, Mazen M. Almehmadi, Sherien M. El-Daly, Nahla L. Faizo and Fayez Althobaiti

Volume 23, Issue 11, 2022

Published on: 11 January, 2022

Page: [1377 - 1382] Pages: 6

DOI: 10.2174/1389201022666211118112356

Price: $65

conference banner
Abstract

Background: Shortage of oxygen is a common condition for residents of high-altitude (HA) areas. In mammals, hemoglobin (Hb) has four derivatives: oxyhemoglobin (Hb-O2), carboxyhemoglobin (Hb-CO), sulfhemoglobin (Hb-S), and methemoglobin (Met-Hb). In HA areas, aberrant physiological performance of blood hemoglobin is well-established.

Objectives: The study aimed to investigate the influence of 30 days of HA residence on rabbits' total Hb, Hb derivatives, Hb autooxidation rate, and antioxidant enzymes in comparison to low-altitude control rabbits. Further, the study aimed to investigate the effect of antioxidant-rich Angelica archangelica and/or Ginkgo biloba extracts on the same parameters in HA-resident rabbits.

Methods: Rabbits subjected to 30 days of HA residence were compared to low-altitude control rabbits. HA-residence rabbits were then orally administered 0.11 g/kg b.wt. of Angelica archangelica and/or Ginkgo biloba extract for 14 days. Hb derivatives and Hb autooxidation rate were measured spectrophotometrically. Antioxidant enzymes were estimated using specialized kits.

Results: Compared to low-altitude rabbits, 30-day HA-residence rabbits showed a noticeable increase (p<0.05) in Hb-O2 and Hb-CO concentration. In addition, Met-Hb concentration, autooxidation rate of Hb molecules, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) exhibited a remarkable increase in HA-residence rabbits (p<0.01), reflective of rapid ROS generation. In HA-residence rabbits, both individual and combined treatment with antioxidant-rich extracts for 14 days resulted in recovery to near-normal functional levels of Hb-O2 and Met-Hb, Hb autooxidation rate, and activities of SOD and GPx, while only combined treatment led to Hb-O2 recovery.

Conclusion: The findings suggest that functional Hb levels may be recovered by oral administration of A. archangelica, G. biloba, or combined treatments. In conclusion, oxidative stress due to living in HA areas may be avoided by supplementation with natural antioxidants.

Keywords: Hemoglobin derivatives, oxyhemoglobin, methemoglobin, high altitude, Ginkgo biloba, Angelica archangelica.

Graphical Abstract
[1]
Akunov, A.; Sydykov, A.; Toktash, T.; Doolotova, A.; Sarybaev, A. Hemoglobin changes after longterm intermittent work at high altitude. Front. Physiol., 2018, 9, 1552.
[http://dx.doi.org/10.3389/fphys.2018.01552] [PMID: 30443224]
[2]
Storz, J.F. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J. Exp. Biol., 2016, 219(Pt 20), 3190-3203.
[http://dx.doi.org/10.1242/jeb.127134] [PMID: 27802149]
[3]
Johnson, N.J.; Luks, A.M. High-altitude medicine. Med. Clin. North Am., 2016, 100(2), 357-369.
[http://dx.doi.org/10.1016/j.mcna.2015.09.002] [PMID: 26900119]
[4]
Bilo, G.; Caravita, S.; Torlasco, C.; Parati, G. Blood pressure at high altitude: physiology and clinical implications. Kardiol. Pol., 2019, 77(6), 596-603.
[http://dx.doi.org/10.33963/KP.14832] [PMID: 31099758]
[5]
Redmer, B.; Schargus, P.; Karthikeyan, S.; Nestler, B.; Müller, S. In: determination of hemoglobin derivatives in unaltered whole blood samples using Support Vector regression in the spectral range from 450 to 700nm. Proc. SPIE 11247; Optical Diagnostics and Sensing XX, Toward Point-of-Care Diagnostics, 112470A (14 February. 2020.
[6]
Song, X.; Hou, C.; Gao, Y.; Zhu, J.; Zhang, D. Application of hemoglobin and its derivatives in food. J. Chinese Inst. Food Sci. Technol., 2018, 18, 314-322.
[7]
Witt, K.E.; Huerta-Sánchez, E. Convergent evolution in human and domesticate adaptation to high-altitude environments. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2019, 374(1777, Pg: 20180235)
[http://dx.doi.org/10.1098/rstb.2018.0235]
[8]
Biswas, A.; Ahmed, M.; Bharti, V.K.; Singh, S.B. Effect of antioxidants on physio-biochemical and hematological parameters in broiler chicken at high altitude. Asian-Australas. J. Anim. Sci., 2011, 24, 246-249.
[http://dx.doi.org/10.5713/ajas.2011.10060]
[9]
Moxness, M.S.; Brunauer, L.S.; Huestis, W.H. Hemoglobin oxidation products extract phospholipids from the membrane of human eryth-rocytes. Biochemistry, 1996, 35(22), 7181-7187.
[http://dx.doi.org/10.1021/bi952167o] [PMID: 8679546]
[10]
Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G. Biphasic oxidation of oxy-hemoglobin in bloodstains. PLoS One, 2011, 6(7), e21845.
[http://dx.doi.org/10.1371/journal.pone.0021845] [PMID: 21789186]
[11]
Faivre, B.; Menu, P.; Labrude, P.; Vigneron, C. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or re-duction processes in the bloodstream. Literature review and outline of autooxidation reaction. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(1), 17-26.
[http://dx.doi.org/10.3109/10731199809118943] [PMID: 9507753]
[12]
Fathey, S.A.; Abd el-Baset, M.S.; Abdel Hamid, F.F.; Bassem, M.R.; Hassan, S.M.; Abd el-Latif, N.A. lead poisoning chelation therapy of Angelica archangelica. J. Basic Appl. Sci. Res., 2012, 11, 11402-11408.
[13]
Raafat, B.M.; Zahrany, S.M.; Al-Zahrani, A.S.; Tawifiek, E.; Al-Omery, A.M. Sci., 2012, 3, 795-8806.
[14]
Natarajan, S.; Shunmugiah, K.P.; Kasi, P.D. Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. Pharm. Biol., 2013, 51(4), 492-523.
[http://dx.doi.org/10.3109/13880209.2012.738423] [PMID: 23336528]
[15]
Zhang, L.; Mao, W.; Guo, X.; Wu, Y.; Li, C.; Lu, Z.; Su, G.; Li, X.; Liu, Z.; Guo, R.; Jie, X.; Wen, Z.; Liu, X. biloba extract for pa-tients with early diabetic nephropathy, A systematic review. Evid. Based Complement. Alternat. Med., 2013, 2013, 689142.
[PMID: 23533513]
[16]
Lee, J.W.; Shim, B.S.; Chung, J.W. The effect of Gingko biloba on hearing in mice with noise-induced temporary threshold shift. Korean J. Audiol., 2013, 17(2), 74-77.
[http://dx.doi.org/10.7874/kja.2013.17.2.74] [PMID: 24653910]
[17]
McCord, T.B.; Westphal, J.A. Mars, narrow-band photometry; from 0.3 to 2.5 microns; of surface regions during the 1969 apparition. Astrophys. J., 1971, 168, 141-153.
[http://dx.doi.org/10.1086/151069]
[18]
Guillochon, D.; Esclade, L.; Thomas, D. Effect of glutaraldehyde on haemoglobin: oxidation-reduction potentials and stability. Biochem. Pharmacol., 1986, 35(2), 317-323.
[http://dx.doi.org/10.1016/0006-2952(86)90532-0] [PMID: 3080007]
[19]
Luo, Z.; Zheng, M.; Zhao, P.; Chen, Z.; Siu, F.; Gong, P.; Gao, G.; Sheng, Z.; Zheng, C.; Ma, Y.; Cai, L. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep., 2016, 6, 23393.
[http://dx.doi.org/10.1038/srep23393] [PMID: 26987618]
[20]
Bahmani, R.; Kim, D.; Na, J.; Hwang, S. Expression of the tobacco non-symbiotic class 1 hemoglobin gene hb1 reduces cadmium levels by modulating cd transporter expression through decreasing nitric oxide and ROS level in Arabidopsis. Front. Plant Sci., 2019, 10, 201.
[http://dx.doi.org/10.3389/fpls.2019.00201] [PMID: 30853969]
[21]
Ajibola, K.A.; Adedokun, K.A.; Oduola, T.; Oparinde, D.P.; Ayelagbe, O.G.; Ojokuku, H.O. Assessment of iron status and interplay be-tween lipid peroxidation and antioxidant capacity in common hemoglobin variants in Osun State, southwestern Nigeria. Kaohsiung J. Med. Sci., 2019, 35(6), 358-364.
[http://dx.doi.org/10.1002/kjm2.12062] [PMID: 30913360]
[22]
Fotouhi, L.; Moosavi-Movahedi, A.A.; Yousefinejad, S.; Shourian, M.; Sheibani, N.; Habibi-Rezaei, M.; Saboury, A.A. Hydrophobic be-havior; ROS production; and heme degradation of hemoglobin upon interaction with n-alkyl sulfates. J. Iran Chem. Soc, 2016, 13, 11.
[http://dx.doi.org/10.1007/s13738-016-0928-5]
[23]
Tashi, T.; Feng, T.; Koul, P.; Amaru, R.; Hussey, D.; Lorenzo, F.R. RiLi, G.; Prchal, J.T. High altitude genetic adaptation in Tibetans: no role of increased hemoglobin-oxygen affinity. Blood Cells Mol. Dis., 2014, 53(1-2), 27-29.
[http://dx.doi.org/10.1016/j.bcmd.2014.02.003] [PMID: 24618341]
[24]
Zinchuk, V.V.; Stepuro, T.L. The effect of peroxynitrite on the affinity of hemoglobin for oxygen in vitro. Mol. Biophys., 2006, 51, 23-28.
[http://dx.doi.org/10.1134/S0006350906010040]
[25]
Winslow, R.M. The role of hemoglobin oxygen affinity in oxygen transport at high altitude. Respir. Physiol. Neurobiol., 2007, 158(2-3), 121-127.
[http://dx.doi.org/10.1016/j.resp.2007.03.011] [PMID: 17449336]
[26]
Salikhova, R.A.; Dulatova, S.N.; Poroshenko, G.G. Study of the antimutagenic properties of Angelica archangelica by the micronucleus test. Biull. Eksp. Biol. Med., 1993, 115(4), 371-372.
[PMID: 8049396]
[27]
Hebbel, R.P.; Eaton, J.W.; Kronenberg, R.S.; Zanjani, E.D.; Moore, L.G.; Berger, E.M. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J. Clin. Invest., 1978, 62(3), 593-600.
[http://dx.doi.org/10.1172/JCI109165]
[28]
O’Brien, K.A.; Simonson, T.S.; Murray, A.J. Metabolic adaptation to high altitude. Curr. Opin. Endocr. Metab. Res., 2020, 11, 33-41.
[http://dx.doi.org/10.1016/j.coemr.2019.12.002]
[29]
Quaye, O.; Kuleape, J.A.; Bonney, E.Y.; Puplampu, P.; Tagoe, E.A. Imbalance of antioxidant enzymes activities and trace elements levels in Ghanaian HIV-infected patients. PLoS One, 2019, 14(7), e0220181.
[http://dx.doi.org/10.1371/journal.pone.0220181] [PMID: 31339937]
[30]
Subudhi, A.W.; Jacobs, K.A.; Hagobian, T.A.; Fattor, J.A.; Muza, S.R.; Fulco, C.S.; Cymerman, A.; Friedlander, A.L. Changes in ventilato-ry threshold at high altitude: effect of antioxidants. Med. Sci. Sports Exerc., 2006, 38(8), 1425-1431.
[http://dx.doi.org/10.1249/01.mss.0000228939.32281.39] [PMID: 16888455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy