[14]
Drilon, A.; Jenkins, C.; Iyer, S.; Schoenfeld, A.; Keddy, C.; Davare, M.A. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat. Rev. Clin. Oncol., 2021, 18(1), 35-55.
[16]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.
Lancet Oncol., 2012,
13(3), 239-246.
[
http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID:
22285168]
[47]
Ardini, E.; Menichincheri, M.; Banfi, P.; Saccardo, M.B.; Rusconi, L.; Avanzi, N. In vitro and in vivo activity of NMS-E628 against ALK mutations resistant to Xalkori. Mol. Cancer Ther., 2011, 10(11), 10 [Suppl.].
[53]
Ardini, E.; Menichincheri, M.; Banfi, P.; Casero, D.; Giorgini, M. L.; Saccardo, M. B. The ALK inhibitor NMS-E628 also potently inhibits ROS1 and induces tumor regression in ROS-driven models., 2013, 73(8), 2092-2092.
[62]
Tan, D.; Antoniou, M.; Zerbini, C.H. PRO41 the economic and quality of life impact of entrectinib on CNS metastasis control. Value Health, 2021, 24, 204-205.
[64]
Cruz, C.C.; Hunsaker, T.; Vazvaei, F.; Draganov, D.; Yu, L.; Merchant, M. Abstract 3894: Determination of the efficacious Entrectinib exposures required for pathway inhibition and anti-tumor activity in a subcutaneous and intracranial TPM3-NTRK1 mutant tumor model. Cancer Res., 2019, 79(13), 3894-3894.
[72]
KK S.; SV, L. STARTRK-2: A global phase 2, open-label, basket study of entrectinib in patients with locally advanced or metastatic solid tumors harboring TRK, ROS1, or ALK gene fusions. Cancer Res., 2017, 77(615)
[73]
Demetri, G.D.; Paz-Ares, L.; Farago, A.F.; Liu, S.V.; Chawla, S.P.; Tosi, D. Efficacy and safety of entrectinib in patients with NTRK fusion- positive (NTRK-fp) Tumors: Pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann. Oncol., 2018, 29(Suppl. 8), 424-017.
[74]
Abdulla, D.; Doebele, R.; Ahn, M.; Siena, S.; Drilon, A.; Krebs, M. ENCORE: Efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC). Pneumologie, 2019, 73(01), 623.
[76]
Rolfo, C.D.; De Braud, F.G.; Doebele, R.C.; Drilon, A.E.; Siena, S.; Patel, M. Efficacy and safety of entrectinib in patients (pts) with NTRK-fusion positive (NTRK-fp) solid tumors: An updated integrated analysis. J. Clin. Oncol., 2020, 38(15), 3605.
[77]
Desai, A.V.; Brodeur, G.M.; Foster, J.; Berg, S.L.; Basu, E.M.; Shusterman, S. Phase 1 study of entrectinib (RXDX-101), a TRK, ROS1, and ALK inhibitor, in children, adolescents, and young adults with recurrent or refractory solid tumors. J. Clin. Oncol., 2018, 36(15), 10536.
[78]
Robinson, G.W.; Gajjar, A.J.; Gauvain, K.M.; Basu, E.M.; Macy, M.E.; Maese, L.D. Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J. Clin. Oncol., 2019, 37(15), 1009.
[90]
Gainor, J.F.; Tseng, D.; Yoda, S.; Dagogo-Jack, I.; Friboulet, L.; Lin, J.J. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol., 2017, 2017(1), 1-13.