Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Plant Based Natural Products as Quorum Sensing Inhibitors in E. Coli: A Critical Review

Author(s): A.P. Cardiliya, A. Selvaraj, M.J. Nanjan and M.J.N. Chandrasekar*

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [1380 - 1394] Pages: 15

DOI: 10.2174/1389557521666211101155150

Price: $65

conference banner
Abstract

The existence of multidrug–resistant (MDR) E. coli (superbugs) is a global health issue confronting humans, livestock, food processing units, and pharmaceutical industries. The quorum sensing (QS) controlling ability of the E. coli to form biofilms has become one of the important reasons for the emergence of multidrug-resistant pathogens. Quorum signaling activation and formation of biofilm lead to the emergence of antimicrobial resistance of the pathogens increasing the therapy difficult for treating bacterial diseases. There is a crucial need, therefore, to reinforce newer therapeutic designs to overcome this resistance. As the infections caused by E. coli are attributed via the QSregulated biofilm formation, easing this system by QS inhibitors is a possible strategy for treating bacterial diseases. Plant based natural products have been reported to bind to QS receptors and interrupt the QS systems of pathogens by inhibiting biofilm formation and disrupting the formed biofilms, thus minimizing the chances to develop a resistance mechanism. The present report reviews critically the QS capability of E. coli to form biofilms leading to multidrug resistant pathogens and the investigations that have been carried out so far on plant acquired natural products as QS inhibitors.

Keywords: Multidrug resistant bacteria, quorum sensing (QS), biofilm formation, bacterial diseases, QS inhibitors, E. coli.

Graphical Abstract
[1]
Fang, K. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of Deg. Sci. Rep., 2018, 8, 4939.
[http://dx.doi.org/10.1038/s41598-018-23180-1] [PMID: 29563542]
[2]
Boll, E.J.; Overballe-Petersen, S.; Hasman, H.; Roer, L.; Ng, K.; Scheutz, F.; Hammerum, A.M.; Dungu, A.; Hansen, F.; Johannesen, T.B.; Johnson, A.; Nair, D.T.; Lilje, B.; Hansen, D.S.; Krogfelt, K.A.; Johnson, T.J.; Price, L.B.; Johnson, J.R.; Struve, C.; Olesen, B.; Stegger, M. Emergence of enteroaggregative Escherichia coli within the ST131 lineage as a cause of extraintestinal infections. MBio, 2020, 11(3), e00353-e20.
[http://dx.doi.org/10.1128/mBio.00353-20] [PMID: 32430467]
[3]
Peng, L-Y. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory. Sci. Rep., 2019, 9, 4063.
[http://dx.doi.org/10.1038/s41598-019-40684-6] [PMID: 30858423]
[4]
Xue, M.; Kim, C.S.; Healy, A.R.; Wernke, K.M.; Wang, Z.; Frischling, M.C.; Shine, E.E.; Wang, W.; Herzon, S.B.; Crawford, J.M. Structure elucidation of colibactin and its DNA cross-links. Science, 2019, 365(6457), eaax2685.
[http://dx.doi.org/10.1126/science.aax2685] [PMID: 31395743]
[5]
Schiebel, J.; Böhm, A.; Nitschke, J.; Burdukiewicz, M.; Weinreich, J.; Ali, A.; Roggenbuck, D.; Rödiger, S.; Schierack, P. Genotypic and phenotypic characteristics associated with biofilm formation by human clinical Escherichia coli isolates of different pathotypes. Appl. Environ. Microbiol., 2017, 83(24), e1660-e17.
[http://dx.doi.org/10.1128/AEM.01660-17] [PMID: 28986371]
[6]
Torres-Cerna, C.E.; Morales, J.A.; Hernandez-Vargas, E.A. Modeling quorum sensing dynamics and interference on Escherichia coli. Front. Microbiol., 2019, 10, 1835.
[http://dx.doi.org/10.3389/fmicb.2019.01835] [PMID: 31481938]
[7]
Longhi, C.; Comanducci, A.; Riccioli, A.; Ziparo, E.; Marazzato, M.; Aleandri, M.; Conte, A.L.; Lepanto, M.S.; Goldoni, P.; Conte, M.P. Features of uropathogenic Escherichia coli able to invade a prostate cell line. New Microbiol., 2016, 39(2), 146-149.
[PMID: 27196555]
[8]
Danese, P.N.; Pratt, L.A.; Kolter, R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol., 2000, 182(12), 3593-3596.
[http://dx.doi.org/10.1128/JB.182.12.3593-3596.2000] [PMID: 10852895]
[9]
Ghigo, J.M. Natural conjugative plasmids induce bacterial biofilm development. Nature, 2001, 412(6845), 442-445.
[http://dx.doi.org/10.1038/35086581] [PMID: 11473319]
[10]
Sherlock, O.; Dobrindt, U.; Jensen, J.B.; Munk Vejborg, R.; Klemm, P. Glycosylation of the self-recognizing Escherichia coli Ag43 auto-transporter protein. J. Bacteriol., 2006, 188(5), 1798-1807.
[http://dx.doi.org/10.1128/JB.188.5.1798-1807.2006] [PMID: 16484190]
[11]
DePas, W.H.; Adnan, K. Bioflm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Appl. Environ. Microbiol., 2000, 80, 7079-7087.
[http://dx.doi.org/10.1128/AEM.02464-14] [PMID: 25192998]
[12]
Gu, H.; Lee, S.W.; Carnicelli, J.; Jiang, Z.; Ren, D. Antibiotic susceptibility of Escherichia coli cells during early-stage biofilm formation. J. Bacteriol., 2019, 201(18), e00034-e19.
[http://dx.doi.org/10.1128/JB.00034-19] [PMID: 31061169]
[13]
Brian, M. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun., 2019, 10, 3643.
[14]
Lade, H.; Paul, D.; Kweon, J.H. Quorum quenching mediated approaches for control of membrane biofouling. Int. J. Biol. Sci., 2014, 10(5), 550-565.
[http://dx.doi.org/10.7150/ijbs.9028] [PMID: 24910534]
[15]
Hayek, S.A.; Gyawali, R.; Ibrahim, S.A. Antimicrobial natural products. Microbial pathogens and strategies for combating them. Science, 2013, 2, 910-921.
[16]
Sturbelle, R.T.; de Avila, L.F.; Roos, T.B.; Borchardt, J.L. da Conceição, Rde.C.; Dellagostin, O.A.; Leite, F.P. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet. Microbiol., 2015, 180(3-4), 245-252.
[http://dx.doi.org/10.1016/j.vetmic.2015.08.015] [PMID: 26386492]
[17]
Yao, Y.; Martinez-Yamout, M.A.; Dickerson, T.J.; Brogan, A.P.; Wright, P.E.; Dyson, H.J. Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J. Mol. Biol., 2006, 355(2), 262-273.
[http://dx.doi.org/10.1016/j.jmb.2005.10.041] [PMID: 16307757]
[18]
Hebert, F.; Culler, I.D. Role of SdiA on biofilm formation by atypical enteropathogenic Escherichia coli. Genes (Basel), 2018, 9, 253.
[19]
Laganenka, L.; Sourjik, V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species co-culture. Appl. Environ. Microbiol., 2018, 84(5), e02638-e17.
[http://dx.doi.org/10.1128/AEM.02638-17] [PMID: 29269492]
[20]
Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv., 2018, 4, eaar7063.
[21]
Beloin, C.; Roux, A.; Ghigo, J.M. Escherichia coli biofilms. Curr. Top. Microbiol. Immunol., 2008, 322, 249-289.
[http://dx.doi.org/10.1007/978-3-540-75418-3_12] [PMID: 18453280]
[22]
Prigent-Combaret, C.; Prensier, G.; Le Thi, T.T.; Vidal, O.; Lejeune, P.; Dorel, C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: Role of flagella, curli and colanic acid. Environ. Microbiol., 2000, 2(4), 450-464.
[http://dx.doi.org/10.1046/j.1462-2920.2000.00128.x] [PMID: 11234933]
[23]
Uhlich, G.A.; Andreozzi, E.; Cottrell, B.J.; Reichenberger, E.R.; Zhang, X.; Paoli, G.C. Sulfamethoxazole - Trimethoprim represses CSGD but maintains virulence genes at 30°C in a clinical Escherichia coli O157: H7 isolate. PLoS One, 2018, 13(5), e0196271.
[http://dx.doi.org/10.1371/journal.pone.0196271] [PMID: 29718957]
[24]
Characterization of Autoinducer-3 Structure and Biosynthesis in E. coli. ACS Cent. Sci., 2020, 6, 197-206.
[25]
Sperandio, V.; Torres, A.G.; Kaper, J.B. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol., 2002, 43(3), 809-821.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02803.x] [PMID: 11929534]
[26]
Yang, K.; Meng, J.; Huang, Y-C.; Ye, L.H.; Li, G.J.; Huang, J.; Chen, H.M. The role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by Escherichia coli. Cell Biochem. Biophys., 2014, 70(1), 391-398.
[http://dx.doi.org/10.1007/s12013-014-9924-5] [PMID: 24676679]
[27]
Gaimster, H.; Cama, J.; Hernández-Ainsa, S.; Keyser, U.F.; Summers, D.K. The indole pulse: A new perspective on indole signalling in Escherichia coli. PLoS One, 2014, 9(4), e93168.
[http://dx.doi.org/10.1371/journal.pone.0093168] [PMID: 24695245]
[28]
Hirakawa, H.; Kodama, T.; Takumi-Kobayashi, A.; Honda, T. Yamaguchi, A Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7. Microbiology, 2009, 155, 541-550.
[29]
Hirakawa, H.; Hayashi-Nishino, M.; Yamaguchi, A.; Nishino, K. Indole enhances acid resistance in Escherichia coli. Microb. Pathog., 2010, 49(3), 90-94.
[http://dx.doi.org/10.1016/j.micpath.2010.05.002] [PMID: 20470880]
[30]
Kumar, A.; Sperandio, V. Indole signaling at the host-microbiota-pathogen interface. MBio, 2019, 10(3), e01031-e19.
[http://dx.doi.org/10.1128/mBio.01031-19] [PMID: 31164470]
[31]
Smanthong, N.; Tavichakorntrakool, R.; Saisud, P.; Prasongwatana, V.; Sribenjalux, P.; Lulitanond, A.; Tunkamnerdthai, O.; Wongkham, C.; Boonsiri, P. Biofilm formation in trimethoprim/sulfamethoxazole-susceptible and trimethoprim/sulfamethoxazole-resistant uropathogenic Escherichia coli. Asian Pac. J. Trop. Biomed., 2015, 5, 485-487.
[http://dx.doi.org/10.1016/j.apjtb.2015.03.006]
[32]
Masi, M.; Réfregiers, M.; Pos, K.M.; Pagès, J.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol., 2017, 2, 17001.
[http://dx.doi.org/10.1038/nmicrobiol.2017.1] [PMID: 28224989]
[33]
Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother., 2018, 73(8), 2003-2020.
[http://dx.doi.org/10.1093/jac/dky042] [PMID: 29506149]
[34]
Piddock, L.J. Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol., 2006, 4(8), 629-636.
[http://dx.doi.org/10.1038/nrmicro1464] [PMID: 16845433]
[35]
Lynch, S.V.; Dixon, L.; Benoit, M.R.; Brodie, E.L.; Keyhan, M.; Hu, P.; Ackerley, D.F.; Andersen, G.L.; Matin, A. Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob. Agents Chemother., 2007, 51(10), 3650-3658.
[http://dx.doi.org/10.1128/AAC.00601-07] [PMID: 17664315]
[36]
Kvist, M.; Hancock, V.; Klemm, P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol., 2008, 74(23), 7376-7382.
[http://dx.doi.org/10.1128/AEM.01310-08] [PMID: 18836028]
[37]
Wei, Y.; Lee, J.M.; Smulski, D.R.; LaRossa, R.A. Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J. Bacteriol., 2001, 183(7), 2265-2272.
[http://dx.doi.org/10.1128/JB.183.7.2265-2272.2001] [PMID: 11244066]
[38]
Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 2010, 34(4), 426-444.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00204.x] [PMID: 20070374]
[39]
Yan, Q.T. Plasmid transfer capacities of multi- resistant UPEC clinical isolates in biofilms. Biomed. Res., 2017, 28(5), 2364-2369.
[40]
Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; Horwinski, J.; Sariya, S.; Gregg, S. Escherichia coli ST131-H22 as a food borne uropathogen. MBio, 2018, 9, e00470-e18.
[PMID: 30154256]
[41]
Ali, A.; Sherani, M.Z.; Babar, J.K.; Muhammad, N.; Ullah, R. Resistance of bacterial pathogen of dental clinic against the antibiotics. Adv. Biores., 2020, 11, 49-53.
[42]
Van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev., 2017, 41(3), 219-251.
[http://dx.doi.org/10.1093/femsre/fux001] [PMID: 28333307]
[43]
Fisher, R.A.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol., 2017, 15(8), 453-464.
[http://dx.doi.org/10.1038/nrmicro.2017.42] [PMID: 28529326]
[44]
Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 2016, 354(6318), aaf4268.
[http://dx.doi.org/10.1126/science.aaf4268] [PMID: 27980159]
[45]
Kim, J.S.; Chowdhury, N.; Yamasaki, R.; Wood, T.K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol., 2018, 20(6), 2038-2048.
[http://dx.doi.org/10.1111/1462-2920.14075] [PMID: 29457686]
[46]
Goormaghtigh, F.; Fraikin, N.; Putrins, M.; Hallaert, T.; Hauryliak, V. Reassessing the role of type II toxin- antitoxin systems in formation of Escherichia coli type II Persister cells. MBio, 2018, 9, e00640-e00618.
[47]
Svenningsen, M.S.; Veress, A.; Harms, A.; Mitarai, N.; Semsey, S. Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells. Sci. Rep., 2019, 9(1), 6056.
[http://dx.doi.org/10.1038/s41598-019-42403-7] [PMID: 30988388]
[48]
Yamasaki, R. Persister cells resuscitate using membrane sensors that activate chemotaxis, lower cAMP levels, and revive ribosome’s. Science, 2020, 23, 100792.
[PMID: 31926430]
[49]
Chen, C.C.; Walia, R.; Mukherjee, K.J.; Mahalik, S.; Summers, D.K. Indole generates quiescent and metabolically active Escherichia coli cultures. Biotechnol. J., 2015, 10(4), 636-646.
[http://dx.doi.org/10.1002/biot.201400381] [PMID: 25594833]
[50]
Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science, 2017, 355(6327), 826-830.
[http://dx.doi.org/10.1126/science.aaj2191] [PMID: 28183996]
[51]
Miyaue, S.; Suzuki, E.; Komiyama, Y.; Kondo, Y.; Morikawa, M.; Maeda, S. Bacterial memory of Persisters: Bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony-biofilm culture. Front. Microbiol., 2018, 9, 1396.
[http://dx.doi.org/10.3389/fmicb.2018.01396] [PMID: 29997606]
[52]
Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother., 2001, 45(4), 999-1007.
[http://dx.doi.org/10.1128/AAC.45.4.999-1007.2001] [PMID: 11257008]
[53]
John, T. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States. J. Infect. Dis., 2005, 192(8), 1422-1429.
[PMID: 16170761]
[54]
Almanza, A.V. Shigatoxin-producing Escherichia coli in certain raw beef products. Fed. Regist., 2011, 76, 58157-58165.
[55]
Olowe, O.D.; Adefioy, O.J.; Ajayeoba, T.A.; Schiebel, J.; Weinreich, J.; Ali, A.; Burdukiewicz, M.; Rodiger, S.; Schierack, P. Phylogenetic grouping and biofilm formation of multidrug resistant Escherichia coli isolates from humans, animals and food products in South-West Nigeria. Sci. Am., 2019, 6, e00158.
[56]
Barillova, P.; Tchesnokova, V.; Dübbers, A.; Küster, P.; Peters, G.; Dobrindt, U.; Sokurenko, E.V.; Kahl, B.C. Prevalence and persistence of Escherichia coli in the airways of cystic fibrosis patients - an unrecognized CF pathogen? Int. J. Med. Microbiol., 2014, 304(3-4), 415-421.
[http://dx.doi.org/10.1016/j.ijmm.2014.02.008] [PMID: 24630795]
[57]
Izydorczyk, C.; Waddell, B.; Edwards, B.D.; Greysson-Wong, J.; Surette, M.G.; Somayaji, R.; Rabin, H.R.; Conly, J.M.; Church, D.L.; Parkins, M.D. Epidemiology of E. coli in cystic fibrosis airways demonstrates the capacity for persistent infection but not patient-patient transmission. Front. Microbiol., 2020, 11, 475.
[http://dx.doi.org/10.3389/fmicb.2020.00475] [PMID: 32265892]
[58]
Fihman, V.; Messika, J.; Hajage, D.; Tournier, V.; Gaudry, S.; Magdoud, F.; Barnaud, G.; Billard-Pomares, T.; Branger, C.; Dreyfuss, D.; Ricard, J.D. Five-year trends for ventilator-associated pneumonia: Correlation between microbiological findings and antimicrobial drug consumption. Int. J. Antimicrob. Agents, 2015, 46(5), 518-525.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.07.010] [PMID: 26358970]
[59]
Anderson, G.; Palermo, J.J.; Schilling, J.D.; Roth, R.; Heuser, J.; Hultgren, S.J. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 2003, 301, 105-107.
[60]
Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis., 2001, 183(1)(Suppl. 1), S1-S4.
[http://dx.doi.org/10.1086/318850] [PMID: 11171002]
[61]
Saroj, G.; Vivek, H.; Sujata, K.K.; Reddy, M. Correlation between biofilm formation of uropathogenic Escherichia coli and its antibiotic resistance pattern. J. Evol. Med. Dent. Sci., 2012, 1, 166-175.
[http://dx.doi.org/10.14260/jemds/26]
[62]
Sanchez, C.J., Jr; Mende, K.; Beckius, M.L.; Akers, K.S.; Romano, D.R.; Wenke, J.C.; Murray, C.K. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis., 2013, 13(1), 47.
[http://dx.doi.org/10.1186/1471-2334-13-47] [PMID: 23356488]
[63]
Reisner, A.; Maierl, M.; Jörger, M.; Krause, R.; Berger, D.; Haid, A.; Tesic, D.; Zechner, E.L. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J. Bacteriol., 2014, 196(5), 931-939.
[http://dx.doi.org/10.1128/JB.00985-13] [PMID: 24336940]
[64]
Karigoudar, R.M.; Karigoudar, M.H.; Wavare, S.M.; Mangalgi, S.S. Detection of biofilm among uropathogenic Escherichia coli and its correlation with antibiotic resistance pattern. J. Lab. Physicians, 2019, 11(1), 17-22.
[http://dx.doi.org/10.4103/JLP.JLP_98_18] [PMID: 30983797]
[65]
Bioflm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep., 2019, 9, 8928.
[http://dx.doi.org/10.1038/s41598-019-45060-y]
[66]
Sherwal, B.L.; Verma, A.K. Epidemiology of ocular infection due to bacteria and fungus-a prospective study. JK Sci, 2008, 10(3), 127-131.
[67]
Jindal, A.; Pathengay, A.; Mithal, K.; Jalali, S.; Mathai, A.; Pappuru, R.R.; Chhablani, J.; Motukupally, S.R.; Sharma, S.; Das, T.; Flynn, H.W. Endophthalmitis after open globe injuries: Changes in microbiological spectrum and isolate susceptibility patterns over 14 years. J. Ophthalmic Inflamm. Infect., 2014, 4(1), 1-4.
[68]
Arunachala Murthy, T.; Rangappa, P.; Rao, S.; Rao, K. ESBL E. coli urosepsis resulting in endogenous panophthalmitis requiring evisceration of the eye in a diabetic patient. Case Rep. Infect. Dis., 2015, 2015, 897245.
[http://dx.doi.org/10.1155/2015/897245] [PMID: 26351596]
[69]
Stratton, M.; Capitena, C. Escherichia coli eyelid abscess in a patient with alcoholic cirrhosis. Case Rep. Ophthalmol. Med., 2015, 2015, 2.
[http://dx.doi.org/10.1155/2015/827609]
[70]
Ranjith, K.; Arunasri, K.; Reddy, G.S.; Adicherla, H.; Sharma, S.; Shivaji, S. Global gene expression in Escherichia coli, isolated from the diseased ocular surface of the human eye with a potential to form biofilm. Gut Pathog., 2017, 9, 15.
[http://dx.doi.org/10.1186/s13099-017-0164-2] [PMID: 28392838]
[71]
Ranjith, K.; Ramchiary, J.; Prakash, J.S.S.; Arunasri, K.; Sharma, S.; Shivaji, S. Gene targets in ocular pathogenic Escherichia coli for miti-gation of biofilm formation to overcome antibiotic resistance. Front. Microbiol., 2019, 10, 1308.
[http://dx.doi.org/10.3389/fmicb.2019.01308] [PMID: 31293528]
[72]
Ren, D.; Sims, J.J.; Wood, T.K. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol., 2001, 3(11), 731-736.
[http://dx.doi.org/10.1046/j.1462-2920.2001.00249.x] [PMID: 11846763]
[73]
Shen, X.F.; Ren, L.B.; Teng, Y.; Zheng, S.; Yang, X.L.; Guo, X.J.; Wang, X.Y.; Sha, K.H.; Li, N.; Xu, G.Y.; Tian, H.W.; Wang, X.Y.; Liu, X.K.; Li, J.; Huang, N. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation. Food Chem. Toxicol., 2014, 72, 204-211.
[http://dx.doi.org/10.1016/j.fct.2014.07.019] [PMID: 25051393]
[74]
Vikram, G.K.; Jayaprakasha, P.R. Suppression of which bacterial cell–cell diAling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol., 2010, 109, 515-527.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04677.x] [PMID: 20163489]
[75]
Zhang, J. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 2014, 42, 125.
[http://dx.doi.org/10.1016/j.foodcont.2014.02.001]
[76]
Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens, 2014, 3(2), 473-498.
[http://dx.doi.org/10.3390/pathogens3020473] [PMID: 25437810]
[77]
Girennavar, B.; Cepeda, M.L.; Soni, K.A.; Vikram, A.; Jesudhasan, P.; Jayaprakasha, G.K.; Pillai, S.D.; Patil, B.S. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int. J. Food Microbiol., 2008, 125(2), 204-208.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.028] [PMID: 18504060]
[78]
Lee, J-H.; Kima, Y.G.; Choa, H.S.; Ryub, S.Y.; Choa, M.H.; Leea, J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine, 2014, 21(8-9), 1037-1042.
[http://dx.doi.org/10.1016/j.phymed.2014.04.008]
[79]
Lee, J-H.; Regmi, S.C.; Kim, J.A.; Cho, M.H.; Yun, H.; Lee, C.S.; Lee, J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 bio-film formation and ameliorates colon inflammation in rats. Infect. Immun., 2011, 79(12), 4819-4827.
[http://dx.doi.org/10.1128/IAI.05580-11] [PMID: 21930760]
[80]
Vikram, A. Inhibition of Escherichia coli O157:H7 motility and biofilm by β-Sitosterol glucoside. Biochim. Biophys. Acta, 2013, 10, 4-8.
[81]
Cho, H.S.; Lee, J.H.; Ryu, S.Y.; Joo, S.W.; Cho, M.H.; Lee, J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 bio-film formation by plant metabolite ε-viniferin. J. Agric. Food Chem., 2013, 61(29), 7120-7126.
[http://dx.doi.org/10.1021/jf4009313] [PMID: 23819562]
[82]
Kolouchová, I.; Maťátková, O.; Paldrychová, M.; Kodeš, Z.; Kvasničková, E.; Sigler, K.; Čejková, A.; Šmidrkal, J.; Demnerová, K.; Ma-sák, J. Resveratrol, pterostilbene, and baicalein: Plant-derived anti-biofilm agents. Folia Microbiol. (Praha), 2018, 63(3), 261-272.
[http://dx.doi.org/10.1007/s12223-017-0549-0] [PMID: 28971316]
[83]
Lee, J-H.; Cho, H.S.; Joo, S.W.; Chandra Regmi, S.; Kim, J.A.; Ryu, C.M.; Ryu, S.Y.; Cho, M.H.; Lee, J. Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling, 2013, 29(10), 1189-1203.
[http://dx.doi.org/10.1080/08927014.2013.832223] [PMID: 24067082]
[84]
Gambogou, B. Effect of Aqueous garlic extract on biofilm formation and antibiotic susceptibility of multidrug-resistant uropathogenic Escherichia coli clinical isolates in TogoInt. J. Adv. Multidiscip, 2018, 5(7), 23-33.
[85]
Hancock, V.; Dahl, M.; Vejborg, R.M.; Klemm, P. Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. J. Med. Microbiol., 2010, 59(Pt 4), 496-498.
[http://dx.doi.org/10.1099/jmm.0.013680-0] [PMID: 19959627]
[86]
Hu, W.S.; Nam, D.M.; Choi, J.Y.; Kim, J.S.; Koo, O.K. Anti-attachment, anti-biofilm, and antioxidant properties of Brassicaceae extracts on Escherichia coli O157:H7. Food Sci. Biotechnol., 2019, 28(6), 1881-1890.
[http://dx.doi.org/10.1007/s10068-019-00621-9] [PMID: 31807362]
[87]
Sun, T.; Li, X-D.; Hong, J.; Liu, C.; Zhang, X-L.; Zheng, J-P.; Xu, Y.J.; Ou, Z-Y.; Zheng, J-L.; Yu, D-J. Inhibitory effect of two traditional chinese medicine monomers, berberine and matrine, on the quorum sensing system of antimicrobial-resistant Escherichia coli. Front. Microbiol., 2019, 10, 2584.
[http://dx.doi.org/10.3389/fmicb.2019.02584] [PMID: 31798551]
[88]
Al-Shabib, N.A.; Husain, F.M.; Ahmad, I.; Khan, M.S.; Khan, R.A.; Khan, J.M. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, 2017, 79, 325-332.
[http://dx.doi.org/10.1016/j.foodcont.2017.03.004]
[89]
Vikram, A.; Jesudhasan, P.R.; Pillai, S.D.; Patil, B.S. Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol., 2012, 12, 261.
[http://dx.doi.org/10.1186/1471-2180-12-261] [PMID: 23153211]
[90]
Ravichandirana, V Inhibitors from Melia dubia against diA mediated quorum sensing of uropathogenic E. coli. Int. J. Pharm Sci., 2015, 7(1), 161-166.
[91]
Inhibition of biofilm development of uropathogens by curcumin – An anti-quorum sensing agent from Curcuma longa. Food Chem., 2014, 148, 453-460.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.002]
[92]
Ben Abdallah, F.; Lagha, R.; Gaber, A. Biofilm inhibition and eradication properties of medicinal plant essential oils against methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceuticals (Basel), 2020, 13(11), E369.
[93]
Arel, K. Susceptibility of multidrug-resistant and biofilm-forming uropathogens to mexican oregano essential oil. Antibiotics (Basel), 2019, 8, 186.
[http://dx.doi.org/10.3390/antibiotics8040186]
[94]
Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci. Rep., 2016, 6, 36377.
[http://dx.doi.org/10.1038/srep36377] [PMID: 27808174]
[95]
Lagha, R. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules, 2019, 24, 1161.
[http://dx.doi.org/10.3390/molecules24061161]
[96]
Miculescu, F. Progress in hydroxyapatite–starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain. Chem. Eng., 2017, 5, 8491-8512.
[http://dx.doi.org/10.1021/acssuschemeng.7b02314]
[97]
Verma, S.K.; Jha, E.; Panda, P.K.; Das, J.K.; Thirumurugan, A.; Suar, M.; Parashar, S. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond.), 2018, 13(1), 43-68.
[http://dx.doi.org/10.2217/nnm-2017-0237] [PMID: 29173091]
[98]
Prateeksha; Barik, S.K.; Singh, B.N. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and bioflm formation on solid surfaces. Sci. Rep., 2019, 9, 6520.
[http://dx.doi.org/10.1038/s41598-019-43016-w] [PMID: 31019240]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy