Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets

Author(s): Aliabbas Zia, Tahereh Farkhondeh, Faezeh Sahebdel, Ali Mohammad Pourbagher-Shahri and Saeed Samarghandian*

Volume 15, Issue 5, 2022

Published on: 17 January, 2022

Article ID: e170921196609 Pages: 27

DOI: 10.2174/1874467214666210917141541

Price: $65

conference banner
Abstract

Aging is a multifactorial process accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue- specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on the role of miRNAs in the aging process, and the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan have been highlighted.

Keywords: MiRNAs, aging, longevity, age-related diseases, senescence, lifespan.

Graphical Abstract
[1]
Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging, 2007, 2(3), 401-412.
[PMID: 18044191]
[2]
Kiss, H.; Mihalik, Á.; Nánási, T.; Őry, B.; Spiró, Z.; Sőti, C.; Csermely, P. Ageing as a price of cooperation and complexity: Self-organization of complex systems causes the ageing of constituent networks. Bioassays, 2009, 31(6), 651-654.
[PMID: 18044191]
[3]
Mattick, J.S.; Makunin, I.V. Small regulatory RNAs in mammals. Hum. Mol. Genet., 2005, 14(Spec No 1)(Suppl. 1), R121-R132.
[http://dx.doi.org/10.1093/hmg/ddi101] [PMID: 15809264]
[4]
Sana, J.; Faltejskova, P.; Svoboda, M.; Slaby, O. Novel classes of non-coding RNAs and cancer. J. Transl. Med., 2012, 10(1), 103.
[http://dx.doi.org/10.1186/1479-5876-10-103] [PMID: 22613733]
[5]
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 2004, 116(2), 281-297.
[6]
Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta, 2010, 1803(11), 1231-1243.
[http://dx.doi.org/10.1016/j.bbamcr.2010.06.013] [PMID: 20619301]
[7]
Rippe, C.; Blimline, M.; Magerko, K.A.; Lawson, B.R.; LaRocca, T.J.; Donato, A.J.; Seals, D.R. MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp. Gerontol., 2012, 47(1), 45-51.
[http://dx.doi.org/10.1016/j.exger.2011.10.004] [PMID: 22037549]
[8]
Xu, D.; Tahara, H. The role of exosomes and microRNAs in senescence and aging. Adv. Drug Deliv. Rev., 2013, 65(3), 368-375.
[http://dx.doi.org/10.1016/j.addr.2012.07.010] [PMID: 22820533]
[9]
Lafferty-Whyte, K.; Cairney, C.J.; Jamieson, N.B.; Oien, K.A.; Keith, W.N. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim. Biophys. Acta, 2009, 1792(4), 341-352.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.003] [PMID: 19419692]
[10]
Li, G.; Luna, C.; Qiu, J.; Epstein, D.L.; Gonzalez, P. Alterations in microRNA expression in stress-induced cellular senescence. Mech. Ageing Dev., 2009, 130(11-12), 731-741.
[http://dx.doi.org/10.1016/j.mad.2009.09.002] [PMID: 19782699]
[11]
Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[12]
Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell, 2016, 64(2), 320-333.
[http://dx.doi.org/10.1016/j.molcel.2016.09.004] [PMID: 27720646]
[13]
Borchert, G.M.; Holton, N.W.; Williams, J.D.; Hernan, W.L.; Bishop, I.P.; Dembosky, J.A.; Elste, J.E.; Gregoire, N.S.; Kim, J.A.; Koehler, W.W.; Lengerich, J.C.; Medema, A.A.; Nguyen, M.A.; Ower, G.D.; Rarick, M.A.; Strong, B.N.; Tardi, N.J.; Tasker, N.M.; Wozniak, D.J.; Gatto, C.; Larson, E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements, 2011, 1(1), 8-17.
[http://dx.doi.org/10.4161/mge.1.1.15766] [PMID: 22016841]
[14]
Godnic, I.; Zorc, M.; Jevsinek Skok, D.; Calin, G.A.; Horvat, S.; Dovc, P.; Kovac, M.; Kunej, T. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS One, 2013, 8(6), e65165.
[http://dx.doi.org/10.1371/journal.pone.0065165] [PMID: 23762306]
[15]
Chong, M.M.; Zhang, G.; Cheloufi, S.; Neubert, T.A.; Hannon, G.J.; Littman, D.R. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev., 2010, 24(17), 1951-1960.
[http://dx.doi.org/10.1101/gad.1953310] [PMID: 20713509]
[16]
Havens, M.A.; Reich, A.A.; Duelli, D.M.; Hastings, M.L. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res., 2012, 40(10), 4626-4640.
[http://dx.doi.org/10.1093/nar/gks026] [PMID: 22270084]
[17]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[18]
Solon-Biet, S.M.; Mitchell, S.J.; de Cabo, R.; Raubenheimer, D.; Le Couteur, D.G.; Simpson, S.J. Macronutrients and caloric intake in health and longevity. J. Endocrinol., 2015, 226(1), R17-R28.
[http://dx.doi.org/10.1530/JOE-15-0173] [PMID: 26021555]
[19]
Johnson, S.C. Nutrient sensing, signaling and ageing: The role of IGF-1 and mTOR in ageing and age-related disease.Biochemistry and cell biology of ageing: Part I biomedical science; Springer: Singapore, 2018, pp. 49-97.
[http://dx.doi.org/10.1007/978-981-13-2835-0_3]
[20]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[21]
Altintas, O.; Park, S.; Lee, S.J.V. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep., 2016, 49(2), 81-92.
[http://dx.doi.org/10.5483/BMBRep.2016.49.2.261] [PMID: 26698870]
[22]
Uno, M.; Nishida, E. 178. Lifespan-regulating genes in C. elegans. NPJ Aging and Mechan. Dis., 2016, 2(1), 1-8.
[23]
Yen, K.; Narasimhan, S. D.; Tissenbaum, H. A. DAF-16/Forkhead box O transcription factor: many paths to a single Fork (head) in the road. Antioxid. Redox Signal., 2011, 14(4), 623-634.
[http://dx.doi.org/10.1089/ars.2010.3490] [PMID: 20673162]
[24]
Wang, Y.; Zhou, Y.; Graves, D.T. FOXO transcription factors: their clinical significance and regulation. BioMed Res. Int., 2014, 2014, 925350.
[http://dx.doi.org/10.1155/2014/925350] [PMID: 24864265]
[25]
Klotz, L.O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox regulation of FoxO transcription factors. Redox Biol., 2015, 6, 51-72.
[http://dx.doi.org/10.1016/j.redox.2015.06.019] [PMID: 26184557]
[26]
Lapierre, L.R.; Hansen, M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol. Metab., 2012, 23(12), 637-644.
[http://dx.doi.org/10.1016/j.tem.2012.07.007] [PMID: 22939742]
[27]
Hwangbo, D.S.; Gershman, B.; Tu, M.P.; Palmer, M.; Tatar, M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 2004, 429(6991), 562-566.
[http://dx.doi.org/10.1038/nature02549] [PMID: 15175753]
[28]
Berryman, D.E.; Christiansen, J.S.; Johannsson, G.; Thorner, M.O.; Kopchick, J.J. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm. IGF Res., 2008, 18(6), 455-471.
[http://dx.doi.org/10.1016/j.ghir.2008.05.005] [PMID: 18710818]
[29]
Tazearslan, C.; Cho, M.; Suh, Y. Discovery of functional gene variants associated with human longevity: opportunities and challenges. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(4), 376-383.
[http://dx.doi.org/10.1093/gerona/glr200] [PMID: 22156437]
[30]
Boehm, M.; Slack, F.J. MicroRNA control of lifespan and metabolism. Cell Cycle, 2006, 5(8), 837-840.
[http://dx.doi.org/10.4161/cc.5.8.2688] [PMID: 16627994]
[31]
de Lencastre, A.; Pincus, Z.; Zhou, K.; Kato, M.; Lee, S.S.; Slack, F.J. MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol., 2010, 20(24), 2159-2168.
[http://dx.doi.org/10.1016/j.cub.2010.11.015] [PMID: 21129974]
[32]
Jung, H.J.; Suh, Y. Regulation of IGF -1 signaling by microRNAs. Front. Genet., 2015, 5, 472.
[http://dx.doi.org/10.3389/fgene.2014.00472] [PMID: 25628647]
[33]
Liu, K.; Ying, Z.; Qi, X.; Shi, Y.; Tang, Q. MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1. Int. J. Mol. Med., 2015, 36(3), 817-824.
[http://dx.doi.org/10.3892/ijmm.2015.2277] [PMID: 26166810]
[34]
Adams, B.D.; Furneaux, H.; White, B.A. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol., 2007, 21(5), 1132-1147.
[http://dx.doi.org/10.1210/me.2007-0022] [PMID: 17312270]
[35]
Wang, X.H.; Qian, R.Z.; Zhang, W.; Chen, S.F.; Jin, H.M.; Hu, R.M. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin. Exp. Pharmacol. Physiol., 2009, 36(2), 181-188.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05057.x] [PMID: 18986336]
[36]
Shi, B.; Sepp-Lorenzino, L.; Prisco, M.; Linsley, P.; deAngelis, T.; Baserga, R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J. Biol. Chem., 2007, 282(45), 32582-32590.
[http://dx.doi.org/10.1074/jbc.M702806200] [PMID: 17827156]
[37]
Tardif, G.; Hum, D.; Pelletier, J.P.; Duval, N.; Martel-Pelletier, J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet. Disord., 2009, 10(1), 148.
[http://dx.doi.org/10.1186/1471-2474-10-148] [PMID: 19948051]
[38]
Weichhart, T. Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life.mTOR; Humana Press, 2012, pp. 1-14.
[http://dx.doi.org/10.1007/978-1-61779-430-8_1]
[39]
Floyd, S.; Favre, C.; Lasorsa, F.M.; Leahy, M.; Trigiante, G.; Stroebel, P.; Marx, A.; Loughran, G.; O’Callaghan, K.; Marobbio, C.M.; Slotboom, D.J.; Kunji, E.R.; Palmieri, F.; O’Connor, R. The insulin-like growth factor-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol. Biol. Cell, 2007, 18(9), 3545-3555.
[http://dx.doi.org/10.1091/mbc.e06-12-1109] [PMID: 17596519]
[40]
Tsang, C.K.; Qi, H.; Liu, L.F.; Zheng, X.F. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today, 2007, 12(3-4), 112-124.
[http://dx.doi.org/10.1016/j.drudis.2006.12.008] [PMID: 17275731]
[41]
Arsham, A. M.; Neufeld, T. P. Thinking globally and acting locally with TOR. Curr. Opin. Cell Biol., 2006, 18(6), 589-597.
[http://dx.doi.org/10.1016/j.ceb.2006.09.005] [PMID: 17046229]
[42]
Selman, C.; Tullet, J.M.; Wieser, D.; Irvine, E.; Lingard, S.J.; Choudhury, A.I.; Claret, M.; Al-Qassab, H.; Carmignac, D.; Ramadani, F.; Woods, A.; Robinson, I.C.; Schuster, E.; Batterham, R.L.; Kozma, S.C.; Thomas, G.; Carling, D.; Okkenhaug, K.; Thornton, J.M.; Partridge, L.; Gems, D.; Withers, D.J. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 2009, 326(5949), 140-144.
[http://dx.doi.org/10.1126/science.1177221] [PMID: 19797661]
[43]
Panowski, S.H.; Wolff, S.; Aguilaniu, H.; Durieux, J.; Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature, 2007, 447(7144), 550-555.
[http://dx.doi.org/10.1038/nature05837] [PMID: 17476212]
[44]
Tullet, J.M.; Hertweck, M.; An, J.H.; Baker, J.; Hwang, J.Y.; Liu, S.; Oliveira, R.P.; Baumeister, R.; Blackwell, T.K. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 2008, 132(6), 1025-1038.
[http://dx.doi.org/10.1016/j.cell.2008.01.030] [PMID: 18358814]
[45]
Li, Y.; Finkbeiner, S.; Ganner, A.; Gerber, J.; Klein, M.; Grafe, M.; Kandzia, J.; Thien, A.; Thedieck, K.; Breves, G.; Jank, T.; Baumeister, R.; Walz, G.; Neumann-Haefelin, E. CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in C. elegans. Oncotarget, 2018, 9(11), 9581-9595.
[http://dx.doi.org/10.18632/oncotarget.24039] [PMID: 29515755]
[46]
Nagaraja, A.K.; Creighton, C.J.; Yu, Z.; Zhu, H.; Gunaratne, P.H.; Reid, J.G.; Olokpa, E.; Itamochi, H.; Ueno, N.T.; Hawkins, S.M.; Anderson, M.L.; Matzuk, M.M. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol. Endocrinol., 2010, 24(2), 447-463.
[http://dx.doi.org/10.1210/me.2009-0295] [PMID: 20081105]
[47]
Zhu, H.; Wu, H.; Liu, X.; Li, B.; Chen, Y.; Ren, X.; Liu, C.G.; Yang, J.M. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 2009, 5(6), 816-823.
[http://dx.doi.org/10.4161/auto.9064] [PMID: 19535919]
[48]
Zhong, M.; Bian, Z.; Wu, Z. miR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell. Physiol. Biochem., 2013, 31(2-3), 209-218.
[http://dx.doi.org/10.1159/000343362] [PMID: 23486085]
[49]
Hall, J.A.; Dominy, J.E.; Lee, Y.; Puigserver, P. The sirtuin family’s role in aging and age-associated pathologies. J. Clin. Invest., 2013, 123(3), 973-979.
[http://dx.doi.org/10.1172/JCI64094] [PMID: 23454760]
[50]
Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol., 2010, 5, 253-295.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092250] [PMID: 20078221]
[51]
Srivastava, S. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin. Transl. Med., 2016, 5(1), 25.
[http://dx.doi.org/10.1186/s40169-016-0104-7] [PMID: 27465020]
[52]
Kelly, G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern. Med. Rev., 2010, 15(3), 245-263.
[PMID: 21155626]
[53]
Fröjdö, S.; Durand, C.; Molin, L.; Carey, A.L.; El-Osta, A.; Kingwell, B.A.; Febbraio, M.A.; Solari, F.; Vidal, H.; Pirola, L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol. Cell. Endocrinol., 2011, 335(2), 166-176.
[http://dx.doi.org/10.1016/j.mce.2011.01.008] [PMID: 21241768]
[54]
Xiong, S.; Salazar, G.; Patrushev, N.; Alexander, R.W. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem., 2011, 286(7), 5289-5299.
[http://dx.doi.org/10.1074/jbc.M110.163667] [PMID: 21149440]
[55]
Cantó, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol., 2009, 20(2), 98-105.
[http://dx.doi.org/10.1097/MOL.0b013e328328d0a4] [PMID: 19276888]
[56]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-90.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[57]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The roles of mitochondrial dysfunction and reactive oxygen species in aging and senescence. Curr. Mol. Med., 2021.
[http://dx.doi.org/10.2174/1566524021666210218112616] [PMID: 33602082]
[58]
Yamakuchi, M. MicroRNA regulation of SIRT1. Front. Physiol., 2012, 3, 68.
[http://dx.doi.org/10.3389/fphys.2012.00068] [PMID: 22479251]
[59]
Chen, Z.; Shentu, T.P.; Wen, L.; Johnson, D.A.; Shyy, J.Y.J. Regulation of SIRT1 by oxidative stress-responsive miRNAs and a systematic approach to identify its role in the endothelium. Antioxid. Redox Signal., 2013, 19(13), 1522-1538.
[http://dx.doi.org/10.1089/ars.2012.4803] [PMID: 23477488]
[60]
Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13421-13426.
[http://dx.doi.org/10.1073/pnas.0801613105] [PMID: 18755897]
[61]
Zhang, L.; Huang, D.; Wang, Q.; Shen, D.; Wang, Y.; Chen, B.; Zhang, J.; Gai, L. MiR-132 inhibits expression of SIRT1 and induces pro-inflammatory processes of vascular endothelial inflammation through blockade of the SREBP-1c metabolic pathway. Cardiovasc. Drugs Ther., 2014, 28(4), 303-311.
[http://dx.doi.org/10.1007/s10557-014-6533-x] [PMID: 24924687]
[62]
Abbott, A.L. Uncovering new functions for microRNAs in Caenorhabditis elegans. Curr. Biol., 2011, 21(17), R668-R671.
[http://dx.doi.org/10.1016/j.cub.2011.07.027] [PMID: 21920301]
[63]
Boulias, K.; Horvitz, H.R. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab., 2012, 15(4), 439-450.
[http://dx.doi.org/10.1016/j.cmet.2012.02.014] [PMID: 22482727]
[64]
Smith-Vikos, T.; de Lencastre, A.; Inukai, S.; Shlomchik, M.; Holtrup, B.; Slack, F.J. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr. Biol., 2014, 24(19), 2238-2246.
[http://dx.doi.org/10.1016/j.cub.2014.08.013] [PMID: 25242029]
[65]
Yamakuchi, M.; Lowenstein, C.J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle, 2009, 8(5), 712-715.
[http://dx.doi.org/10.4161/cc.8.5.7753] [PMID: 19221490]
[66]
Yang, J.; Chen, D.; He, Y.; Meléndez, A.; Feng, Z.; Hong, Q.; Bai, X.; Li, Q.; Cai, G.; Wang, J.; Chen, X. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr.), 2013, 35(1), 11-22.
[http://dx.doi.org/10.1007/s11357-011-9324-3] [PMID: 22081425]
[67]
Sokol, N.S.; Xu, P.; Jan, Y.N.; Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev., 2008, 22(12), 1591-1596.
[http://dx.doi.org/10.1101/gad.1671708] [PMID: 18559475]
[68]
Chawla, G.; Deosthale, P.; Childress, S.; Wu, Y.C.; Sokol, N.S. A let-7-to-miR-125 microRNA switch regulates neuronal integrity and lifespan in Drosophila. PLoS Genet., 2016, 12(8), e1006247.
[http://dx.doi.org/10.1371/journal.pgen.1006247] [PMID: 27508495]
[69]
Wu, Y.C.; Chen, C.H.; Mercer, A.; Sokol, N.S. Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev. Cell, 2012, 23(1), 202-209.
[http://dx.doi.org/10.1016/j.devcel.2012.05.013] [PMID: 22814608]
[70]
Vilmos, P.; Bujna, A.; Szuperák, M.; Havelda, Z.; Várallyay, É.; Szabad, J.; Kucerova, L.; Somogyi, K.; Kristó, I.; Lukácsovich, T.; Jankovics, F.; Henn, L.; Erdélyi, M. Viability, longevity, and egg production of Drosophila melanogaster are regulated by the miR-282 microRNA. Genetics, 2013, 195(2), 469-480.
[http://dx.doi.org/10.1534/genetics.113.153585] [PMID: 23852386]
[71]
Lyu, Y.; Shen, Y.; Li, H.; Chen, Y.; Guo, L.; Zhao, Y.; Hungate, E.; Shi, S.; Wu, C.I.; Tang, T. New microRNAs in Drosophila-birth, death and cycles of adaptive evolution. PLoS Genet., 2014, 10(1), e1004096.
[http://dx.doi.org/10.1371/journal.pgen.1004096] [PMID: 24465220]
[72]
Esslinger, S.M.; Schwalb, B.; Helfer, S.; Michalik, K.M.; Witte, H.; Maier, K.C.; Martin, D.; Michalke, B.; Tresch, A.; Cramer, P.; Förstemann, K. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol., 2013, 10(6), 1042-1056.
[http://dx.doi.org/10.4161/rna.24810] [PMID: 23669073]
[73]
Ueda, M.; Sato, T.; Ohkawa, Y.; Inoue, Y.H. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells, 2018, 23(2), 80-93.
[http://dx.doi.org/10.1111/gtc.12555] [PMID: 29314553]
[74]
Liu, N.; Landreh, M.; Cao, K.; Abe, M.; Hendriks, G.J.; Kennerdell, J.R.; Zhu, Y.; Wang, L.S.; Bonini, N.M. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature, 2012, 482(7386), 519-523.
[http://dx.doi.org/10.1038/nature10810] [PMID: 22343898]
[75]
Verma, P.; Augustine, G.J.; Ammar, M.R.; Tashiro, A.; Cohen, S.M. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat. Neurosci., 2015, 18(3), 379-385.
[http://dx.doi.org/10.1038/nn.3935] [PMID: 25643297]
[76]
Lui, J.C.; Baron, J. Mechanisms limiting body growth in mammals. Endocr. Rev., 2011, 32(3), 422-440.
[http://dx.doi.org/10.1210/er.2011-0001] [PMID: 21441345]
[77]
Mirth, C.K.; Shingleton, A.W. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front. Endocrinol. (Lausanne), 2012, 3, 49.
[http://dx.doi.org/10.3389/fendo.2012.00049] [PMID: 22654869]
[78]
Yamanaka, N.; Rewitz, K.F.; O’Connor, M.B. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol., 2013, 58, 497-516.
[http://dx.doi.org/10.1146/annurev-ento-120811-153608] [PMID: 23072462]
[79]
Mirth, C.K.; Tang, H.Y.; Makohon-Moore, S.C.; Salhadar, S.; Gokhale, R.H.; Warner, R.D.; Koyama, T.; Riddiford, L.M.; Shingleton, A.W. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 7018-7023.
[http://dx.doi.org/10.1073/pnas.1313058111] [PMID: 24778227]
[80]
Jin, H.; Kim, V.N.; Hyun, S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev., 2012, 26(13), 1427-1432.
[http://dx.doi.org/10.1101/gad.192872.112] [PMID: 22751499]
[81]
Lucas, K.J.; Roy, S.; Ha, J.; Gervaise, A.L.; Kokoza, V.A.; Raikhel, A.S. MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc. Natl. Acad. Sci. USA, 2015, 112(5), 1440-1445.
[http://dx.doi.org/10.1073/pnas.1424408112] [PMID: 25605933]
[82]
Hyun, S.; Lee, J.H.; Jin, H.; Nam, J.; Namkoong, B.; Lee, G.; Chung, J.; Kim, V.N. Conserved microRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell, 2009, 139(6), 1096-1108.
[http://dx.doi.org/10.1016/j.cell.2009.11.020] [PMID: 20005803]
[83]
Smith-Vikos, T.; Slack, F.J. MicroRNAs and their roles in aging. J. Cell Sci., 2012, 125(Pt 1), 7-17.
[http://dx.doi.org/10.1242/jcs.099200] [PMID: 22294612]
[84]
North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ. Res., 2012, 110(8), 1097-1108.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246876] [PMID: 22499900]
[85]
Paneni, F.; Diaz Cañestro, C.; Libby, P.; Lüscher, T.F.; Camici, G.G. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol., 2017, 69(15), 1952-1967.
[http://dx.doi.org/10.1016/j.jacc.2017.01.064] [PMID: 28408026]
[86]
Lakatta, E.G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation, 2003, 107(3), 490-497.
[http://dx.doi.org/10.1161/01.CIR.0000048894.99865.02] [PMID: 12551876]
[87]
Zhang, X.; Azhar, G.; Wei, J.Y. The expression of microRNA and microRNA clusters in the aging heart. PLoS One, 2012, 7(4), e34688.
[http://dx.doi.org/10.1371/journal.pone.0034688] [PMID: 22529925]
[88]
de Lucia, C.; Komici, K.; Borghetti, G.; Femminella, G.D.; Bencivenga, L.; Cannavo, A.; Corbi, G.; Ferrara, N.; Houser, S.R.; Koch, W.J.; Rengo, G. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front. Med. (Lausanne), 2017, 4, 74.
[http://dx.doi.org/10.3389/fmed.2017.00074] [PMID: 28660188]
[89]
Roy, S.; Khanna, S.; Hussain, S.R.A.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1), 21-29.
[http://dx.doi.org/10.1093/cvr/cvp015] [PMID: 19147652]
[90]
Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Xu, H.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; Chen, Q.; Gao, Y.; Wang, Y.; Li, X.; Zhao, Y. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell. Physiol. Biochem., 2017, 42(6), 2207-2219.
[http://dx.doi.org/10.1159/000479995] [PMID: 28817807]
[91]
Li, Q.; Zhang, D.; Wang, Y.; Sun, P.; Hou, X.; Larner, J.; Xiong, W.; Mi, J. MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci. Rep., 2013, 3, 2038.
[http://dx.doi.org/10.1038/srep02038] [PMID: 23784029]
[92]
Wang, Z.; Li, Y.; Kong, D.; Ahmad, A.; Banerjee, S.; Sarkar, F.H. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett., 2010, 292(2), 141-148.
[http://dx.doi.org/10.1016/j.canlet.2009.11.012] [PMID: 20022691]
[93]
Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin., 2018, 39(7), 1073-1084.
[http://dx.doi.org/10.1038/aps.2018.30] [PMID: 29877320]
[94]
Zhang, J.; Xing, Q.; Zhou, X.; Li, J.; Li, Y.; Zhang, L.; Zhou, Q.; Tang, B. Circulating miRNA-21 is a promising biomarker for heart failure. Mol. Med. Rep., 2017, 16(5), 7766-7774.
[http://dx.doi.org/10.3892/mmr.2017.7575] [PMID: 28944900]
[95]
Jazbutyte, V.; Fiedler, J.; Kneitz, S.; Galuppo, P.; Just, A.; Holzmann, A.; Bauersachs, J.; Thum, T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr.), 2013, 35(3), 747-762.
[http://dx.doi.org/10.1007/s11357-012-9407-9] [PMID: 22538858]
[96]
Huang, Z.P.; Wang, D.Z. miR-22 in cardiac remodeling and disease. Trends Cardiovasc. Med., 2014, 24(7), 267-272.
[http://dx.doi.org/10.1016/j.tcm.2014.07.005] [PMID: 25218673]
[97]
Gurha, P.; Wang, T.; Larimore, A.H.; Sassi, Y.; Abreu-Goodger, C.; Ramirez, M.O.; Reddy, A.K.; Engelhardt, S.; Taffet, G.E.; Wehrens, X.H.; Entman, M.L.; Rodriguez, A. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One, 2013, 8(9), e75882.
[http://dx.doi.org/10.1371/journal.pone.0075882] [PMID: 24086656]
[98]
Boon, R.A.; Iekushi, K.; Lechner, S.; Seeger, T.; Fischer, A.; Heydt, S.; Kaluza, D.; Tréguer, K.; Carmona, G.; Bonauer, A.; Horrevoets, A.J.; Didier, N.; Girmatsion, Z.; Biliczki, P.; Ehrlich, J.R.; Katus, H.A.; Müller, O.J.; Potente, M.; Zeiher, A.M.; Hermeking, H.; Dimmeler, S. MicroRNA-34a regulates cardiac ageing and function. Nature, 2013, 495(7439), 107-110.
[http://dx.doi.org/10.1038/nature11919] [PMID: 23426265]
[99]
Diotti, R.; Loayza, D. Shelterin complex and associated factors at human telomeres. Nucleus, 2011, 2(2), 119-135.
[http://dx.doi.org/10.4161/nucl.2.2.15135] [PMID: 21738835]
[100]
d’Adda di Fagagna, F.; Hande, M.P.; Tong, W.M.; Roth, D.; Lansdorp, P.M.; Wang, Z.Q.; Jackson, S.P. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol., 2001, 11(15), 1192-1196.
[http://dx.doi.org/10.1016/S0960-9822(01)00328-1] [PMID: 11516951]
[101]
Yang, Y.; Cheng, H.W.; Qiu, Y.; Dupee, D.; Noonan, M.; Lin, Y.D.; Fisch, S.; Unno, K.; Sereti, K.I.; Liao, R. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res., 2015, 117(5), 450-459.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305962] [PMID: 26082557]
[102]
Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res., 2005, 65(21), 9628-9632.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2352] [PMID: 16266980]
[103]
Concepcion, C.P.; Bonetti, C.; Ventura, A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J., 2012, 18(3), 262-267.
[http://dx.doi.org/10.1097/PPO.0b013e318258b60a] [PMID: 22647363]
[104]
Mestdagh, P.; Boström, A.K.; Impens, F.; Fredlund, E.; Van Peer, G.; De Antonellis, P.; von Stedingk, K.; Ghesquière, B.; Schulte, S.; Dews, M.; Thomas-Tikhonenko, A.; Schulte, J.H.; Zollo, M.; Schramm, A.; Gevaert, K.; Axelson, H.; Speleman, F.; Vandesompele, J. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol. Cell, 2010, 40(5), 762-773.
[http://dx.doi.org/10.1016/j.molcel.2010.11.038] [PMID: 21145484]
[105]
Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ., 2013, 20(12), 1603-1614.
[http://dx.doi.org/10.1038/cdd.2013.125] [PMID: 24212931]
[106]
Chen, J.; Huang, Z.P.; Seok, H.Y.; Ding, J.; Kataoka, M.; Zhang, Z.; Hu, X.; Wang, G.; Lin, Z.; Wang, S.; Pu, W.T.; Liao, R.; Wang, D.Z. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res., 2013, 112(12), 1557-1566.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300658] [PMID: 23575307]
[107]
Iaconetti, C.; Polimeni, A.; Sorrentino, S.; Sabatino, J.; Pironti, G.; Esposito, G.; Curcio, A.; Indolfi, C. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res. Cardiol., 2012, 107(5), 296.
[http://dx.doi.org/10.1007/s00395-012-0296-y] [PMID: 22890560]
[108]
Zhang, L.; Zhou, M.; Qin, G.; Weintraub, N.L.; Tang, Y. MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochem. Biophys. Res. Commun., 2014, 446(4), 952-958.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.035] [PMID: 24650666]
[109]
Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K.; Chavakis, E.; Potente, M.; Tjwa, M.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 2009, 324(5935), 1710-1713.
[http://dx.doi.org/10.1126/science.1174381] [PMID: 19460962]
[110]
Zhou, M.; Cai, J.; Tang, Y.; Zhao, Q. MiR-17-92 cluster is a novel regulatory gene of cardiac ischemic/reperfusion injury. Med. Hypotheses, 2013, 81(1), 108-110.
[http://dx.doi.org/10.1016/j.mehy.2013.03.043] [PMID: 23639284]
[111]
Xu, J.; Tang, Y.; Bei, Y.; Ding, S.; Che, L.; Yao, J.; Wang, H.; Lv, D.; Xiao, J. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10), 10870-10878.
[http://dx.doi.org/10.18632/oncotarget.7678] [PMID: 26918829]
[112]
van Almen, G.C.; Verhesen, W.; van Leeuwen, R.E.; van de Vrie, M.; Eurlings, C.; Schellings, M.W.; Swinnen, M.; Cleutjens, J.P.; van Zandvoort, M.A.; Heymans, S.; Schroen, B. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell, 2011, 10(5), 769-779.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00714.x] [PMID: 21501375]
[113]
Kelly, M.L.; Astsaturov, A.; Chernoff, J. Role of p21-activated kinases in cardiovascular development and function. Cell. Mol. Life Sci., 2013, 70(22), 4223-4228.
[http://dx.doi.org/10.1007/s00018-013-1347-8] [PMID: 23640572]
[114]
Zhang, X.; Azhar, G.; Williams, E.D.; Rogers, S.C.; Wei, J.Y. MicroRNA clusters in the adult mouse heart: age-associated changes. BioMed Res. Int., 2015, 2015, 732397.
[http://dx.doi.org/10.1155/2015/732397] [PMID: 26221604]
[115]
Du, W.W.; Li, X.; Li, T.; Li, H.; Khorshidi, A.; Liu, F.; Yang, B.B. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J. Cell Sci., 2015, 128(2), 293-304.
[PMID: 25472717]
[116]
Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta, 2010, 1803(1), 55-71.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.003] [PMID: 20080133]
[117]
Yamamoto, K.; Murphy, G.; Troeberg, L. Extracellular regulation of metalloproteinases. Matrix Biol., 2015, 44-46, 255-263.
[http://dx.doi.org/10.1016/j.matbio.2015.02.007] [PMID: 25701651]
[118]
Li, S.H.; Guo, J.; Wu, J.; Sun, Z.; Han, M.; Shan, S.W.; Deng, Z.; Yang, B.B.; Weisel, R.D.; Li, R.K. miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. FASEB J., 2013, 27(10), 4254-4265.
[http://dx.doi.org/10.1096/fj.13-231688] [PMID: 23825222]
[119]
Wu, J.; Song, H.F.; Li, S.H.; Guo, J.; Tsang, K.; Tumiati, L.; Butany, J.; Yau, T.M.; Ouzounian, M.; Fu, S.; David, T.E.; Weisel, R.D.; Li, R.K. Progressive aortic dilation is regulated by miR-17-associated miRNAs. J. Am. Coll. Cardiol., 2016, 67(25), 2965-2977.
[http://dx.doi.org/10.1016/j.jacc.2016.04.027] [PMID: 27339495]
[120]
Monteiro-Riviere, N. A. Structure and function of skin.In Dermal Absorption Models in Toxicology and Pharmacology, v Ed.; Rivere, CRC Press, Taylor and Francis Group, Newyork. 1-19. 2006
[121]
Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc., 2011, 3(4), 203-213.
[http://dx.doi.org/10.1097/JDN.0b013e3182274a98]
[122]
Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: a review. Int. J. Cosmet. Sci., 2008, 30(2), 87-95.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00415.x] [PMID: 18377617]
[123]
Zhang, S.; Duan, E. Fighting against skin aging: the way from bench to bedside. Cell Transplant., 2018, 27(5), 729-738.
[http://dx.doi.org/10.1177/0963689717725755] [PMID: 29692196]
[124]
Yan, X.; Serre, C.; Bergeron, L.; Mur, L.; Busuttil, V.; Botto, J.M.; Domloge, N. Modulation of a specific pattern of microRNAs, including miR-29a, miR-30a and miR-34a, in cultured human skin fibroblasts, in response to the application of a biofunctional ingredient that protects against cellular senescence in vitro. Journal of Cosmetics. Dermatol. Sci. Applica., 2015, 5(04), 332.
[http://dx.doi.org/10.4236/jcdsa.2015.54040]
[125]
Muther, C.; Jobeili, L.; Garion, M.; Heraud, S.; Thepot, A.; Damour, O.; Lamartine, J. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis. Aging (Albany NY), 2017, 9(11), 2376-2396.
[http://dx.doi.org/10.18632/aging.101326] [PMID: 29165315]
[126]
Xu, J.; Wang, Y.; Tan, X.; Jing, H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy, 2012, 8(6), 873-882.
[http://dx.doi.org/10.4161/auto.19629] [PMID: 22441107]
[127]
Yang, X.; Zhong, X.; Tanyi, J.L.; Shen, J.; Xu, C.; Gao, P.; Zheng, T.M.; DeMichele, A.; Zhang, L. mir-30d regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells. Biochem. Biophys. Res. Commun., 2013, 431(3), 617-622.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.083] [PMID: 23274497]
[128]
Du, B.; Dai, X.M.; Li, S.; Qi, G.L.; Cao, G.X.; Zhong, Y.; Yin, P.D.; Yang, X.S. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5. Cell Death Dis., 2017, 8(8), e2987-e2987.
[http://dx.doi.org/10.1038/cddis.2017.377] [PMID: 28796263]
[129]
Magenta, A.; Cencioni, C.; Fasanaro, P.; Zaccagnini, G.; Greco, S.; Sarra-Ferraris, G.; Antonini, A.; Martelli, F.; Capogrossi, M.C. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ., 2011, 18(10), 1628-1639.
[http://dx.doi.org/10.1038/cdd.2011.42] [PMID: 21527937]
[130]
Bu, H.; Wedel, S.; Cavinato, M.; Jansen-Dürr, P. MicroRNA regulation of oxidative stress-induced cellular senescence. Oxid. Med. Cell. Longev., 2017, 2017, 2398696.
[http://dx.doi.org/10.1155/2017/2398696] [PMID: 28593022]
[131]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[132]
Gęgotek, A.; Skrzydlewska, E. The role of transcription factor Nrf2 in skin cells metabolism. Arch. Dermatol. Res., 2015, 307(5), 385-396.
[http://dx.doi.org/10.1007/s00403-015-1554-2] [PMID: 25708189]
[133]
Hattori, Y.; Nishigori, C.; Tanaka, T.; Uchida, K.; Nikaido, O.; Osawa, T.; Hiai, H.; Imamura, S.; Toyokuni, S. 8-hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J. Invest. Dermatol., 1996, 107(5), 733-737.
[http://dx.doi.org/10.1111/1523-1747.ep12365625] [PMID: 8875958]
[134]
Kau, H.C.; Tsai, C.C.; Lee, C.F.; Kao, S.C.; Hsu, W.M.; Liu, J.H.; Wei, Y.H. Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium. Eye (Lond.), 2006, 20(7), 826-831.
[http://dx.doi.org/10.1038/sj.eye.6702064] [PMID: 16113633]
[135]
Tumurkhuu, G.; Shimada, K.; Dagvadorj, J.; Crother, T.R.; Zhang, W.; Luthringer, D.; Gottlieb, R.A.; Chen, S.; Arditi, M. Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis. Circ. Res., 2016, 119(6), e76-e90.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308362] [PMID: 27384322]
[136]
Tinaburri, L.; D’Errico, M.; Sileno, S.; Maurelli, R.; Degan, P.; Magenta, A.; Dellambra, E. miR-200a modulates the expression of the DNA repair protein OGG1 playing a role in aging of primary human keratinocytes. Oxid. Med. Cell. Longev., 2018, 2018, 9147326.
[http://dx.doi.org/10.1155/2018/9147326] [PMID: 29765508]
[137]
Mancini, M.; Saintigny, G.; Mahé, C.; Annicchiarico-Petruzzelli, M.; Melino, G.; Candi, E. MicroRNA-152 and -181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany NY), 2012, 4(11), 843-853.
[http://dx.doi.org/10.18632/aging.100508] [PMID: 23238588]
[138]
Borralho, P.M.; Rodrigues, C.M.; Steer, C.J. Mitochondrial microRNAs and their potential role in cell function. Curr. Pathobiol. Rep., 2014, 2(3), 123-132.
[http://dx.doi.org/10.1007/s40139-014-0047-x]
[139]
Indrieri, A.; Carrella, S.; Romano, A.; Spaziano, A.; Marrocco, E.; Fernandez-Vizarra, E.; Barbato, S.; Pizzo, M.; Ezhova, Y.; Golia, F.M.; Ciampi, L.; Tammaro, R.; Henao-Mejia, J.; Williams, A.; Flavell, R.A.; De Leonibus, E.; Zeviani, M.; Surace, E.M.; Banfi, S.; Franco, B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol. Med., 2019, 11(5), e8734.
[http://dx.doi.org/10.15252/emmm.201708734] [PMID: 30979712]
[140]
Zhou, B.; Li, C.; Qi, W.; Zhang, Y.; Zhang, F.; Wu, J.X.; Hu, Y.N.; Wu, D.M.; Liu, Y.; Yan, T.T.; Jing, Q.; Liu, M.F.; Zhai, Q.W. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012, 55(7), 2032-2043.
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[141]
Hariharan, N.; Maejima, Y.; Nakae, J.; Paik, J.; Depinho, R.A.; Sadoshima, J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res., 2010, 107(12), 1470-1482.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227371] [PMID: 20947830]
[142]
Zhou, J.; Liao, W.; Yang, J.; Ma, K.; Li, X.; Wang, Y.; Wang, D.; Wang, L.; Zhang, Y.; Yin, Y.; Zhao, Y.; Zhu, W.G. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy, 2012, 8(12), 1712-1723.
[http://dx.doi.org/10.4161/auto.21830] [PMID: 22931788]
[143]
Ouyang, Y.B.; Lu, Y.; Yue, S.; Giffard, R.G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion, 2012, 12(2), 213-219.
[http://dx.doi.org/10.1016/j.mito.2011.09.001] [PMID: 21958558]
[144]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J. Cell. Physiol., 2019, 234(7), 10421-10431.
[http://dx.doi.org/10.1002/jcp.27710] [PMID: 30387147]
[145]
Farkhondeh, T.; Samarghandian, S.; Shahri, A.M.P.; Samini, F. The neuroprotective effects of thymoquinone: A review. Dose Response, 2018, 16(2), 1559325818761455.
[http://dx.doi.org/10.1177/1559325818761455] [PMID: 29662431]
[146]
Kim, I.H.; Kisseleva, T.; Brenner, D.A. Aging and liver disease. Curr. Opin. Gastroenterol., 2015, 31(3), 184-191.
[http://dx.doi.org/10.1097/MOG.0000000000000176] [PMID: 25850346]
[147]
Maes, O.C.; An, J.; Sarojini, H.; Wang, E. Murine microRNAs implicated in liver functions and aging process. Mech. Ageing Dev., 2008, 129(9), 534-541.
[http://dx.doi.org/10.1016/j.mad.2008.05.004] [PMID: 18561983]
[148]
Li, N.; Muthusamy, S.; Liang, R.; Sarojini, H.; Wang, E. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech. Ageing Dev., 2011, 132(3), 75-85.
[http://dx.doi.org/10.1016/j.mad.2010.12.004] [PMID: 21216258]
[149]
Lu, S.C.; Mato, J.M.; Espinosa-Diez, C.; Lamas, S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic. Biol. Med., 2016, 100, 66-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.021] [PMID: 27033954]
[150]
Mattison, J.A.; Wright, C.; Bronson, R.T.; Roth, G.S.; Ingram, D.K.; Bartke, A. Studies of aging in ames dwarf mice: Effects of caloric restriction. J. Am. Aging Assoc., 2000, 23(1), 9-16.
[http://dx.doi.org/10.1007/s11357-000-0002-0] [PMID: 23604794]
[151]
Carter, C.S.; Ramsey, M.M.; Ingram, R.L.; Cashion, A.B.; Cefalu, W.T.; Wang, Z.Q.; Sonntag, W.E. Models of growth hormone and IGF-1 deficiency: applications to studies of aging processes and life-span determination. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(5), B177-B188.
[http://dx.doi.org/10.1093/gerona/57.5.B177] [PMID: 11983714]
[152]
Bates, D.J.; Li, N.; Liang, R.; Sarojini, H.; An, J.; Masternak, M.M.; Bartke, A.; Wang, E. MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell, 2010, 9(1), 1-18.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00529.x] [PMID: 19878148]
[153]
Mariño, G.; Ugalde, A.P.; Fernández, Á.F.; Osorio, F.G.; Fueyo, A.; Freije, J.M.; López-Otín, C. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc. Natl. Acad. Sci. USA, 2010, 107(37), 16268-16273.
[http://dx.doi.org/10.1073/pnas.1002696107] [PMID: 20805469]
[154]
Nissan, X.; Blondel, S.; Navarro, C.; Maury, Y.; Denis, C.; Girard, M.; Martinat, C.; De Sandre-Giovannoli, A.; Levy, N.; Peschanski, M. Unique preservation of neural cells in Hutchinson- Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep., 2012, 2(1), 1-9.
[http://dx.doi.org/10.1016/j.celrep.2012.05.015] [PMID: 22840390]
[155]
Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M.; Sedaghat, M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16953-16965.
[http://dx.doi.org/10.1002/jcp.28411] [PMID: 30847942]
[156]
Szeto, R.A.; Tran, T.; Truong, J.; Negraes, P.D.; Trujillo, C.A. RNA processing in neurological tissue: development, aging and disease. Semin. Cell Dev. Biol., 2021, 114, 57-67.
[http://dx.doi.org/10.1016/j.semcdb.2020.09.004] [PMID: 33077405]
[157]
Kikis, E.A.; Gidalevitz, T.; Morimoto, R.I. Protein homeostasis in models of aging and age-related conformational disease. Adv. Exp. Med. Biol., 2010, 694, 138-159.
[http://dx.doi.org/10.1007/978-1-4419-7002-2_11] [PMID: 20886762]
[158]
Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic interactions between Abeta, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci., 2010, 30(21), 7281-7289.
[http://dx.doi.org/10.1523/JNEUROSCI.0490-10.2010] [PMID: 20505094]
[159]
Inukai, S.; de Lencastre, A.; Turner, M.; Slack, F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One, 2012, 7(7), e40028.
[http://dx.doi.org/10.1371/journal.pone.0040028] [PMID: 22844398]
[160]
Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med., 2010, 12(1), 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[161]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[162]
Devi, L.; Ohno, M. A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol. Brain, 2015, 8(1), 19.
[http://dx.doi.org/10.1186/s13041-015-0110-5] [PMID: 25884928]
[163]
Peters, F.; Salihoglu, H.; Rodrigues, E.; Herzog, E.; Blume, T.; Filser, S.; Dorostkar, M.; Shimshek, D.R.; Brose, N.; Neumann, U.; Herms, J. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol., 2018, 135(5), 695-710.
[http://dx.doi.org/10.1007/s00401-017-1804-9] [PMID: 29327084]
[164]
Kim, J.; Yoon, H.; Chung, D.E.; Brown, J.L.; Belmonte, K.C.; Kim, J. miR-186 is decreased in aged brain and suppresses BACE1 expression. J. Neurochem., 2016, 137(3), 436-445.
[http://dx.doi.org/10.1111/jnc.13507] [PMID: 26710318]
[165]
Liang, R.; Khanna, A.; Muthusamy, S.; Li, N.; Sarojini, H.; Kopchick, J.J.; Masternak, M.M.; Bartke, A.; Wang, E. Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell, 2011, 10(6), 1080-1088.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00751.x] [PMID: 21967153]
[166]
Dueñas, A.M.; Goold, R.; Giunti, P. Molecular pathogenesis of spinocerebellar ataxias. Brain, 2006, 129(Pt 6), 1357-1370.
[http://dx.doi.org/10.1093/brain/awl081] [PMID: 16613893]
[167]
Soong, B.W.; Paulson, H.L. Spinocerebellar ataxias: an update. Curr. Opin. Neurol., 2007, 20(4), 438-446.
[http://dx.doi.org/10.1097/WCO.0b013e3281fbd3dd] [PMID: 17620880]
[168]
Orr, H.T. Cell biology of spinocerebellar ataxia. J. Cell Biol., 2012, 197(2), 167-177.
[http://dx.doi.org/10.1083/jcb.201105092] [PMID: 22508507]
[169]
Paulson, H.L.; Shakkottai, V.G.; Clark, H.B.; Orr, H.T. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci., 2017, 18(10), 613-626.
[http://dx.doi.org/10.1038/nrn.2017.92] [PMID: 28855740]
[170]
Persengiev, S.; Kondova, I.; Otting, N.; Koeppen, A.H.; Bontrop, R.E. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol. Aging, 2011, 32(12), 2316.e17-2316.e27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.014] [PMID: 20451302]
[171]
Persengiev, S.P.; Kondova, I.I.; Bontrop, R.E. The impact of microRNAs on brain aging and neurodegeneration. Curr. Gerontol. Geriatr. Res., 2012, 2012, 359369.
[http://dx.doi.org/10.1155/2012/359369] [PMID: 22312330]
[172]
Misso, G.; Di Martino, M.T.; De Rosa, G.; Farooqi, A.A.; Lombardi, A.; Campani, V.; Zarone, M.R.; Gullà, A.; Tagliaferri, P.; Tassone, P.; Caraglia, M. Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids, 2014, 3, e194.
[http://dx.doi.org/10.1038/mtna.2014.47] [PMID: 25247240]
[173]
Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 53.
[http://dx.doi.org/10.1186/s13046-019-1059-5] [PMID: 30717802]
[174]
Li, X.; Khanna, A.; Li, N.; Wang, E. Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY), 2011, 3(10), 985-1002.
[http://dx.doi.org/10.18632/aging.100371] [PMID: 22064828]
[175]
Owczarz, M.; Budzinska, M.; Domaszewska-Szostek, A.; Borkowska, J.; Polosak, J.; Gewartowska, M.; Slusarczyk, P.; Puzianowska-Kuznicka, M. miR-34a and miR-9 are overexpressed and SIRT genes are downregulated in peripheral blood mononuclear cells of aging humans. Exp. Biol. Med. (Maywood), 2017, 242(14), 1453-1461.
[http://dx.doi.org/10.1177/1535370217720884] [PMID: 28699360]
[176]
Basavaraju, M.; de Lencastre, A. Alzheimer’s disease: presence and role of microRNAs. Biomol. Concepts, 2016, 7(4), 241-252.
[http://dx.doi.org/10.1515/bmc-2016-0014] [PMID: 27505094]
[177]
Miya Shaik, M.; Tamargo, I.A.; Abubakar, M.B.; Kamal, M.A.; Greig, N.H.; Gan, S.H. The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel), 2018, 9(4), 174.
[http://dx.doi.org/10.3390/genes9040174] [PMID: 29561798]
[178]
Fenn, A.M.; Smith, K.M.; Lovett-Racke, A.E.; Guerau-de-Arellano, M.; Whitacre, C.C.; Godbout, J.P. Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol. Aging, 2013, 34(12), 2748-2758.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.007] [PMID: 23880139]
[179]
Yin, F.; Sancheti, H.; Patil, I.; Cadenas, E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med., 2016, 100, 108-122.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.200] [PMID: 27154981]
[180]
Sochocka, M.; Diniz, B.S.; Leszek, J. Inflammatory response in the CNS: friend or foe? Mol. Neurobiol., 2017, 54(10), 8071-8089.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[181]
Martin, B. Aging and strength of bone as a structural material. Calcif. Tissue Int., 1993, 53(1)(Suppl. 1), S34-S39.
[http://dx.doi.org/10.1007/BF01673400] [PMID: 8275378]
[182]
Boskey, A.L.; Coleman, R. Aging and bone. J. Dent. Res., 2010, 89(12), 1333-1348.
[http://dx.doi.org/10.1177/0022034510377791] [PMID: 20924069]
[183]
Li, C.J.; Cheng, P.; Liang, M.K.; Chen, Y.S.; Lu, Q.; Wang, J.Y.; Xia, Z.Y.; Zhou, H.D.; Cao, X.; Xie, H.; Liao, E.Y.; Luo, X.H. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest., 2015, 125(4), 1509-1522.
[http://dx.doi.org/10.1172/JCI77716] [PMID: 25751060]
[184]
Sun, M.; Zhou, X.; Chen, L.; Huang, S.; Leung, V.; Wu, N.; Pan, H.; Zhen, W.; Lu, W.; Peng, S. The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. BioMed Res. Int., 2016, 2016, 1652417.
[http://dx.doi.org/10.1155/2016/1652417] [PMID: 27073801]
[185]
Tetta, C.; Ghigo, E.; Silengo, L.; Deregibus, M.C.; Camussi, G. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine, 2013, 44(1), 11-19.
[http://dx.doi.org/10.1007/s12020-012-9839-0] [PMID: 23203002]
[186]
Vickers, K.C.; Remaley, A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol., 2012, 23(2), 91-97.
[http://dx.doi.org/10.1097/MOL.0b013e328350a425] [PMID: 22418571]
[187]
Davis, C.; Dukes, A.; Drewry, M.; Helwa, I.; Johnson, M.H.; Isales, C.M.; Hill, W.D.; Liu, Y.; Shi, X.; Fulzele, S.; Hamrick, M.W. MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng. Part A, 2017, 23(21-22), 1231-1240.
[http://dx.doi.org/10.1089/ten.tea.2016.0525] [PMID: 28363268]
[188]
Kar, R.; Riquelme, M.A.; Werner, S.; Jiang, J.X. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J. Bone Miner. Res., 2013, 28(7), 1611-1621.
[http://dx.doi.org/10.1002/jbmr.1917] [PMID: 23456878]
[189]
Almeida, M.; Han, L.; Martin-Millan, M.; Plotkin, L.I.; Stewart, S.A.; Roberson, P.K.; Kousteni, S.; O’Brien, C.A.; Bellido, T.; Parfitt, A.M.; Weinstein, R.S.; Jilka, R.L.; Manolagas, S.C. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J. Biol. Chem., 2007, 282(37), 27285-27297.
[http://dx.doi.org/10.1074/jbc.M702810200] [PMID: 17623659]
[190]
Genetos, D.C.; Zhou, Z.; Li, Z.; Donahue, H.J. Age-related changes in gap junctional intercellular communication in osteoblastic cells. J. Orthop. Res., 2012, 30(12), 1979-1984.
[http://dx.doi.org/10.1002/jor.22172] [PMID: 22696456]
[191]
Buscaglia, L.E.B.; Li, Y. Apoptosis and the target genes of microRNA-21. Chin. J. Cancer, 2011, 30(6), 371-380.
[http://dx.doi.org/10.5732/cjc.30.0371] [PMID: 21627859]
[192]
Davis, H.M.; Pacheco-Costa, R.; Atkinson, E.G.; Brun, L.R.; Gortazar, A.R.; Harris, J.; Hiasa, M.; Bolarinwa, S.A.; Yoneda, T.; Ivan, M.; Bruzzaniti, A.; Bellido, T.; Plotkin, L.I. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 2017, 16(3), 551-563.
[http://dx.doi.org/10.1111/acel.12586] [PMID: 28317237]
[193]
Papaioannou, G.; Mirzamohammadi, F.; Kobayashi, T. MicroRNAs involved in bone formation. Cell. Mol. Life Sci., 2014, 71(24), 4747-4761.
[http://dx.doi.org/10.1007/s00018-014-1700-6] [PMID: 25108446]
[194]
Li, D.; Liu, J.; Guo, B.; Liang, C.; Dang, L.; Lu, C.; He, X.; Cheung, H.Y.; Xu, L.; Lu, C.; He, B.; Liu, B.; Shaikh, A.B.; Li, F.; Wang, L.; Yang, Z.; Au, D.W.; Peng, S.; Zhang, Z.; Zhang, B.T.; Pan, X.; Qian, A.; Shang, P.; Xiao, L.; Jiang, B.; Wong, C.K.; Xu, J.; Bian, Z.; Liang, Z.; Guo, D.A.; Zhu, H.; Tan, W.; Lu, A.; Zhang, G. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun., 2016, 7(1), 10872.
[http://dx.doi.org/10.1038/ncomms10872] [PMID: 26947250]
[195]
Zhao, C.; Sun, W.; Zhang, P.; Ling, S.; Li, Y.; Zhao, D.; Peng, J.; Wang, A.; Li, Q.; Song, J.; Wang, C.; Xu, X.; Xu, Z.; Zhong, G.; Han, B.; Chang, Y.Z.; Li, Y. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol., 2015, 12(3), 343-353.
[http://dx.doi.org/10.1080/15476286.2015.1017205] [PMID: 25826666]
[196]
Yao, S.; Zhao, W.; Ou, Q.; Liang, L.; Lin, X.; Wang, Y. MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4. Stem Cells Int., 2017, 2017, 3028647.
[http://dx.doi.org/10.1155/2017/3028647] [PMID: 29213288]
[197]
Sun, W.; Zhao, C.; Li, Y.; Wang, L.; Nie, G.; Peng, J.; Wang, A.; Zhang, P.; Tian, W.; Li, Q.; Song, J.; Wang, C.; Xu, X.; Tian, Y.; Zhao, D.; Xu, Z.; Zhong, G.; Han, B.; Ling, S.; Chang, Y.Z.; Li, Y. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov., 2016, 2(1), 16015.
[http://dx.doi.org/10.1038/celldisc.2016.15] [PMID: 27462462]
[198]
Charlier, E.; Relic, B.; Deroyer, C.; Malaise, O.; Neuville, S.; Collée, J.; Malaise, M.G.; De Seny, D. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int. J. Mol. Sci., 2016, 17(12), 2146.
[http://dx.doi.org/10.3390/ijms17122146] [PMID: 27999417]
[199]
Yan, S.; Wang, M.; Zhao, J.; Zhang, H.; Zhou, C.; Jin, L.; Zhang, Y.; Qiu, X.; Ma, B.; Fan, Q. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int. J. Mol. Med., 2016, 38(1), 201-209.
[http://dx.doi.org/10.3892/ijmm.2016.2618] [PMID: 27247228]
[200]
Sergi, C.; Shen, F.; Liu, S.M. Insulin/IGF-1R, SIRT1, and FOXOs pathways—an intriguing interaction platform for bone and osteosarcoma. Front. Endocrinol. (Lausanne), 2019, 10, 93.
[http://dx.doi.org/10.3389/fendo.2019.00093] [PMID: 30881341]
[201]
Wu, X.F.; Zhou, Z.H.; Zou, J. MicroRNA-181 inhibits proliferation and promotes apoptosis of chondrocytes in osteoarthritis by targeting PTEN. Biochem. Cell Biol., 2017, 95(3), 437-444.
[http://dx.doi.org/10.1139/bcb-2016-0078] [PMID: 28177757]
[202]
Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol., 2014, 2(10), 819-829.
[http://dx.doi.org/10.1016/S2213-8587(14)70034-8] [PMID: 24731660]
[203]
Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol., 2012, 3, 260.
[http://dx.doi.org/10.3389/fphys.2012.00260] [PMID: 22934016]
[204]
Rolland, Y.; Czerwinski, S.; Abellan Van Kan, G.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; Chumlea, W.M.; Vellas, B. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging, 2008, 12(7), 433-450.
[http://dx.doi.org/10.1007/BF02982704] [PMID: 18615225]
[205]
Zacharewicz, E.; Lamon, S.; Russell, A.P. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front. Physiol., 2013, 4, 266.
[http://dx.doi.org/10.3389/fphys.2013.00266] [PMID: 24137130]
[206]
Jung, H.J.; Lee, K.P.; Kwon, K.S.; Suh, Y. MicroRNAs in skeletal muscle aging: current issues and perspectives. J. Gerontol: Series A, 2019, 74(7), 1008-1014.
[http://dx.doi.org/10.1093/gerona/gly207] [PMID: 30215687]
[207]
Cartee, G.D.; Hepple, R.T.; Bamman, M.M.; Zierath, J.R. Exercise promotes healthy aging of skeletal muscle. Cell Metab., 2016, 23(6), 1034-1047.
[http://dx.doi.org/10.1016/j.cmet.2016.05.007] [PMID: 27304505]
[208]
Rivas, D.A.; Lessard, S.J.; Rice, N.P.; Lustgarten, M.S.; So, K.; Goodyear, L.J.; Parnell, L.D.; Fielding, R.A. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J., 2014, 28(9), 4133-4147.
[http://dx.doi.org/10.1096/fj.14-254490] [PMID: 24928197]
[209]
Soriano-Arroquia, A.; House, L.; Tregilgas, L.; Canty-Laird, E.; Goljanek-Whysall, K. The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology, 2016, 17(3), 641-654.
[http://dx.doi.org/10.1007/s10522-016-9638-8] [PMID: 26922183]
[210]
Pardo, P.S.; Hajira, A.; Boriek, A.M.; Mohamed, J.S. MicroRNA-434-3p regulates age-related apoptosis through eIF5A1 in the skeletal muscle. Aging (Albany NY), 2017, 9(3), 1012-1029.
[http://dx.doi.org/10.18632/aging.101207] [PMID: 28331100]
[211]
Kim, J.Y.; Park, Y.K.; Lee, K.P.; Lee, S.M.; Kang, T.W.; Kim, H.J.; Dho, S.H.; Kim, S.Y.; Kwon, K.S. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging (Albany NY), 2014, 6(7), 524-544.
[http://dx.doi.org/10.18632/aging.100677] [PMID: 25063768]
[212]
Lee, K.P.; Shin, Y.J.; Panda, A.C.; Abdelmohsen, K.; Kim, J.Y.; Lee, S.M.; Bahn, Y.J.; Choi, J.Y.; Kwon, E.S.; Baek, S.J.; Kim, S.Y.; Gorospe, M.; Kwon, K.S. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev., 2015, 29(15), 1605-1617.
[http://dx.doi.org/10.1101/gad.263574.115] [PMID: 26215566]
[213]
Hu, Z.; Klein, J.D.; Mitch, W.E.; Zhang, L.; Martinez, I.; Wang, X.H. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY), 2014, 6(3), 160-175.
[http://dx.doi.org/10.18632/aging.100643] [PMID: 24659628]
[214]
Sharma, M.; Juvvuna, P.K.; Kukreti, H.; McFarlane, C. Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front. Physiol., 2014, 5, 239.
[http://dx.doi.org/10.3389/fphys.2014.00239] [PMID: 25018733]
[215]
Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25(3), 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[216]
Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol., 2001, 11(11), S27-S31.
[http://dx.doi.org/10.1016/S0962-8924(01)02151-1] [PMID: 11684439]
[217]
Campisi, J. The biology of replicative senescence. Eur. J. Cancer, 1997, 33(5), 703-709.
[http://dx.doi.org/10.1016/S0959-8049(96)00058-5] [PMID: 9282108]
[218]
Toussaint, O.; Medrano, E. E.; Von Zglinicki, T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontol., 2000, 35(8), 927-945.
[http://dx.doi.org/10.1016/s0531-5565(00)00180-7] [PMID: 11121681]
[219]
Faraonio, R.; Salerno, P.; Passaro, F.; Sedia, C.; Iaccio, A.; Bellelli, R.; Nappi, T.C.; Comegna, M.; Romano, S.; Salvatore, G.; Santoro, M.; Cimino, F. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ., 2012, 19(4), 713-721.
[http://dx.doi.org/10.1038/cdd.2011.143] [PMID: 22052189]
[220]
Davis, T.; Kipling, D. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Biogerontology, 2005, 6(6), 371-385.
[http://dx.doi.org/10.1007/s10522-005-4901-4] [PMID: 16518699]
[221]
Lu, W.; Zhang, Y.; Liu, D.; Songyang, Z.; Wan, M. Telomeres-structure, function, and regulation. Exp. Cell Res., 2013, 319(2), 133-141.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.005] [PMID: 23006819]
[222]
Egan, E.D.; Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA, 2012, 18(10), 1747-1759.
[http://dx.doi.org/10.1261/rna.034629.112] [PMID: 22875809]
[223]
Hrdličková, R.; Nehyba, J.; Bargmann, W.; Bose, H.R., Jr Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One, 2014, 9(2), e86990.
[http://dx.doi.org/10.1371/journal.pone.0086990] [PMID: 24551047]
[224]
Farooqi, A.A.; Mansoor, Q.; Alaaeddine, N.; Xu, B. MicroRNA regulation of telomerase reverse transcriptase (TERT): micro machines pull strings of papier-mâché puppets. Int. J. Mol. Sci., 2018, 19(4), 1051.
[http://dx.doi.org/10.3390/ijms19041051] [PMID: 29614790]
[225]
Mitomo, S.; Maesawa, C.; Ogasawara, S.; Iwaya, T.; Shibazaki, M.; Yashima-Abo, A.; Kotani, K.; Oikawa, H.; Sakurai, E.; Izutsu, N.; Kato, K.; Komatsu, H.; Ikeda, K.; Wakabayashi, G.; Masuda, T. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci., 2008, 99(2), 280-286.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00666.x] [PMID: 18201269]
[226]
Zhou, N.; Fei, D.; Zong, S.; Zhang, M.; Yue, Y. MicroRNA-138 inhibits proliferation, migration and invasion through targeting hTERT in cervical cancer. Oncol. Lett., 2016, 12(5), 3633-3639.
[http://dx.doi.org/10.3892/ol.2016.5038] [PMID: 27900047]
[227]
Banno, K.; Iida, M.; Yanokura, M.; Kisu, I.; Iwata, T.; Tominaga, E.; Tanaka, K.; Aoki, D. MicroRNA in cervical cancer: OncomiRs and tumor suppressor miRs in diagnosis and treatment. ScientificWorldJournal, 2014, 2014, 178075.
[http://dx.doi.org/10.1155/2014/178075] [PMID: 24516357]
[228]
Song, G.; Wang, R.; Guo, J.; Liu, X.; Wang, F.; Qi, Y. miR-346 and miR-138 competitively regulate hTERT in GRSF1-and AGO2-dependent manners, respectively. Sci. Rep., 2015, 5(1), 1-15.
[http://dx.doi.org/10.1038/srep15793]
[229]
Bai, L.; Wang, H.; Wang, A.H.; Zhang, L.Y.; Bai, J. MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer. PLoS One, 2017, 12(3), e0173912.
[http://dx.doi.org/10.1371/journal.pone.0173912] [PMID: 28291810]
[230]
Dinami, R.; Buemi, V.; Sestito, R.; Zappone, A.; Ciani, Y.; Mano, M.; Petti, E.; Sacconi, A.; Blandino, G.; Giacca, M.; Piazza, S.; Benetti, R.; Schoeftner, S. Epigenetic silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells. Oncotarget, 2017, 8(56), 95674-95691.
[http://dx.doi.org/10.18632/oncotarget.21180] [PMID: 29221158]
[231]
Zilfou, J.T.; Lowe, S.W. Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol., 2009, 1(5), a001883.
[http://dx.doi.org/10.1101/cshperspect.a001883] [PMID: 20066118]
[232]
Jones, M.; Lal, A. MicroRNAs, wild-type and mutant p53: more questions than answers. RNA Biol., 2012, 9(6), 781-791.
[http://dx.doi.org/10.4161/rna.20146] [PMID: 22664917]
[233]
Abdi, J.; Rastgoo, N.; Li, L.; Chen, W.; Chang, H. Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis. J. Hematol. Oncol., 2017, 10(1), 169.
[http://dx.doi.org/10.1186/s13045-017-0538-4] [PMID: 29073933]
[234]
Pichiorri, F.; Suh, S.S.; Rocci, A.; De Luca, L.; Taccioli, C.; Santhanam, R.; Zhou, W.; Benson, D.M., Jr; Hofmainster, C.; Alder, H.; Garofalo, M.; Di Leva, G.; Volinia, S.; Lin, H.J.; Perrotti, D.; Kuehl, M.; Aqeilan, R.I.; Palumbo, A.; Croce, C.M. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell, 2010, 18(4), 367-381.
[http://dx.doi.org/10.1016/j.ccr.2010.09.005] [PMID: 20951946]
[235]
Okada, N.; Lin, C.P.; Ribeiro, M.C.; Biton, A.; Lai, G.; He, X.; Bu, P.; Vogel, H.; Jablons, D.M.; Keller, A.C.; Wilkinson, J.E.; He, B.; Speed, T.P.; He, L. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev., 2014, 28(5), 438-450.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[236]
Slabáková, E.; Culig, Z.; Remšík, J.; Souček, K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis., 2017, 8(10), e3100-e3100.
[http://dx.doi.org/10.1038/cddis.2017.495] [PMID: 29022903]
[237]
He, M.; Wang, Q.Y.; Yin, Q.Q.; Tang, J.; Lu, Y.; Zhou, C.X.; Duan, C.W.; Hong, D.L.; Tanaka, T.; Chen, G.Q.; Zhao, Q. HIF-1α downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ., 2013, 20(3), 408-418.
[http://dx.doi.org/10.1038/cdd.2012.130] [PMID: 23059786]
[238]
Yi, C.; Wang, Q.; Wang, L.; Huang, Y.; Li, L.; Liu, L.; Zhou, X.; Xie, G.; Kang, T.; Wang, H.; Zeng, M.; Ma, J.; Zeng, Y.; Yun, J.P. MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene, 2012, 31(41), 4421-4433.
[http://dx.doi.org/10.1038/onc.2011.629] [PMID: 22249270]
[239]
Abdelmohsen, K.; Srikantan, S.; Tominaga, K.; Kang, M.J.; Yaniv, Y.; Martindale, J.L.; Yang, X.; Park, S.S.; Becker, K.G.; Subramanian, M.; Maudsley, S.; Lal, A.; Gorospe, M. Growth inhibition by miR-519 via multiple p21-inducing pathways. Mol. Cell. Biol., 2012, 32(13), 2530-2548.
[http://dx.doi.org/10.1128/MCB.00510-12] [PMID: 22547681]
[240]
Takahashi, A.; Ohtani, N.; Hara, E. Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div., 2007, 2(1), 10.
[http://dx.doi.org/10.1186/1747-1028-2-10] [PMID: 17343761]
[241]
Li, J.; Poi, M.J.; Tsai, M.D. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry, 2011, 50(25), 5566-5582.
[http://dx.doi.org/10.1021/bi200642e] [PMID: 21619050]
[242]
Lal, A.; Kim, H.H.; Abdelmohsen, K.; Kuwano, Y.; Pullmann, R., Jr; Srikantan, S.; Subrahmanyam, R.; Martindale, J.L.; Yang, X.; Ahmed, F.; Navarro, F.; Dykxhoorn, D.; Lieberman, J.; Gorospe, M. p16(INK4a) translation suppressed by miR-24. PLoS One, 2008, 3(3), e1864.
[http://dx.doi.org/10.1371/journal.pone.0001864] [PMID: 18365017]
[243]
Tomé, M.; Sepúlveda, J.C.; Delgado, M.; Andrades, J.A.; Campisi, J.; González, M.A.; Bernad, A. miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells, 2014, 32(8), 2229-2244.
[http://dx.doi.org/10.1002/stem.1699] [PMID: 24648336]
[244]
Marasa, B.S.; Srikantan, S.; Masuda, K.; Abdelmohsen, K.; Kuwano, Y.; Yang, X.; Martindale, J.L.; Rinker-Schaeffer, C.W.; Gorospe, M. Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci. Signal., 2009, 2(94), ra69-ra69.
[http://dx.doi.org/10.1126/scisignal.2000442] [PMID: 19861690]
[245]
Martinez, I.; Cazalla, D.; Almstead, L.L.; Steitz, J.A.; DiMaio, D. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 522-527.
[http://dx.doi.org/10.1073/pnas.1017346108] [PMID: 21187425]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy