Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Molecular and Biochemical Pathways Encompassing Diabetes Mellitus and Dementia

Author(s): Tapan Behl*, Arpita Arora, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Saurabh Bhatia, Ahmed Al-Harrasi, Simona Bungau and Ebrahim Mostafavi*

Volume 21, Issue 7, 2022

Published on: 09 December, 2021

Page: [542 - 556] Pages: 15

DOI: 10.2174/1871527320666211110115257

open access plus

conference banner
Abstract

Diabetes mellitus is a major metabolic disorder that has now emerged as an epidemic, and it affects the brain through an array of pathways. Patients with diabetes mellitus can develop pathological changes in the brain, which eventually take the shape of mild cognitive impairment, which later progresses to Alzheimer’s disease. A number of preclinical and clinical studies have demonstrated this fact, and molecular pathways, such as amyloidogenesis, oxidative stress, inflammation, and impaired insulin signaling, are found to be identical in diabetes mellitus and dementia. However, the critical player involved in the vicious cycle of diabetes mellitus and dementia is insulin, whose signaling, when impaired in diabetes mellitus (both type 1 and 2), leads to a decline in cognition, although other pathways are also essential contributors. Moreover, it is not only the case that patients with diabetes mellitus indicate cognitive decline at a later stage, but many patients with Alzheimer’s disease also reflect symptoms of diabetes mellitus, thus creating a vicious cycle inculcating a web of complex molecular mechanisms and hence categorizing Alzheimer’s disease as ‘brain diabetes.’ Thus, it is practical to suggest that anti-diabetic drugs are beneficial in Alzheimer’s disease. However, only smaller trials have showcased positive outcomes mainly because of the late onset of therapy. Therefore, it is extremely important to develop more of such molecules that target insulin in patients with dementia along with such methods that diagnose impaired insulin signaling and the associated cognitive decline so that early therapy may be initiated and the progression of the disease can be prevented.

Keywords: Alzheimer’s disease, diabetes mellitus, insulin resistance, metabolic disorder, glycogen synthase kinase 3 beta (GSK3β), forkhead box o (FOXO).

Graphical Abstract
[1]
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the rotterdam study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[2]
Kroner Z. The relationship between Alzheimer’s disease and diabetes: type 3 diabetes? Altern Med Rev 2009; 14(4): 373-9.
[PMID: 20030463]
[3]
Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-γ PPARγ) in Alzheimer’s disease. CNS Drugs 2008; 22(1): 1-4.
[http://dx.doi.org/10.2165/00023210-200822010-00001] [PMID: 18072811]
[4]
Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 2014; 383(9922): 1068-83.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[5]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[6]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006; 5(1): 64-74.
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[7]
Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. In: Vécsei L, Ed. Frontiers in Clinical Neuroscience Advances in Experimental Medicine and Biology. Boston: Springer 2004; pp. 135-52.
[http://dx.doi.org/10.1007/978-1-4419-8969-7_8]
[8]
Steen E, Terry BMJ, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer-s disease-is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[9]
de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7(1): 45-61.
[http://dx.doi.org/10.3233/JAD-2005-7106] [PMID: 15750214]
[10]
Hoyer S. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm (Vienna) 2002; 109(3): 341-60.
[http://dx.doi.org/10.1007/s007020200028] [PMID: 11956956]
[11]
Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 2005; 8(3): 247-68.
[http://dx.doi.org/10.3233/JAD-2005-8304] [PMID: 16340083]
[12]
Craft S. Insulin resistance and cognitive impairment: a view through the prism of epidemiology. Arch Neurol 2005; 62(7): 1043-4.
[http://dx.doi.org/10.1001/archneur.62.7.1043-a] [PMID: 16009754]
[13]
Schubert M, Brazil DP, Burks DJ, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003; 23(18): 7084-92.
[http://dx.doi.org/10.1523/JNEUROSCI.23-18-07084.2003] [PMID: 12904469]
[14]
Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 2004; 101(9): 3100-5.
[http://dx.doi.org/10.1073/pnas.0308724101] [PMID: 14981233]
[15]
de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, Wands JR. Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin Exp Res 2000; 24(5): 716-26.
[http://dx.doi.org/10.1111/j.1530-0277.2000.tb02044.x] [PMID: 10832914]
[16]
de la Monte SM, Neely TR, Cannon J, Wands JR. Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol Life Sci 2001; 58(12-13): 1950-60.
[http://dx.doi.org/10.1007/PL00000829] [PMID: 11766890]
[17]
de la Monte SM, Wands JR. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci 2002; 59(5): 882-93.
[http://dx.doi.org/10.1007/s00018-002-8475-x] [PMID: 12088287]
[18]
Xu J, Yeon JE, Chang H, et al. Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase. J Biol Chem 2003; 278(29): 26929-37.
[http://dx.doi.org/10.1074/jbc.M300401200] [PMID: 12700235]
[19]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[20]
Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 2015; 14(3): 329-40.
[http://dx.doi.org/10.1016/S1474-4422(14)70249-2] [PMID: 25728442]
[21]
Adolfsson R, Bucht G, Lithner F, Winblad B. Hypoglycemia in Alzheimer’s disease. Acta Med Scand 1980; 208(5): 387-8.
[PMID: 6109433]
[22]
Razay G, Wilcock GK. Hyperinsulinaemia and Alzheimer’s disease. Age Ageing 1994; 23(5): 396-9.
[http://dx.doi.org/10.1093/ageing/23.5.396] [PMID: 7825486]
[23]
Messier C, Gagnon M. Glucose regulation and cognitive functions: relation to Alzheimer’s disease and diabetes. Behav Brain Res 1996; 75(1-2): 1-11.
[http://dx.doi.org/10.1016/0166-4328(95)00153-0] [PMID: 8800646]
[24]
Li L, Hölscher C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Brain Res Rev 2007; 56(2): 384-402.
[http://dx.doi.org/10.1016/j.brainresrev.2007.09.001] [PMID: 17920690]
[25]
Götz J, Ittner LM, Lim YA. Common features between diabetes mellitus and Alzheimer’s disease. Cell Mol Life Sci 2009; 66(8): 1321-5.
[http://dx.doi.org/10.1007/s00018-009-9070-1] [PMID: 19266159]
[26]
Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 2010; 1(3): 68-75.
[http://dx.doi.org/10.4239/wjd.v1.i3.68] [PMID: 21537430]
[27]
Park SA. A common pathogenic mechanism linking type-2 diabetes and Alzheimer’s disease: evidence from animal models. J Clin Neurol 2011; 7(1): 10-8.
[http://dx.doi.org/10.3988/jcn.2011.7.1.10] [PMID: 21519521]
[28]
Pasquier F, Boulogne A, Leys D, Fontaine P. Diabetes mellitus and dementia. Diabetes Metab 2006; 32(5 Pt 1): 403-14.
[http://dx.doi.org/10.1016/S1262-3636(07)70298-7] [PMID: 17110895]
[29]
Verdelho A, Madureira S, Ferro JM, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. J Neurol Neurosurg Psychiatry 2007; 78(12): 1325-30.
[http://dx.doi.org/10.1136/jnnp.2006.110361] [PMID: 17470472]
[30]
Biju MP, Paulose CS. Brain glutamate dehydrogenase changes in streptozotocin diabetic rats as a function of age. Biochem Mol Biol Int 1998; 44(1): 1-7.
[http://dx.doi.org/10.1080/15216549800201002] [PMID: 9503142]
[31]
Winocur G, Greenwood CE. Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging 2005; 26(1)(Suppl. 1): 46-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.003] [PMID: 16219391]
[32]
Craft S. Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 2006; 20(4): 298-301.
[http://dx.doi.org/10.1097/01.wad.0000213866.86934.7e] [PMID: 17132977]
[33]
de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 2006; 10(1): 89-109.
[http://dx.doi.org/10.3233/JAD-2006-10113] [PMID: 16988486]
[34]
Haan MN. Therapy insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol 2006; 2(3): 159-66.
[http://dx.doi.org/10.1038/ncpneuro0124] [PMID: 16932542]
[35]
Watson GS, Bernhardt T, Reger MA, et al. Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 2006; 27(1): 38-41.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.11.011] [PMID: 16298239]
[36]
Garcia-Serrano AM, Duarte JMN. Brain metabolism alterations in type 2 diabetes: what did we learn from diet-induced diabetes models? Front Neurosci 2020; 14: 229.
[http://dx.doi.org/10.3389/fnins.2020.00229] [PMID: 32265637]
[37]
Sandhir R, Gupta S. Molecular and biochemical trajectories from diabetes to Alzheimer’s disease: a critical appraisal. World J Diabetes 2015; 6(12): 1223-42.
[http://dx.doi.org/10.4239/wjd.v6.i12.1223] [PMID: 26464760]
[38]
Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 2009; 1792(5): 482-96.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.014] [PMID: 19026743]
[39]
Westermark P. Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Pathol Pathol Anat 1973; 359(1): 1-18.
[http://dx.doi.org/10.1007/BF00549079] [PMID: 4632997]
[40]
Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide- like protein also present in normal islet cells. Proc Natl Acad Sci USA 1987; 84(11): 3881-5.
[http://dx.doi.org/10.1073/pnas.84.11.3881] [PMID: 3035556]
[41]
Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 1987; 84(23): 8628-32.
[http://dx.doi.org/10.1073/pnas.84.23.8628] [PMID: 3317417]
[42]
Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361(1471): 1219-35.
[http://dx.doi.org/10.1098/rstb.2006.1858] [PMID: 16815800]
[43]
Arora S. Role of neuropeptides in appetite regulation and obesity-a review. Neuropeptides 2006; 40(6): 375-401.
[http://dx.doi.org/10.1016/j.npep.2006.07.001] [PMID: 16935329]
[44]
Betsholtz C, Christmansson L, Engström U, et al. Sequence divergence in a specific region of Islet Amyloid Polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett 1989; 251(1-2): 261-4.
[http://dx.doi.org/10.1016/0014-5793(89)81467-X] [PMID: 2666169]
[45]
Westermark P, Engström U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 1990; 87(13): 5036-40.
[http://dx.doi.org/10.1073/pnas.87.13.5036] [PMID: 2195544]
[46]
Höppener JW, Oosterwijk C, Nieuwenhuis MG, et al. Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia 1999; 42(4): 427-34.
[http://dx.doi.org/10.1007/s001250051175] [PMID: 10230646]
[47]
Mirzabekov TA, Lin MC, Kagan BL. Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 1996; 271(4): 1988-92.
[http://dx.doi.org/10.1074/jbc.271.4.1988] [PMID: 8567648]
[48]
Anguiano M, Nowak RJ, Lansbury PT Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 2002; 41(38): 11338-43.
[http://dx.doi.org/10.1021/bi020314u] [PMID: 12234175]
[49]
Kayed R, Sokolov Y, Edmonds B, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004; 279(45): 46363-6.
[http://dx.doi.org/10.1074/jbc.C400260200] [PMID: 15385542]
[50]
Meier JJ, Kayed R, Lin CY, et al. Inhibition of human IAPP fibril formation does not prevent β-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP. Am J Physiol Endocrinol Metab 2006; 291(6): E1317-24.
[http://dx.doi.org/10.1152/ajpendo.00082.2006] [PMID: 16849627]
[51]
Huang CJ, Lin CY, Haataja L, et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007; 56(8): 2016-27.
[http://dx.doi.org/10.2337/db07-0197] [PMID: 17475933]
[52]
Zhang Y, Song W. Islet amyloid polypeptide: another key molecule in Alzheimer’s pathogenesis? Prog Neurobiol 2017; 153: 100-20.
[http://dx.doi.org/10.1016/j.pneurobio.2017.03.001] [PMID: 28274676]
[53]
Cao P, Marek P, Noor H, et al. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 2013; 587(8): 1106-18.
[http://dx.doi.org/10.1016/j.febslet.2013.01.046] [PMID: 23380070]
[54]
Ahmad E, Ahmad A, Singh S, Arshad M, Khan AH, Khan RH. A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes. Biochimie 2011; 93(5): 793-805.
[http://dx.doi.org/10.1016/j.biochi.2010.12.012] [PMID: 21215287]
[55]
Stanciu GD, Bild V, Ababei DC, et al. Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. J Clin Med 2020; 9(6): 1713.
[http://dx.doi.org/10.3390/jcm9061713] [PMID: 32503113]
[56]
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004; 53(2): 474-81.
[http://dx.doi.org/10.2337/diabetes.53.2.474] [PMID: 14747300]
[57]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[58]
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283(44): 29615-9.
[http://dx.doi.org/10.1074/jbc.R800019200] [PMID: 18650430]
[59]
Maurer-Stroh S, Debulpaep M, Kuemmerer N, et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 2010; 7(3): 237-42.
[http://dx.doi.org/10.1038/nmeth.1432] [PMID: 20154676]
[60]
Vitali V, Horn F, Catania F. Insulin-like signaling within and beyond metazoans. Biol Chem 2018; 399(8): 851-7.
[http://dx.doi.org/10.1515/hsz-2018-0135] [PMID: 29664731]
[61]
Bloom GS, Lazo JS, Norambuena A. Reduced brain insulin signaling: a seminal process in Alzheimer’s disease pathogenesis. Neuropharmacology 2018; 136(Pt B): 192-5.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.016] [PMID: 28965829]
[62]
Ziegler AN, Levison SW, Wood TL. Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat Rev Endocrinol 2015; 11(3): 161-70.
[http://dx.doi.org/10.1038/nrendo.2014.208] [PMID: 25445849]
[63]
Abolhassani N, Leon J, Sheng Z, et al. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech Ageing Dev 2017; 161(Pt A): 95-104.
[http://dx.doi.org/10.1016/j.mad.2016.05.005] [PMID: 27233446]
[64]
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, et al. Insulin resistance at the crossroad of Alzheimer disease pathology: a review. Front Endocrinol (Lausanne) 2020; 11: 560375.
[http://dx.doi.org/10.3389/fendo.2020.560375] [PMID: 33224105]
[65]
Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472(9): 1299-343.
[http://dx.doi.org/10.1007/s00424-020-02441-x] [PMID: 32789766]
[66]
Mielke JG, Taghibiglou C, Liu L, et al. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 2005; 93(6): 1568-78.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03155.x] [PMID: 15935073]
[67]
Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 2016; 213(8): 1375-85.
[http://dx.doi.org/10.1084/jem.20160493] [PMID: 27432942]
[68]
De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 2013; 123(2): 531-9.
[http://dx.doi.org/10.1172/JCI64595] [PMID: 23485579]
[69]
Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW. Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J Neurosci 2002; 22(9): 3376-85.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03376.2002] [PMID: 11978814]
[70]
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 2016; 6: 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[71]
Johnston AM, Pirola L, Van Obberghen E. Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 2003; 546(1): 32-6.
[http://dx.doi.org/10.1016/S0014-5793(03)00438-1] [PMID: 12829233]
[72]
Bradley CA, Peineau S, Taghibiglou C, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci 2012; 5: 13.
[http://dx.doi.org/10.3389/fnmol.2012.00013] [PMID: 22363262]
[73]
Brietzke E, Kapczinski F, Grassi-Oliveira R, Grande I, Vieta E, McIntyre RS. Insulin dysfunction and allostatic load in bipolar disorder. Expert Rev Neurother 2011; 11(7): 1017-28.
[http://dx.doi.org/10.1586/ern.10.185] [PMID: 21721918]
[74]
Cooray S. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 2004; 85(Pt 5): 1065-76.
[http://dx.doi.org/10.1099/vir.0.19771-0] [PMID: 15105524]
[75]
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9(1): 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[76]
Rensink AA, Otte-Höller I, de Boer R, et al. Insulin inhibits amyloid β-induced cell death in cultured human brain pericytes. Neurobiol Aging 2004; 25(1): 93-103.
[http://dx.doi.org/10.1016/S0197-4580(03)00039-3] [PMID: 14675735]
[77]
Hoshi M, Takashima A, Noguchi K, et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci USA 1996; 93(7): 2719-23.
[http://dx.doi.org/10.1073/pnas.93.7.2719] [PMID: 8610107]
[78]
Mielke JG, Taghibiglou C, Wang YT. Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience 2006; 143(1): 165-73.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.055] [PMID: 16978790]
[79]
Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 2006; 79(4): 173-89.
[http://dx.doi.org/10.1016/j.pneurobio.2006.07.006] [PMID: 16935409]
[80]
Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003; 423(6938): 435-9.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[81]
Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci USA 1993; 90(16): 7789-93.
[http://dx.doi.org/10.1073/pnas.90.16.7789] [PMID: 8356085]
[82]
Llorens-Martín M, Fuster-Matanzo A, Teixeira CM, et al. GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Mol Psychiatry 2013; 18(4): 451-60.
[http://dx.doi.org/10.1038/mp.2013.4] [PMID: 23399915]
[83]
Wei J, Liu W, Yan Z. Regulation of AMPA receptor trafficking and function by glycogen synthase kinase 3. J Biol Chem 2010; 285(34): 26369-76.
[http://dx.doi.org/10.1074/jbc.M110.121376] [PMID: 20584904]
[84]
Jope RS, Yuskaitis CJ, Beurel E. Glycogen Synthase Kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 2007; 32(4-5): 577-95.
[http://dx.doi.org/10.1007/s11064-006-9128-5] [PMID: 16944320]
[85]
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J 2001; 20(1-2): 27-39.
[http://dx.doi.org/10.1093/emboj/20.1.27] [PMID: 11226152]
[86]
Ly PT, Wu Y, Zou H, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 2013; 123(1): 224-35.
[http://dx.doi.org/10.1172/JCI64516] [PMID: 23202730]
[87]
Tao GZ, Lehwald N, Jang KY, et al. Wnt/β-catenin signaling protects mouse liver against oxidative stress-induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem 2013; 288(24): 17214-24.
[http://dx.doi.org/10.1074/jbc.M112.445965] [PMID: 23620592]
[88]
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4(2): 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[89]
Parker JA, Vazquez-Manrique RP, Tourette C, et al. Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 2012; 32(36): 12630-40.
[http://dx.doi.org/10.1523/JNEUROSCI.0277-12.2012] [PMID: 22956852]
[90]
Lin CH, Yeh SH, Lin CH, et al. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 2001; 31(5): 841-51.
[http://dx.doi.org/10.1016/S0896-6273(01)00433-0] [PMID: 11567621]
[91]
Daw MI, Bortolotto ZA, Saulle E, Zaman S, Collingridge GL, Isaac JT. Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nat Neurosci 2002; 5(9): 835-6.
[http://dx.doi.org/10.1038/nn903] [PMID: 12161757]
[92]
Sanna PP, Cammalleri M, Berton F, et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 2002; 22(9): 3359-65.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03359.2002] [PMID: 11978812]
[93]
Kimura T, Yamashita S, Nakao S, et al. GSK-3β is required for memory reconsolidation in adult brain. PLoS One 2008; 3(10): e3540.
[http://dx.doi.org/10.1371/journal.pone.0003540] [PMID: 18958152]
[94]
Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed) 2012; 4: 941-52.
[http://dx.doi.org/10.2741/s310] [PMID: 22202101]
[95]
Zhang F, Beharry ZM, Harris TE, et al. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther 2009; 8(9): 846-53.
[http://dx.doi.org/10.4161/cbt.8.9.8210] [PMID: 19276681]
[96]
Caccamo A, Maldonado MA, Majumder S, et al. Naturally secreted amyloid-β increases mammalian Target of Rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 2011; 286(11): 8924-32.
[http://dx.doi.org/10.1074/jbc.M110.180638] [PMID: 21266573]
[97]
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 2007; 120(Pt 23): 4081-91.
[http://dx.doi.org/10.1242/jcs.019265] [PMID: 18032783]
[98]
Betz C, Hall MN. Where is mTOR and what is it doing there? J Cell Biol 2013; 203(4): 563-74.
[http://dx.doi.org/10.1083/jcb.201306041] [PMID: 24385483]
[99]
Son JH, Shim JH, Kim KH, Ha JY, Han JY. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 2012; 44(2): 89-98.
[http://dx.doi.org/10.3858/emm.2012.44.2.031] [PMID: 22257884]
[100]
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: Antioxidative strategies. Front Med 2020; 14(5): 583-600.
[http://dx.doi.org/10.1007/s11684-019-0729-1] [PMID: 32248333]
[101]
Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta- cell dysfunction. Pflugers Arch 2010; 460(4): 703-18.
[http://dx.doi.org/10.1007/s00424-010-0862-9] [PMID: 20652307]
[102]
Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 1999; 274(39): 27905-13.
[http://dx.doi.org/10.1074/jbc.274.39.27905] [PMID: 10488138]
[103]
Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 2001; 50(4): 803-9.
[http://dx.doi.org/10.2337/diabetes.50.4.803] [PMID: 11289045]
[104]
Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 2002; 277(33): 30010-8.
[http://dx.doi.org/10.1074/jbc.M202066200] [PMID: 12011047]
[105]
Stuart CA, Howell ME, Cartwright BM, et al. Insulin resistance and muscle insulin receptor substrate-1 serine hyperphosphorylation. Physiol Rep 2014; 2(12): e12236.
[http://dx.doi.org/10.14814/phy2.12236] [PMID: 25472611]
[106]
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, et al. Interplay between mitochondrial oxidative disorders and proteostasis in Alzheimer’s disease. Front Neurosci 2020; 13: 1444.
[http://dx.doi.org/10.3389/fnins.2019.01444] [PMID: 32063825]
[107]
Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in Alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med 2020; 49: 102294.
[http://dx.doi.org/10.1016/j.ctim.2019.102294] [PMID: 32147039]
[108]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[109]
Rak M, Bénit P, Chrétien D, et al. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 2016; 130(6): 393-407.
[http://dx.doi.org/10.1042/CS20150707] [PMID: 26846578]
[110]
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198: 68-89.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.011] [PMID: 30797822]
[111]
Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V. GSK3β and tau protein in Alzheimer’s Disease and epilepsy. Front Cell Neurosci 2020; 14: 19.
[http://dx.doi.org/10.3389/fncel.2020.00019] [PMID: 32256316]
[112]
Galbusera C, Facheris M, Magni F, et al. Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res 2004; 1(2): 103-9.
[http://dx.doi.org/10.2174/1567205043332171] [PMID: 15975074]
[113]
Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995; 45(8): 1594-601.
[http://dx.doi.org/10.1212/WNL.45.8.1594] [PMID: 7644059]
[114]
Dei R, Takeda A, Niwa H, et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol 2002; 104(2): 113-22.
[http://dx.doi.org/10.1007/s00401-002-0523-y] [PMID: 12111353]
[115]
Swerdlow RH. Brain aging, Alzheimer’s disease, and mitochondria. Biochim Biophys Acta Mol Basis Dis 2011; 1812(12): 1630-9.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.012]
[116]
Tobore TO. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol Sci 2019; 40(8): 1527-40.
[http://dx.doi.org/10.1007/s10072-019-03863-x] [PMID: 30982132]
[117]
Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010; 6(10): 551-9.
[http://dx.doi.org/10.1038/nrneurol.2010.130] [PMID: 20842183]
[118]
Infante-Garcia C, Ramos-Rodriguez JJ, Hierro-Bujalance C, et al. Antidiabetic polypill improves central pathology and cognitive impairment in a mixed model of Alzheimer’s disease and type 2 diabetes. Mol Neurobiol 2018; 55(7): 6130-44.
[http://dx.doi.org/10.1007/s12035-017-0825-7] [PMID: 29224179]
[119]
Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69: 351-63.
[http://dx.doi.org/10.1016/j.bbi.2017.12.009] [PMID: 29253574]
[120]
Ma DL, Chen FQ, Xu WJ, Yue WZ, Yuan G, Yang Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice. J Neurochem 2015; 135(2): 301-8.
[http://dx.doi.org/10.1111/jnc.13248] [PMID: 26183127]
[121]
Batista AF, Forny-Germano L, Clarke JR, et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J Pathol 2018; 245(1): 85-100.
[http://dx.doi.org/10.1002/path.5056] [PMID: 29435980]
[122]
Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11(1): 23-35.
[http://dx.doi.org/10.1016/j.stem.2012.03.016] [PMID: 22770240]
[123]
Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis 2016; 51(2): 501-14.
[http://dx.doi.org/10.3233/JAD-150493] [PMID: 26890736]
[124]
Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950-8.
[http://dx.doi.org/10.1176/appi.ajgp.13.11.950] [PMID: 16286438]
[125]
Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 2011; 32(9): 1626-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.009] [PMID: 19923038]
[126]
Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon Like Peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab Syndr 2018; 12(3): 469-75.
[http://dx.doi.org/10.1016/j.dsx.2018.03.002] [PMID: 29598932]
[127]
D’Amico M, Di Filippo C, Marfella R, et al. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp Gerontol 2010; 45(3): 202-7.
[http://dx.doi.org/10.1016/j.exger.2009.12.004] [PMID: 20005285]
[128]
Zhang Y, Xie JZ, Xu XY, et al. Liraglutide ameliorates hyperhomocysteinemia-induced Alzheimer-like pathology and memory deficits in rats via multi-molecular targeting. Neurosci Bull 2019; 35(4): 724-34.
[http://dx.doi.org/10.1007/s12264-018-00336-7] [PMID: 30632006]
[129]
Li C, Liu W, Li X, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the ICV. STZ rat model of AD. Brain Behav 2020; 10(3): e01505.
[http://dx.doi.org/10.1002/brb3.1505] [PMID: 31960630]
[130]
Robinson A, Lubitz I, Atrakchi-Baranes D, et al. Combination of insulin with a GLP1 agonist is associated with better memory and normal expression of insulin receptor pathway genes in a mouse model of Alzheimer’s disease. J Mol Neurosci 2019; 67(4): 504-10.
[http://dx.doi.org/10.1007/s12031-019-1257-9] [PMID: 30635783]
[131]
Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: in vitro and in vivo studies. Int J Nanomedicine 2018; 13: 5577-90.
[http://dx.doi.org/10.2147/IJN.S171490] [PMID: 30271148]
[132]
Escribano L, Simón AM, Gimeno E, et al. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 2010; 35(7): 1593-604.
[http://dx.doi.org/10.1038/npp.2010.32] [PMID: 20336061]
[133]
Lourenco MV, Clarke JR, Frozza RL, et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 2013; 18(6): 831-43.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[134]
Cai HY, Yang JT, Wang ZJ, et al. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 2018; 495(1): 1034-40.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.114] [PMID: 29175324]
[135]
Knodt AR, Burke JR, Welsh-Bohmer KA, et al. Effects of pioglitazone on mnemonic hippocampal function: a blood oxygen level-dependent functional magnetic resonance imaging study in elderly adults. Alzheimers Dement (N Y) 2019; 5: 254-63.
[http://dx.doi.org/10.1016/j.trci.2019.05.004] [PMID: 31304231]
[136]
Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis 2017; 57(4): 1325-34.
[http://dx.doi.org/10.3233/JAD-161256] [PMID: 28372335]
[137]
Isik AT, Soysal P, Yay A, Usarel C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res Clin Pract 2017; 123: 192-8.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
[138]
Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 2008; 70(6): 440-8.
[http://dx.doi.org/10.1212/01.WNL.0000265401.62434.36] [PMID: 17942819]
[139]
Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab 2008; 93(4): 1339-44.
[http://dx.doi.org/10.1210/jc.2007-2606] [PMID: 18230654]
[140]
Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol 2011; 10(11): 969-77.
[http://dx.doi.org/10.1016/S1474-4422(11)70188-0] [PMID: 21958949]
[141]
Yaffe K, Falvey CM, Hamilton N, et al. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med 2013; 173(14): 1300-6.
[http://dx.doi.org/10.1001/jamainternmed.2013.6176] [PMID: 23753199]

© 2024 Bentham Science Publishers | Privacy Policy