Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Advancement and Strategies for the Development of Peptide-drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence against Cancer Management

Author(s): Rishabha Malviya*, Swati Verma and Sonali Sundram

Volume 22, Issue 4, 2022

Published on: 20 January, 2022

Page: [286 - 311] Pages: 26

DOI: 10.2174/1568009621666211118111506

Price: $65

Open Access Journals Promotions 2
Abstract

Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.

Keywords: Pharmacokinetics, peptide, cancer therapy, clinical studies, targeted delivery, cellular targeting.

Graphical Abstract
[1]
Li, Z.; Krippendorff, B.F.; Shah, D.K. Influence of molecular size on the clearance of antibody fragments. Pharm. Res., 2017, 34(10), 2131-2141.
[http://dx.doi.org/10.1007/s11095-017-2219-y] [PMID: 28681164]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Boohaker, R.J.; Lee, M.W.; Vishnubhotla, P.; Perez, J.M.; Khaled, A.R. The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem., 2012, 19(22), 3794-3804.
[http://dx.doi.org/10.2174/092986712801661004] [PMID: 22725698]
[4]
Kanavos, P.; Sullivan, R.; Lewison, G.; Schurer, W.; Eckhouse, S.; Vlachopioti, Z. The role of funding and policies on innovation in cancer drug development. Ecancermedicalscience, 2010, 4, 164.
[http://dx.doi.org/10.3332/ecancer.2010.164] [PMID: 22276026]
[5]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[6]
Bor, G.; Mat Azmi, I.D.; Yaghmur, A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Ther. Deliv., 2019, 10(2), 113-132.
[http://dx.doi.org/10.4155/tde-2018-0062] [PMID: 30678550]
[7]
El-Readi, M.Z.; Althubiti, M.A. Cancer nanomedicine: A new era of successful targeted therapy. J. Nanomat., 2019, 2019, 4927312.
[8]
Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2011, 12(1), 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[9]
Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-based vaccines: Current progress and future challenges. Chem. Rev., 2020, 120(6), 3210-3229.
[http://dx.doi.org/10.1021/acs.chemrev.9b00472] [PMID: 31804810]
[10]
Goodwin, D.; Simerska, P.; Toth, I. Peptides as therapeutics with enhanced bioactivity. Curr. Med. Chem., 2012, 19(26), 4451-4461.
[http://dx.doi.org/10.2174/092986712803251548] [PMID: 22830348]
[11]
Diao, L.; Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet., 2013, 52(10), 855-868.
[http://dx.doi.org/10.1007/s40262-013-0079-0] [PMID: 23719681]
[12]
Sato, A.K.; Viswanathan, M.; Kent, R.B.; Wood, C.R. Therapeutic peptides: Technological advances driving peptides into development. Curr. Opin. Biotechnol., 2006, 17(6), 638-642.
[http://dx.doi.org/10.1016/j.copbio.2006.10.002] [PMID: 17049837]
[13]
Latham, P.W. Therapeutic peptides revisited. Nat. Biotechnol., 1999, 17(8), 755-757.
[http://dx.doi.org/10.1038/11686] [PMID: 10429238]
[14]
Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein-and peptide-drug conjugates: An emerging drug delivery technology. Adv. In Pro. Chem. And struc. Biology (Basel), 2015, 98, 1-55.
[15]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[16]
Chan, L.Y.; Craik, D.J.; Daly, N.L. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci. Rep., 2016, 6, 35347.
[http://dx.doi.org/10.1038/srep35347] [PMID: 27734947]
[17]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[18]
Kanwal, S. Effect of O-GlcNAcylation on tamoxifen sensitivity in breast cancer derived MCF-7 cells, Doctoral dissertation, Paris, 2013, pp. 1-204.
[19]
Böhme, D.; Beck-Sickinger, A.G. Drug delivery and release systems for targeted tumor therapy. J. Pept. Sci., 2015, 21(3), 186-200.
[http://dx.doi.org/10.1002/psc.2753] [PMID: 25703117]
[20]
Carter, P.J.; Senter, P.D. Antibody-drug conjugates for cancer therapy. Cancer J., 2008, 14(3), 154-169.
[http://dx.doi.org/10.1097/PPO.0b013e318172d704] [PMID: 18536555]
[21]
Bildstein, L.; Dubernet, C.; Couvreur, P. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev., 2011, 63(1-2), 3-23.
[http://dx.doi.org/10.1016/j.addr.2010.12.005] [PMID: 21237228]
[22]
Worm, D.J.; Els-Heindl, S.; Beck-Sickinger, A.G. Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates. Pept. Sci. (Hoboken), 2020, 112(3), 1-22.
[http://dx.doi.org/10.1002/pep2.24171]
[23]
McConkey, B.J.; Sobolev, V.; Edelman, M. The performance of current methods in ligand–protein docking. Curr. Sci., 2002, 83(7), 845-856.
[24]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[25]
Koshland, D.E., Jr Correlation of structure and function in enzyme action. Science, 1963, 142(3599), 1533-1541.
[http://dx.doi.org/10.1126/science.142.3599.1533] [PMID: 14075684]
[26]
Venhorst, J.; ter Laak, A.M.; Commandeur, J.N.; Funae, Y.; Hiroi, T.; Vermeulen, N.P. Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J. Med. Chem., 2003, 46(1), 74-86.
[http://dx.doi.org/10.1021/jm0209578] [PMID: 12502361]
[27]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein–ligand docking using GOLD. Protein: Struct., Fun., and Bioinfo., 2003, 52(4), 609-623.
[28]
Gunasekera, S.; Foley, F.M.; Clark, R.J.; Sando, L.; Fabri, L.J.; Craik, D.J.; Daly, N.L. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J. Med. Chem., 2008, 51(24), 7697-7704.
[http://dx.doi.org/10.1021/jm800704e] [PMID: 19053834]
[29]
Woodley, J. Enzymatic barriers. In: Oral Delivery of Macromolecular Drugs; Springer: New York, 2009; pp. 1-19.
[http://dx.doi.org/10.1007/978-1-4419-0200-9_1]
[30]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[31]
Kawakami, T.; Kamo, M.; Takamoto, K.; Miyazaki, K.; Chow, L.P.; Ueno, Y.; Tsugita, A. Bond-specific chemical cleavages of peptides and proteins with perfluoric acid vapors: novel peptide bond cleavages of glycyl-threonine, the amino side of serine residues and the carboxyl side of aspartic acid residues. J. Biochem., 1997, 121(1), 68-76.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021572] [PMID: 9058194]
[32]
Humphrey, M.J.; Ringrose, P.S. Peptides and related drugs: A review of their absorption, metabolism, and excretion. Drug Metab. Rev., 1986, 17(3-4), 283-310.
[http://dx.doi.org/10.3109/03602538608998293] [PMID: 3552541]
[33]
Silk, D.B.A. Peptide transport. Clin. Sci. (Lond.), 1981, 60(6), 607-615.
[http://dx.doi.org/10.1042/cs0600607] [PMID: 7018806]
[34]
Matthews, D.M. Intestinal absorption of peptides. Physiol. Rev., 1975, 55(4), 537-608.
[http://dx.doi.org/10.1152/physrev.1975.55.4.537] [PMID: 1103167]
[35]
Edmonds, D.J.; Price, D.A. Oral GLP-1 modulators for the treatment of diabetes. In: Annual Reports in Medicinal Chemistry; Academic Press: Cambridge, 2013; Vol. 48, pp. 119-130.
[36]
Rezai, T.; Bock, J.E.; Zhou, M.V.; Kalyanaraman, C.; Lokey, R.S.; Jacobson, M.P. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc., 2006, 128(43), 14073-14080.
[http://dx.doi.org/10.1021/ja063076p] [PMID: 17061890]
[37]
Stenberg, P.; Luthman, K.; Artursson, P. Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties. Pharm. Res., 1999, 16(2), 205-212.
[http://dx.doi.org/10.1023/A:1018816122458] [PMID: 10100304]
[38]
Rafi, S.B.; Hearn, B.R.; Vedantham, P.; Jacobson, M.P.; Renslo, A.R. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem., 2012, 55(7), 3163-3169.
[http://dx.doi.org/10.1021/jm201634q] [PMID: 22394492]
[39]
Nowatzke, W.L.; Rogers, K.; Wells, E.; Bowsher, R.R.; Ray, C.; Unger, S. Unique challenges of providing bioanalytical support for biological therapeutic pharmacokinetic programs. Bioanalysis, 2011, 3(5), 509-521.
[http://dx.doi.org/10.4155/bio.11.2] [PMID: 21388264]
[40]
van den Broek, I.; Sparidans, R.W.; Schellens, J.H.M.; Beijnen, J.H. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 872(1-2), 1-22.
[http://dx.doi.org/10.1016/j.jchromb.2008.07.021] [PMID: 18701357]
[41]
Li, W.; Zhang, J.; Tse, F.L.S. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed. Chromatogr., 2011, 25(1-2), 258-277.
[http://dx.doi.org/10.1002/bmc.1572] [PMID: 21204113]
[42]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[43]
Howard, M.L.; Hill, J.J.; Galluppi, G.R.; McLean, M.A. Plasma protein binding in drug discovery and development. Comb. Chem. High Throughput Screen., 2010, 13(2), 170-187.
[http://dx.doi.org/10.2174/138620710790596745] [PMID: 20053162]
[44]
Werle, M.; Bernkop-Schnürch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids, 2006, 30(4), 351-367.
[http://dx.doi.org/10.1007/s00726-005-0289-3] [PMID: 16622600]
[45]
Beck, J.G.; Chatterjee, J.; Laufer, B.; Kiran, M.U.; Frank, A.O.; Neubauer, S.; Ovadia, O.; Greenberg, S.; Gilon, C.; Hoffman, A.; Kessler, H. Intestinal permeability of cyclic peptides: Common key backbone motifs identified. J. Am. Chem. Soc., 2012, 134(29), 12125-12133.
[http://dx.doi.org/10.1021/ja303200d] [PMID: 22737969]
[46]
Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem., 2010, 53(6), 2601-2611.
[http://dx.doi.org/10.1021/jm100087s] [PMID: 20175530]
[47]
Rezai, T.; Yu, B.; Millhauser, G.L.; Jacobson, M.P.; Lokey, R.S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc., 2006, 128(8), 2510-2511.
[http://dx.doi.org/10.1021/ja0563455] [PMID: 16492015]
[48]
Raghothama, S.; Raghavender, U.S.; Aravinda, S.; Shamala, N.; Balaram, P. Conformations of heterochiral and homochiral proline-pseudoproline segments in peptides: context dependent cis- trans peptide bond isomerization. Biopolymers, 2009, 92(5), 405-416.
[http://dx.doi.org/10.1002/bip.21207] [PMID: 19373926]
[49]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[50]
Alex, A.; Millan, D.S.; Perez, M.; Wakenhut, F.; Whitlock, G.A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm, 2011, 2, 669-674.
[http://dx.doi.org/10.1039/c1md00093d]
[51]
Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today, 2012, 17(15-16), 850-860.
[http://dx.doi.org/10.1016/j.drudis.2012.03.002] [PMID: 22465171]
[52]
Tressel, S.L.; Koukos, G.; Tchernychev, B.; Jacques, S.L.; Covic, L.; Kuliopulos, A. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol. Biol., 2011, 683, 259-275.
[http://dx.doi.org/10.1007/978-1-60761-919-2_19] [PMID: 21053136]
[53]
Wang, J.; Chow, D.; Heiati, H.; Shen, W-C. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control Release, 2003, 88(3), 369-380.
[http://dx.doi.org/10.1016/S0168-3659(03)00008-7] [PMID: 12644363]
[54]
Wang, J.; Shen, W.C. Gastric retention and stability of lipidized Bowman-Birk protease inhibitor in mice. Int. J. Pharm., 2000, 204(1-2), 111-116.
[http://dx.doi.org/10.1016/S0378-5173(00)00489-0] [PMID: 11011993]
[55]
Lecluyse, E.; Sutton, S.C. In vitro models for selection of development candidates Permeability studies to define mechanisms of absorption enhancement. Adv. Drug Deliv. Rev., 1997, 23, 163-183.
[http://dx.doi.org/10.1016/S0169-409X(96)00434-6]
[56]
Liu, H.; Zhang, W.; Ma, L.; Fan, L.; Gao, F.; Ni, J.; Wang, R. The improved blood-brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages. Int. J. Pharm., 2014, 476(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.045] [PMID: 25245547]
[57]
Richards, D.A.; Richards, P.; Bodkin, D.; Neubauer, M.A.; Oldham, F. Efficacy and safety of paclitaxel poliglumex as first-line chemotherapy in patients at high risk with advanced-stage non-small-cell lung cancer: Results of a phase II study. Clin. Lung Cancer, 2005, 7(3), 215-220.
[http://dx.doi.org/10.3816/CLC.2005.n.039] [PMID: 16354318]
[58]
Mahalingam, D.; Wilding, G.; Denmeade, S.; Sarantopoulas, J.; Cosgrove, D.; Cetnar, J.; Azad, N.; Bruce, J.; Kurman, M.; Allgood, V.E.; Carducci, M. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: Results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer, 2016, 114(9), 986-994.
[http://dx.doi.org/10.1038/bjc.2016.72] [PMID: 27115568]
[59]
Linde, Y.; Ovadia, O.; Safrai, E.; Xiang, Z.; Portillo, F.P.; Shalev, D.E.; Haskell-Luevano, C.; Hoffman, A.; Gilon, C. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Biopolymers, 2008, 90(5), 671-682.
[http://dx.doi.org/10.1002/bip.21057] [PMID: 18655141]
[60]
Ovadia, O.; Linde, Y.; Haskell-Luevano, C.; Dirain, M.L.; Sheynis, T.; Jelinek, R.; Gilon, C.; Hoffman, A. The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: The melanocortin agonist paradigm. Bioorg. Med. Chem., 2010, 18(2), 580-589.
[http://dx.doi.org/10.1016/j.bmc.2009.12.010] [PMID: 20056544]
[61]
Hess, S.; Linde, Y.; Ovadia, O.; Safrai, E.; Shalev, D.E.; Swed, A.; Halbfinger, E.; Lapidot, T.; Winkler, I.; Gabinet, Y.; Faier, A.; Yarden, D.; Xiang, Z.; Portillo, F.P.; Haskell-Luevano, C.; Gilon, C.; Hoffman, A. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J. Med. Chem., 2008, 51(4), 1026-1034.
[http://dx.doi.org/10.1021/jm701093y] [PMID: 18220330]
[62]
Byk, G.; Halle, D.; Zeltser, I.; Bitan, G.; Selinger, Z.; Gilon, C. Synthesis and biological activity of NK-1 selective, N-backbone cyclic analogs of the C-terminal hexapeptide of substance P. J. Med. Chem., 1996, 39(16), 3174-3178.
[http://dx.doi.org/10.1021/jm960154i] [PMID: 8759639]
[63]
Pollaro, L.; Heinis, C. Strategies to prolong the plasma residence time of peptide drugs. MedChemComm, 2010, 1, 319-324.
[http://dx.doi.org/10.1039/C0MD00111B]
[64]
Pisal, D.S.; Kosloski, M.P.; Balu-Iyer, S.V. Delivery of therapeutic proteins. J. Pharm. Sci., 2010, 99(6), 2557-2575.
[http://dx.doi.org/10.1002/jps.22054] [PMID: 20049941]
[65]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[66]
Dumont, J.A.; Bitonti, A.J.; Clark, D.; Evans, S.; Pickford, M.; Newman, S.P. Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J. Aerosol Med., 2005, 18(3), 294-303.
[http://dx.doi.org/10.1089/jam.2005.18.294] [PMID: 16181004]
[67]
Brinckerhoff, L.H.; Kalashnikov, V.V.; Thompson, L.W.; Yamshchikov, G.V.; Pierce, R.A.; Galavotti, H.S.; Engelhard, V.H.; Slingluff, C.L.J., Jr Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: Implications for peptide vaccines. Int. J. Cancer, 1999, 83(3), 326-334.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<326::AID-IJC7>3.0.CO;2-X] [PMID: 10495424]
[68]
Green, B.D.; Mooney, M.H.; Gault, V.A.; Irwin, N.; Bailey, C.J.; Harriott, P.; Greer, B.; O’Harte, F.P.M.; Flatt, P.R. N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity. J. Endocrinol., 2004, 180(3), 379-388.
[http://dx.doi.org/10.1677/joe.0.1800379] [PMID: 15012592]
[69]
Dasgupta, P.; Singh, A.; Mukherjee, R. N-terminal acylation of somatostatin analog with long chain fatty acids enhances its stability and anti-proliferative activity in human breast adenocarcinoma cells. Biol. Pharm. Bull., 2002, 25(1), 29-36.
[http://dx.doi.org/10.1248/bpb.25.29] [PMID: 11824552]
[70]
Stevenson, C.L.; Augustijns, P.F.; Hendren, R.W. Use of Caco-2 cells and LC/MS/MS to screen a peptide combinatorial library for permeable structures. Int. J. Pharm., 1999, 177(1), 103-115.
[http://dx.doi.org/10.1016/S0378-5173(98)00331-7] [PMID: 10205607]
[71]
Bhardwaj, R.K.; Herrera-Ruiz, D.; Sinko, P.J.; Gudmundsson, O.S.; Knipp, G. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J. Pharmacol. Exp. Ther., 2005, 314(3), 1093-1100.
[http://dx.doi.org/10.1124/jpet.105.087148] [PMID: 15901802]
[72]
Faria, T.N.; Timoszyk, J.K.; Stouch, T.R.; Vig, B.S.; Landowski, C.P.; Amidon, G.L.; Weaver, C.D.; Wall, D.A.; Smith, R.L. A novel high-throughput pepT1 transporter assay differentiates between substrates and antagonists. Mol. Pharm., 2004, 1(1), 67-76.
[http://dx.doi.org/10.1021/mp034001k] [PMID: 15832502]
[73]
Balimane, P.V.; Chong, S.; Patel, K.; Quan, Y.; Timoszyk, J.; Han, Y-H.; Wang, B.; Vig, B.; Faria, T.N. Peptide transporter substrate identification during permeability screening in drug discovery: Comparison of transfected MDCK-hPepT1 cells to Caco-2 cells. Arch. Pharm. Res., 2007, 30(4), 507-518.
[http://dx.doi.org/10.1007/BF02980227] [PMID: 17489369]
[74]
Vadlapudi, A.D.; Vadlapatla, R.K.; Mitra, A.K. Sodium dependent multivitamin transporter (SMVT): A potential target for drug delivery. Curr. Drug Targets, 2012, 13(7), 994-1003.
[http://dx.doi.org/10.2174/138945012800675650] [PMID: 22420308]
[75]
Salhanick, A.I.; Clairmont, K.B.; Buckholz, T.M.; Pellegrino, C.M.; Ha, S.; Lumb, K.J. Contribution of site-specific PEGylation to the dipeptidyl peptidase IV stability of glucose-dependent insulinotropic polypeptide. Bioorg. Med. Chem. Lett., 2005, 15(18), 4114-4117.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.002] [PMID: 15993590]
[76]
Irwin, N.; Green, B.D.; Gault, V.A.; Greer, B.; Harriott, P.; Bailey, C.J.; Flatt, P.R.; O’Harte, F.P.M. Degradation, insulin secretion, and antihyperglycemic actions of two palmitate-derivitized N-terminal pyroglutamyl analogues of glucose-dependent insulinotropic polypeptide. J. Med. Chem., 2005, 48(4), 1244-1250.
[http://dx.doi.org/10.1021/jm049262s] [PMID: 15715491]
[77]
Marastoni, M.; Salvadori, S.; Scaranari, V.; Spisani, S.; Reali, E.; Traniello, S.; Tomatis, A. Synthesis and activity of new linear and cyclic peptide T derivatives. Arzneimittelforschung, 1994, 44(9), 1073-1076.
[PMID: 7986247]
[78]
Sharman, A.; Low, J. Vasopressin and its role in critical care. Contin. Educ. Anaesth. Crit. Care Pain, 2008, 8, 134-137.
[http://dx.doi.org/10.1093/bjaceaccp/mkn021]
[79]
Powell, M.F.; Grey, H.; Gaeta, F.; Sette, A.; Colón, S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J. Pharm. Sci., 1992, 81(8), 731-735.
[http://dx.doi.org/10.1002/jps.2600810802] [PMID: 1403714]
[80]
Walensky, L.D.; Kung, A.L.; Escher, I.; Malia, T.J.; Barbuto, S.; Wright, R.D.; Wagner, G.; Verdine, G.L.; Korsmeyer, S.J. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science, 2004, 305(5689), 1466-1470.
[http://dx.doi.org/10.1126/science.1099191] [PMID: 15353804]
[81]
Bernal, F.; Tyler, A.F.; Korsmeyer, S.J.; Walensky, L.D.; Verdine, G.L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc., 2007, 129(9), 2456-2457.
[http://dx.doi.org/10.1021/ja0693587] [PMID: 17284038]
[82]
Bird, G.H.; Madani, N.; Perry, A.F.; Princiotto, A.M.; Supko, J.G.; He, X.; Gavathiotis, E.; Sodroski, J.G.; Walensky, L.D. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14093-14098.
[http://dx.doi.org/10.1073/pnas.1002713107] [PMID: 20660316]
[83]
Fujii, S.; Yokoyama, T.; Ikegaya, K.; Sato, F.; Yokoo, N. Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs. J. Pharm. Pharmacol., 1985, 37(8), 545-549.
[http://dx.doi.org/10.1111/j.2042-7158.1985.tb03064.x] [PMID: 2864414]
[84]
Langguth, P.; Bohner, V.; Biber, J.; Merkle, H.P. Metabolism and transport of the pentapeptide metkephamid by brush-border membrane vesicles of rat intestine. J. Pharm. Pharmacol., 1994, 46(1), 34-40.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03716.x] [PMID: 8201526]
[85]
Morishita, M.; Morishita, I.; Takayama, K.; Machida, Y.; Nagai, T. Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol. Pharm. Bull., 1993, 16(1), 68-72.
[http://dx.doi.org/10.1248/bpb.16.68] [PMID: 7690292]
[86]
Benincasa, M.; Zahariev, S.; Pelillo, C.; Milan, A.; Gennaro, R.; Scocchi, M. PEGylation of the peptide Bac7(1-35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur. J. Med. Chem., 2015, 95, 210-219.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.028] [PMID: 25817771]
[87]
Dracham, C.B.; Shankar, A.; Madan, R. Radiation induced secondary malignancies: A review article. Radiat. Oncol. J., 2018, 36(2), 85-94.
[http://dx.doi.org/10.3857/roj.2018.00290] [PMID: 29983028]
[88]
Datta-Mannan, A. Mechanisms influencing the pharmacokinetics and disposition of monoclonal antibodies and peptides. Drug Metab. Dispos., 2019, 47(10), 1100-1110.
[http://dx.doi.org/10.1124/dmd.119.086488] [PMID: 31043438]
[89]
Grilo, A.L.; Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol., 2019, 37(1), 9-16.
[http://dx.doi.org/10.1016/j.tibtech.2018.05.014] [PMID: 29945725]
[90]
Patel, A.; Cholkar, K.; Mitra, A.K. Recent developments in protein and peptide parenteral delivery approaches. Ther. Deliv., 2014, 5(3), 337-365.
[http://dx.doi.org/10.4155/tde.14.5] [PMID: 24592957]
[91]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[92]
Strohl, W.R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 2015, 29(4), 215-239.
[http://dx.doi.org/10.1007/s40259-015-0133-6] [PMID: 26177629]
[93]
Poon, K.; King, A.B. Glargine and detemir: Safety and efficacy profiles of the long-acting basal insulin analogs. Drug Healthc. Patient Saf., 2010, 2, 213-223.
[PMID: 21701633]
[94]
Guja, C.; Dănciulescu Miulescu, R. Semaglutide-the “new kid on the block” in the field of glucagon-like peptide-1 receptor agonists? Ann. Transl. Med., 2017, 5(23), 475.
[http://dx.doi.org/10.21037/atm.2017.10.09] [PMID: 29285508]
[95]
Yamamoto, A.; Taniguchi, T.; Rikyuu, K.; Tsuji, T.; Fujita, T.; Murakami, M.; Muranishi, S. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res., 1994, 11(10), 1496-1500.
[http://dx.doi.org/10.1023/A:1018968611962] [PMID: 7855059]
[96]
Chanson, P.; Timsit, J.; Harris, A.G. Clinical pharmacokinetics of octreotide. Therapeutic applications in patients with pituitary tumours. Clin. Pharmacokinet., 1993, 25(5), 375-391.
[http://dx.doi.org/10.2165/00003088-199325050-00004] [PMID: 8287633]
[97]
Kutz, K.; Nüesch, E.; Rosenthaler, J. Pharmacokinetics of SMS 201-995 in healthy subjects. Scand. J. Gastroenterol. Suppl., 1986, 119, 65-72.
[http://dx.doi.org/10.3109/00365528609087433] [PMID: 2876508]
[98]
Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem., 2020, 8, 571.
[http://dx.doi.org/10.3389/fchem.2020.00571] [PMID: 32733853]
[99]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[100]
Baggio, L.L.; Huang, Q.; Cao, X.; Drucker, D.J. An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology, 2008, 134(4), 1137-1147.
[http://dx.doi.org/10.1053/j.gastro.2008.01.017] [PMID: 18313669]
[101]
Lin, Y.; Pagel, J.M.; Axworthy, D.; Pantelias, A.; Hedin, N.; Press, O.W. A genetically engineered anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies. Cancer Res., 2006, 66(7), 3884-3892.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3443] [PMID: 16585217]
[102]
Hussain, T.; Nguyen, Q.T. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev., 2014, 66, 90-100.
[http://dx.doi.org/10.1016/j.addr.2013.09.007] [PMID: 24064465]
[103]
Montero, A.J.; Adams, B.; Diaz-Montero, C.M.; Glück, S. Nab-paclitaxel in the treatment of metastatic breast cancer: A comprehensive review. Expert Rev. Clin. Pharmacol., 2011, 4(3), 329-334.
[http://dx.doi.org/10.1586/ecp.11.7] [PMID: 22114779]
[104]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[105]
Ge, J.; Neofytou, E.; Lei, J.; Beygui, R.E.; Zare, R.N. Protein-polymer hybrid nanoparticles for drug delivery. Small, 2012, 8(23), 3573-3578.
[http://dx.doi.org/10.1002/smll.201200889] [PMID: 22888073]
[106]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Transfus. Med., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[107]
Bumbaca, B.; Li, Z.; Shah, D.K. Pharmacokinetics of protein and peptide conjugates. Drug Metab. Pharmacokinet., 2019, 34(1), 42-54.
[http://dx.doi.org/10.1016/j.dmpk.2018.11.001] [PMID: 30573392]
[108]
Liolios, C.C.; Fragogeorgi, E.A.; Zikos, C.; Loudos, G.; Xanthopoulos, S.; Bouziotis, P.; Paravatou-Petsotas, M.; Livaniou, E.; Varvarigou, A.D.; Sivolapenko, G.B. Structural modifications of mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int. J. Pharm., 2012, 430(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.049] [PMID: 22459664]
[109]
Dijkgraaf, I.; Terry, S.Y.A.; McBride, W.J.; Goldenberg, D.M.; Laverman, P.; Franssen, G.M.; Oyen, W.J.G.; Boerman, O.C. Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide. Contrast Media Mol. Imaging, 2013, 8(3), 238-245.
[http://dx.doi.org/10.1002/cmmi.1523] [PMID: 23606427]
[110]
Kawano, T.; Murata, M.; Piao, J.S.; Narahara, S.; Hamano, N.; Kang, J-H.; Hashizume, M. Systemic delivery of protein nanocages bearing CTT peptides for enhanced imaging of MMP-2 expression in metastatic tumor models. Int. J. Mol. Sci., 2014, 16(1), 148-158.
[http://dx.doi.org/10.3390/ijms16010148] [PMID: 25547485]
[111]
Wang, K.; Purushotham, S.; Lee, J.Y.; Na, M.H.; Park, H.; Oh, S.J.; Park, R.W.; Park, J.Y.; Lee, E.; Cho, B.C.; Song, M-N.; Baek, M-C.; Kwak, W.; Yoo, J.; Hoffman, A.S.; Oh, Y-K.; Kim, I-S.; Lee, B-H. In vivo imaging of tumor apoptosis using histone H1-targeting peptide. J. Control. Release, 2010, 148(3), 283-291.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.010] [PMID: 20869411]
[112]
Lee, M.J.; Wang, K.; Kim, I-S.; Lee, B-H.; Han, H.S. Molecular imaging of cell death in an experimental model of Parkinson’s disease with a novel apoptosis-targeting peptide. Mol. Imaging Biol., 2012, 14(2), 147-155.
[http://dx.doi.org/10.1007/s11307-011-0497-z] [PMID: 21567253]
[113]
Vrettos, E.I.; Mező, G.; Tzakos, A.G. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J. Org. Chem., 2018, 14, 930-954.
[http://dx.doi.org/10.3762/bjoc.14.80] [PMID: 29765474]
[114]
Gilad, Y.; Noy, E.; Senderowitz, H.; Albeck, A.; Firer, M.A.; Gellerman, G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers, 2016, 106(2), 160-171.
[http://dx.doi.org/10.1002/bip.22800] [PMID: 26715008]
[115]
Chen, K.; Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics, 2011, 1, 189-200.
[http://dx.doi.org/10.7150/thno/v01p0189] [PMID: 21547159]
[116]
Hilchie, A.L.; Doucette, C.D.; Pinto, D.M.; Patrzykat, A.; Douglas, S.; Hoskin, D.W. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res., 2011, 13(5), R102.
[http://dx.doi.org/10.1186/bcr3043] [PMID: 22023734]
[117]
Xiong, X.B.; Huang, Y.; Lu, W.L.; Zhang, X.; Zhang, H.; Nagai, T.; Zhang, Q. Intracellular delivery of doxorubicin with RGD- modified sterically stabilized liposomes for an improved antitumor efficacy: In vitro and in vivo. J. Pharm. Sci., 2005, 94(8), 1782-1793.
[http://dx.doi.org/10.1002/jps.20397] [PMID: 15986461]
[118]
Zhang, Q.; Wang, J.; Zhang, H.; Zhao, D.; Zhang, Z.; Zhang, S. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J. Cancer Res. Ther., 2015, 11(1), 223-228.
[http://dx.doi.org/10.4103/0973-1482.138007] [PMID: 25879366]
[119]
Chen, Y.; Wu, J.J.; Huang, L. Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol. Ther., 2010, 18(4), 828-834.
[http://dx.doi.org/10.1038/mt.2009.291] [PMID: 20068551]
[120]
Kwon, M.K.; Nam, J.O.; Park, R.W.; Lee, B.H.; Park, J.Y.; Byun, Y.R.; Kim, S.Y.; Kwon, I.C.; Kim, I.S. Antitumor effect of a transducible fusogenic peptide releasing multiple proapoptotic peptides by caspase-3. Mol. Cancer Ther., 2008, 7(6), 1514-1522.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2009] [PMID: 18566222]
[121]
Yang, H.; Liu, S.; Cai, H.; Wan, L.; Li, S.; Li, Y.; Cheng, J.; Lu, X. Chondroitin sulfate as a molecular portal that preferentially mediates the apoptotic killing of tumor cells by penetratin-directed mitochondria-disrupting peptides. J. Biol. Chem., 2010, 285(33), 25666-25676.
[http://dx.doi.org/10.1074/jbc.M109.089417] [PMID: 20484051]
[122]
Fu, B.; Long, W.; Zhang, Y.; Zhang, A.; Miao, F.; Shen, Y.; Pan, N.; Gan, G.; Nie, F.; He, Y.; Zhang, J.; Teng, G. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci. Rep., 2015, 5, 8029.
[http://dx.doi.org/10.1038/srep08029] [PMID: 25619721]
[123]
Conrad, U.; Plagmann, I.; Malchow, S.; Sack, M.; Floss, D.M.; Kruglov, A.A.; Nedospasov, S.A.; Rose-John, S.; Scheller, J. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J., 2011, 9(1), 22-31.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00523.x] [PMID: 20444206]
[124]
Meyer, D.E.; Kong, G.A.; Dewhirst, M.W.; Zalutsky, M.R.; Chilkoti, A. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res., 2001, 61(4), 1548-1554.
[PMID: 11245464]
[125]
Schellenberger, V.; Wang, C.W.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; Cleland, J.L.; Silverman, J.; Stemmer, W.P.C. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol., 2009, 27(12), 1186-1190.
[http://dx.doi.org/10.1038/nbt.1588] [PMID: 19915550]
[126]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[127]
Alters, S.E.; McLaughlin, B.; Spink, B.; Lachinyan, T.; Wang, C.W.; Podust, V.; Schellenberger, V.; Stemmer, W.P.C. GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn’s disease model. PLoS One, 2012, 7(11), e50630.
[http://dx.doi.org/10.1371/journal.pone.0050630] [PMID: 23189208]
[128]
Xiao, J.; Burn, A.; Tolbert, T.J. Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug. Chem., 2008, 19(6), 1113-1118.
[http://dx.doi.org/10.1021/bc800063k] [PMID: 18498185]
[129]
Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol., 2016, 37(7), 462-476.
[http://dx.doi.org/10.1016/j.it.2016.04.010] [PMID: 27216414]
[130]
Eichelbaum, E.J.; Vesely, B.A.; Alli, A.A.; Sun, Y.; Gower, W.R.J., Jr; Vesely, D.L. Four cardiac hormones eliminate up to 82% of human medullary thyroid carcinoma cells within 24 hours. Endocrine, 2006, 30(3), 325-332.
[http://dx.doi.org/10.1007/s12020-006-0011-6] [PMID: 17526945]
[131]
Yan, C.; Ding, B.; Shishido, T.; Woo, C.H.; Itoh, S.; Jeon, K.I.; Liu, W.; Xu, H.; McClain, C.; Molina, C.A.; Blaxall, B.C.; Abe, J. Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ. Res., 2007, 100(4), 510-519.
[http://dx.doi.org/10.1161/01.RES.0000259045.49371.9c] [PMID: 17272811]
[132]
Sun, Y.; Eichelbaum, E.J.; Lenz, A.; Skelton, W.P., IV; Wang, H.; Vesely, D.L. Atrial natriuretic peptide and long-acting natriuretic peptide inhibit RAS in human prostate cancer cells. Anticancer Res., 2009, 29(6), 1889-1893.
[PMID: 19528444]
[133]
Li, J.Y.; Wang, H.; May, S.; Song, X.; Fueyo, J.; Fuller, G.N.; Wang, H. Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J. Neurooncol., 2008, 88(1), 11-17.
[http://dx.doi.org/10.1007/s11060-008-9529-1] [PMID: 18246408]
[134]
Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov., 2016, 6(4), 353-367.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0894] [PMID: 26658964]
[135]
Boohaker, R.J.; Zhang, G.; Lee, M.W.; Nemec, K.N.; Santra, S.; Perez, J.M.; Khaled, A.R. Rational development of a cytotoxic peptide to trigger cell death. Mol. Pharm., 2012, 9(7), 2080-2093.
[http://dx.doi.org/10.1021/mp300167e] [PMID: 22591113]
[136]
Istivan, T.S.; Pirogova, E.; Gan, E.; Almansour, N.M.; Coloe, P.J.; Cosic, I. Biological effects of a de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells. PLoS One, 2011, 6(9), e24809.
[http://dx.doi.org/10.1371/journal.pone.0024809] [PMID: 21949758]
[137]
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 2003, 3(2), 133-146.
[http://dx.doi.org/10.1038/nri1001] [PMID: 12563297]
[138]
Oliner, J.D.; Pietenpol, J.A.; Thiagalingam, S.; Gyuris, J.; Kinzler, K.W.; Vogelstein, B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 1993, 362(6423), 857-860.
[http://dx.doi.org/10.1038/362857a0] [PMID: 8479525]
[139]
Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387(6630), 296-299.
[http://dx.doi.org/10.1038/387296a0] [PMID: 9153395]
[140]
Böttger, A.; Böttger, V.; Sparks, A.; Liu, W.L.; Howard, S.F.; Lane, D.P. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol., 1997, 7(11), 860-869.
[http://dx.doi.org/10.1016/S0960-9822(06)00374-5] [PMID: 9382809]
[141]
Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An overview on radiotherapy: From its history to its current applications in dermatology. Open Access Maced. J. Med. Sci., 2017, 5(4), 521-525.
[http://dx.doi.org/10.3889/oamjms.2017.122] [PMID: 28785349]
[142]
Mullenders, L.; Atkinson, M.; Paretzke, H.; Sabatier, L.; Bouffler, S. Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer, 2009, 9(8), 596-604.
[http://dx.doi.org/10.1038/nrc2677] [PMID: 19629073]
[143]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel), 2019, 11(5), 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[144]
Waldherr, C.; Pless, M.; Maecke, H.R.; Haldemann, A.; Mueller-Brand, J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: A clinical phase II study. Ann. Oncol., 2001, 12(7), 941-945.
[http://dx.doi.org/10.1023/A:1011160913619] [PMID: 11521799]
[145]
Paganelli, G.; Zoboli, S.; Cremonesi, M.; Bodei, L.; Ferrari, M.; Grana, C.; Bartolomei, M.; Orsi, F.; De Cicco, C.; Mäcke, H.R.; Chinol, M.; de Braud, F. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur. J. Nucl. Med., 2001, 28(4), 426-434.
[http://dx.doi.org/10.1007/s002590100490] [PMID: 11357492]
[146]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[147]
De Jong, M.; Bernard, B.F.; De Bruin, E.; Van Gameren, A.; Bakker, W.H.; Visser, T.J.; Mäcke, H.R.; Krenning, E.P. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0,Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun., 1998, 19(3), 283-288.
[http://dx.doi.org/10.1097/00006231-199803000-00013] [PMID: 9625504]
[148]
Mohanraj, V.; Chen, Y. Nanoparticles- A review. Trop. J. Pharm. Res., 2006, 5, 56-573.
[149]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363.
[http://dx.doi.org/10.1016/S0168-3659(00)00367-9] [PMID: 11182205]
[150]
Bogden, A.E.; Hopedale, M.A.; Moreau, J.P. Treatment of cancer with peptide analog of bombesin, GRP. Litorin or neuromedin. US5217955A, 1993.
[151]
Lori, A.H.; William, S.; Dalton, A.E. HYD1 peptides as anti- cancer agents. US7632814B2, 2009.
[152]
Auricchio, F.; Migliaccio, A. Anti-androgen peptides and uses thereof in cancer therapy. US9919023B2, 2018.
[153]
Thoresen, A.; Sergio, M.S. Novel peptides with anti-tumor activity. W02009014450A1, 2009.
[154]
Figdor, C.G.; Adema, G.J. Melanoma associated peptide analogues and vaccines against melanoma. US8075900B2, 2011.
[155]
Rapraeger, A. Syndecan peptides and polypeptides as inhibitors of cancer. US9034827B2, 2015.
[156]
Hunt, D.F.; Jeffrey, S.; Abelin, J.G. Target peptides for colorectal cancer therapy and diagnostics. US20150328297A1, 2020.
[157]
Wu, H.C.; Chang, D.K.; Chiu, C.Y. Tumor-targeting peptides and uses thereof in tumor diagnosis and treatment. US20100119444, 2013.
[158]
Rudloff, U. J.; Jesse, M.; Henry, W.L. Peptide-based methods for treating pancreatic cancer. US10016480, 2018.
[159]
Nakamura, Y.; Tsunoda, T.; Ohsawa, R. Ect2 peptides and vaccines including the same. US20130095128A1, 2015.
[160]
Wu, H.C.; Chiu, C.Y. Cancer-targeting peptides and uses thereof in cancer therapy. US867407B2, 2018.
[161]
Zeng, M.; Zhang, M.; Wang, X.; Feng, J.; Zhang, G.; Zhong, Q. Tumor-targeting polypeptide and application thereof. US20160355548, 2018.
[162]
Mukherjee, R.; Burman, A.C.; Anu, T. Synthetic peptide analogs for the treatment of cancer. CA002511446A, 2010.
[163]
Fogelman, A.M.; Navab, M. Peptides and peptide mimetics to treat cancer. US12721366, 2010.
[164]
Figdor, C.G.; Adema, GJ. Melanoma associated peptide analogues and vaccines against melanoma. US7846450B2, 2010.
[165]
Kawakami, K.; Kohno, M.; Horibe, T. Selective anticancer chimeric peptide. US20110319336A1, 2013.
[166]
Nishimura, Y.; Yokomine, K.; Tsunoda, T. Foxm1 peptide and medicinal agent comprising the same. US20110195081A1, 2013.
[167]
Wucherpfennig, K.W.; Franz, B.; Kenneth, F. Therapeutic peptides. US20140004112A1, 2016.
[168]
Frank, D. H.; Clayman, G. Isolation of a cell-specific internalizing peptide that infiltrates tumor tissue for targeted drug delivery. US6919425B2, 2005.
[169]
Eisenbach, L.; Tirosh, B.; Bar-Haim, E. Tumor associated antigen peptides and use of same as anti-tumor vaccines. US7960507B2, 2011.
[170]
Tsunoda, T.; Ohsawa, R. Peptide vaccines for cancers expressing tumor-associated antigens. EP2476692A2, 2015.
[171]
Straten, EPT.; Mads, A.H. Survivin-derived peptides and use thereof. EP2092938B1, 2011.
[172]
Kelly, K.; Jones, D. Colon tumor specific binding peptides. US20060058228A1, 2008.
[173]
Cho, CH.; Li, Z. Homing peptide for tumor vasculature. EP2459584B1, 2014.
[174]
Shemesh, R.; Levine, Z.; Toporik, A. Bioactive peptides and methods of using same. US20110177998A1, 2013.
[175]
Demoyen, PL.; Adotevi, O.; Dosset, M. Universal cancer peptides derived from telomerase. W02013135553A, 2013.
[176]
Tsunoda, T.; Ohsawa, R.; Yoshimura, S. C1orf59 peptides and vaccines including the same. US20120003253A1, 2014.
[177]
Hunt, DF.; Shabanowitz, J. Target peptides for ovarian cancer therapy and diagnostics. WO2014093855A1, 2014.
[178]
Hunt, DF.; Shabanowitz, J.; Abelin, J.G.; Cobbold, M.; Penny, S. Target peptides for colorectal cancer therapy and diagnostics. US20210154279A1,
[179]
Tsunoda, T.; Ohsawa, R.; Yoshimura, S. Peptides and vaccines including the same. US20120093845A1, 2015.
[180]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[181]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[182]
Xiao, Y.F.; Jie, M.M.; Li, B.S.; Hu, C.J.; Xie, R.; Tang, B.; Yang, S.M. Peptide-based treatment: A promising cancer therapy. J. Immunol. Res., 2015, 2015, 761820.
[http://dx.doi.org/10.1155/2015/761820] [PMID: 26568964]
[183]
Higgins, M.; Curigliano, G.; Dieras, V.; Kuemmel, S.; Kunz, G.; Fasching, P.A.; Campone, M.; Bachelot, T.; Krivorotko, P.; Chan, S.; Ferro, A.; Schwartzberg, L.; Gillet, M.; De Sousa Alves, P.M.; Wascotte, V.; Lehmann, F.F.; Goss, P. Safety and immunogenicity of neoadjuvant treatment using WT1-immunotherapeutic in combination with standard therapy in patients with WT1-positive Stage II/III breast cancer: a randomized Phase I study. Breast Cancer Res. Treat., 2017, 162(3), 479-488.
[http://dx.doi.org/10.1007/s10549-017-4130-y] [PMID: 28176175]
[184]
Obara, W.; Eto, M.; Mimata, H.; Kohri, K.; Mitsuhata, N.; Miura, I.; Shuin, T.; Miki, T.; Koie, T.; Fujimoto, H.; Minami, K.; Enomoto, Y.; Nasu, T.; Yoshida, T.; Fuse, H.; Hara, I.; Kawaguchi, K.; Arimura, A.; Fujioka, T. A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann. Oncol., 2017, 28(4), 798-803.
[http://dx.doi.org/10.1093/annonc/mdw675] [PMID: 27998971]
[185]
Hasegawa, K.; Ikeda, Y.; Kunugi, Y.; Kurosaki, A.; Imai, Y.; Kohyama, S.; Nagao, S.; Kozawa, E.; Yoshida, K.; Tsunoda, T.; Nakamura, Y.; Fujiwara, K.; Phase, I. Phase I Study of multiple epitope peptide vaccination in patients with recurrent or persistent cervical cancer. J. Immunother., 2018, 41(4), 201-207.
[http://dx.doi.org/10.1097/CJI.0000000000000214] [PMID: 29432282]
[186]
Shirahama, T.; Muroya, D.; Matsueda, S.; Yamada, A.; Shichijo, S.; Naito, M.; Yamashita, T.; Sakamoto, S.; Okuda, K.; Itoh, K.; Sasada, T.; Yutani, S. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci., 2017, 108(5), 838-845.
[http://dx.doi.org/10.1111/cas.13193] [PMID: 28188670]
[187]
Hirabayashi, K.; Yanagisawa, R.; Saito, S.; Higuchi, Y.; Koya, T.; Sano, K.; Koido, S.; Okamoto, M.; Sugiyama, H.; Nakazawa, Y.; Shimodaira, S. Feasibility and immune response of WT1 peptide vaccination in combination with OK-432 for paediatric solid tumors. Anticancer Res., 2018, 38(4), 2227-2234.
[PMID: 29599343]
[188]
Garay, H.; Espinosa, L.A.; Perera, Y.; Sánchez, A.; Diago, D.; Perea, S.E.; Besada, V.; Reyes, O.; González, L.J. Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: A clinical-grade anticancer synthetic peptide. J. Pept. Sci., 2018, 24(6), e3081.
[http://dx.doi.org/10.1002/psc.3081] [PMID: 29676523]
[189]
Rodríguez-Ulloa, A.; Ramos, Y.; Gil, J.; Perera, Y.; Castellanos-Serra, L.; García, Y.; Betancourt, L.; Besada, V.; González, L.J.; Fernández-de-Cossio, J.; Sanchez, A.; Serrano, J.M.; Farina, H.; Alonso, D.F.; Acevedo, B.E.; Padrón, G.; Musacchio, A.; Perea, S.E. Proteomic profile regulated by the anticancer peptide CIGB-300 in Non-Small Cell Lung Cancer (NSCLC) cells. J. Proteome Res., 2010, 9(10), 5473-5483.
[http://dx.doi.org/10.1021/pr100728v] [PMID: 20804217]
[190]
Yanagisawa, R.; Koizumi, T.; Koya, T.; Sano, K.; Koido, S.; Nagai, K.; Kobayashi, M.; Okamoto, M.; Sugiyama, H.; Shimodaira, S. WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase I study. Anticancer Res., 2018, 38(4), 2217-2225.
[PMID: 29599342]
[191]
Ishikawa, H.; Imano, M.; Shiraishi, O.; Yasuda, A.; Peng, Y.F.; Shinkai, M.; Yasuda, T.; Imamoto, H.; Shiozaki, H. Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc., 2014, 17(1), 173-180.
[http://dx.doi.org/10.1007/s10120-013-0258-6] [PMID: 23613128]
[192]
Kokhaei, P.; Palma, M.; Hansson, L.; Osterborg, A.; Mellstedt, H.; Choudhury, A. Telomerase (hTERT 611-626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp. Hematol., 2007, 35(2), 297-304.
[http://dx.doi.org/10.1016/j.exphem.2006.10.006] [PMID: 17258078]
[193]
Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer, 2017, 17(4), 209-222.
[http://dx.doi.org/10.1038/nrc.2016.154] [PMID: 28233802]
[194]
Tsuruta, M.; Ueda, S.; Yew, P.Y.; Fukuda, I.; Yoshimura, S.; Kishi, H.; Hamana, H.; Hirayama, M.; Yatsuda, J.; Irie, A.; Senju, S.; Yuba, E.; Kamba, T.; Eto, M.; Nakayama, H.; Nishimura, Y. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4+ T cells expressing converged T-cell receptor genes in vitro. OncoImmunology, 2018, 7(4), e1415687.
[http://dx.doi.org/10.1080/2162402X.2017.1415687] [PMID: 29632734]
[195]
Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Pilones, K.A.; García-Martínez, E.; Rudqvist, N.P.; Formenti, S.C.; Demaria, S. Barriers to radiation-induced in situ tumor vaccination. Front. Immunol., 2017, 8, 229.
[http://dx.doi.org/10.3389/fimmu.2017.00229] [PMID: 28348554]
[196]
Cadena, A.; Cushman, T.R.; Anderson, C.; Barsoumian, H.B.; Welsh, J.W.; Cortez, M.A. Radiation and anti-cancer vaccines: A winning combination. Vaccines (Basel), 2018, 6(1), 6-9.
[http://dx.doi.org/10.3390/vaccines6010009] [PMID: 29385680]
[197]
Grozinsky-Glasberg, S.; Shimon, I.; Korbonits, M.; Grossman, A.B. Somatostatin analogues in the control of neuroendocrine tumours: Efficacy and mechanisms. Endocr. Relat. Cancer, 2008, 15(3), 701-720.
[http://dx.doi.org/10.1677/ERC-07-0288] [PMID: 18524947]
[198]
Kwekkeboom, D.J.; de Herder, W.W.; Kam, B.L.; van Eijck, C.H.; van Essen, M.; Kooij, P.P.; Feelders, R.A.; van Aken, M.O.; Krenning, E.P. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: Toxicity, efficacy, and survival. J. Clin. Oncol., 2008, 26(13), 2124-2130.
[http://dx.doi.org/10.1200/JCO.2007.15.2553] [PMID: 18445841]
[199]
Rosca, E.V.; Koskimaki, J.E.; Rivera, C.G.; Pandey, N.B.; Tamiz, A.P.; Popel, A.S. Anti-angiogenic peptides for cancer therapeutics. Curr. Pharm. Biotechnol., 2011, 12(8), 1101-1116.
[http://dx.doi.org/10.2174/138920111796117300] [PMID: 21470139]
[200]
Soto-Pantoja, D.R.; Menon, J.; Gallagher, P.E.; Tallant, E.A. Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol. Cancer Ther., 2009, 8(6), 1676-1683.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0161] [PMID: 19509262]
[201]
Zheng, L.H.; Wang, Y.J.; Sheng, J.; Wang, F.; Zheng, Y.; Lin, X.K.; Sun, M. Antitumor peptides from marine organisms. Mar. Drugs, 2011, 9(10), 1840-1859.
[http://dx.doi.org/10.3390/md9101840] [PMID: 22072999]
[202]
Aspeslagh, S.; Awada, A.; S Matos-Pita, A.; Aftimos, P.; Bahleda, R.; Varga, A.; Soria, J-C. Phase I dose-escalation study of plitidepsin in combination with bevacizumab in patients with refractory solid tumors. Anticancer Drugs, 2016, 27(10), 1021-1027.
[http://dx.doi.org/10.1097/CAD.0000000000000409] [PMID: 27610894]
[203]
Noguchi, M.; Fujimoto, K.; Arai, G.; Uemura, H.; Hashine, K.; Matsumoto, H.; Fukasawa, S.; Kohjimoto, Y.; Nakatsu, H.; Takenaka, A.; Fujisawa, M.; Uemura, H.; Naito, S.; Egawa, S.; Fujimoto, H.; Hinotsu, S.; Itoh, K. A randomized phase III trial of personalized peptide vaccination for castration; resistant prostate cancer progressing after docetaxel. Oncol. Rep., 2021, 45(1), 159-168.
[http://dx.doi.org/10.3892/or.2020.7847] [PMID: 33200227]
[204]
Brown, T.A.; Byrd, K.; Vreeland, T.J.; Clifton, G.T.; Jackson, D.O.; Hale, D.F.; Herbert, G.S.; Myers, J.W.; Greene, J.M.; Berry, J.S.; Martin, J.; Elkas, J.C.; Conrads, T.P.; Darcy, K.M.; Hamilton, C.A.; Maxwel, G.L.; Peoples, G.E. Final analysis of a phase I/IIa trial of the folate-binding protein-derived E39 peptide vaccine to prevent recurrence in ovarian and endometrial cancer patients. Cancer Med., 2019, 8(10), 4678-4687.
[http://dx.doi.org/10.1002/cam4.2378] [PMID: 31274231]
[205]
Korani, M.; Korani, S.; Zendehdel, E.; Nikpoor, A.R.; Jaafari, M.R.; Orafai, H.M.; Johnston, T.P.; Sahebkar, A. Enhancing the therapeutic efficacy of bortezomib in cancer therapy using polymeric nanostructures. Curr. Pharm. Des., 2019, 25(46), 4883-4892.
[http://dx.doi.org/10.2174/1381612825666191106150018] [PMID: 31692424]
[206]
Zhou, Y.; Liu, X.; Xue, J.; Liu, L.; Liang, T.; Li, W.; Yang, X.; Hou, X.; Fang, H. Discovery of peptide boronate derivatives as histone deacetylase and proteasome dual inhibitors for overcoming bortezomib resistance of multiple myeloma. J. Med. Chem., 2020, 63(9), 4701-4715.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02161] [PMID: 32267687]
[208]
Sparreboom, A.; Verweij, J. Advances in cancer therapeutics. Clin. Pharmacol. Ther., 2009, 85(2), 113-117.
[http://dx.doi.org/10.1038/clpt.2008.259] [PMID: 19151631]
[209]
New Data Show Theratechnologies’ SORT1+ Technology is Effective in Many Treatment-Resistant Cancers Toronto Stock Exchange:TH. Available from: https://www.globenewswire.com/news-release/2020/06/22/2051141/0/en/New-Data-Show-Theratechnologies-SORT1-Technology-is-Effective-in- Many-Treatment-Resistant-Cancers.html
[210]
Snyder, E.L.; Meade, B.R.; Saenz, C.C.; Dowdy, S.F. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol., 2004, 2(2), E36.
[http://dx.doi.org/10.1371/journal.pbio.0020036] [PMID: 14966535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy