Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Exploring the Hypothesis of a Schizophrenia and Bipolar Disorder Continuum: Biological, Genetic and Pharmacologic Data

Author(s): Teresa Reynolds de Sousa*, Correia DT and Filipa Novais

Volume 22, Issue 2, 2023

Published on: 02 September, 2021

Page: [161 - 171] Pages: 11

DOI: 10.2174/1871527320666210902164235

Price: $65

Abstract

Present time nosology has its roots in Kraepelin’s demarcation of schizophrenia and bipolar disorder. However, accumulating evidence has shed light on several commonalities between the two disorders, and some authors have advocated for the consideration of a disease continuum. Here, we review previous genetic, biological and pharmacological findings that provide the basis for this conceptualization. There is a cross-disease heritability, and they share single-nucleotide polymorphisms in some common genes. EEG and imaging patterns have a number of similarities, namely reduced white matter integrity and abnormal connectivity. Dopamine, serotonin, GABA and glutamate systems have dysfunctional features, some of which are identical among the disorders. Finally, cellular calcium regulation and mitochondrial function are, also, impaired in the two.

Keywords: Bipolar, schizophrenia, continuum, genetics, neurobiology, pharmacology.

[1]
Angst J. Historical aspects of the dichotomy between manic-depressive disorders and schizophrenia. Schizophr Res 2002; 57(1): 5-13.
[http://dx.doi.org/10.1016/S0920-9964(02)00328-6] [PMID: 12165371]
[2]
Kendler KS. Kraepelin and the differential diagnosis of dementia praecox and manic-depressive insanity. Compr Psychiatry 1986; 27(6): 549-58.
[http://dx.doi.org/10.1016/0010-440X(86)90059-3] [PMID: 3536286]
[3]
Andreasen NC. The evolving concept of schizophrenia: from Kraepelin to the present and future. Schizophr Res 1997; 28(2-3): 105-9.
[http://dx.doi.org/10.1016/S0920-9964(97)00112-6] [PMID: 9468346]
[4]
Lake CR, Hurwitz N. Schizoaffective disorder merges schizophrenia and bipolar disorders as one disease-there is no schizoaffective disorder. Curr Opin Psychiatry 2007; 20(4): 365-79.
[http://dx.doi.org/10.1097/YCO.0b013e3281a305ab] [PMID: 17551352]
[5]
Hanlon FM, Yeo RA, Shaff NA, et al. A symptom-based continuum of psychosis explains cognitive and real-world functional deficits better than traditional diagnoses. Schizophr Res 2019; 208: 344-52.
[http://dx.doi.org/10.1016/j.schres.2019.01.024] [PMID: 30711315]
[6]
Daban C, Martinez-Aran A, Torrent C, et al. Specificity of cognitive deficits in bipolar disorder versus schizophrenia. A systematic review. Psychother Psychosom 2006; 75(2): 72-84.
[http://dx.doi.org/10.1159/000090891] [PMID: 16508342]
[7]
Ancín I, Cabranes JA, Santos JL, Sánchez-Morla E, Barabash A. Executive deficits: A continuum schizophrenia-bipolar disorder or specific to schizophrenia? J Psychiatr Res 2013; 47(11): 1564-71.
[http://dx.doi.org/10.1016/j.jpsychires.2013.07.008] [PMID: 23907000]
[8]
Kuswanto C, Chin R, Sum MY, et al. Shared and divergent neurocognitive impairments in adult patients with schizophrenia and bipolar disorder: Whither the evidence? Neurosci Biobehav Rev 2016; 61: 66-89.
[http://dx.doi.org/10.1016/j.neubiorev.2015.12.002] [PMID: 26691725]
[9]
Stoyanov D. Methodological challenges before translation from psychopathology to neuroscience: top-down or bottom-up models? Dialogues Philos Mental Neuro Sci 2020; 13(1): 1-7.
[10]
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The value of neuroimaging techniques in the translation and transdiagnostic validation of psychiatric diagnoses - selective review. Curr Top Med Chem 2020; 20(7): 540-53.
[http://dx.doi.org/10.2174/1568026620666200131095328] [PMID: 32003690]
[11]
Stoyanov D, Brambilla P. Editorial: Progress in translational neuroimaging: integrating pathways, systems, and phenomenology in neurology and psychiatry. Front Psychiatry 2020; 11: 682.
[http://dx.doi.org/10.3389/fpsyt.2020.00682] [PMID: 32765320]
[12]
Lichtenstein P, Yip BH, Björk C, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 2009; 373(9659): 234-9.
[http://dx.doi.org/10.1016/S0140-6736(09)60072-6] [PMID: 19150704]
[13]
Cardno AG, Marshall EJ, Coid B, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56(2): 162-8.
[http://dx.doi.org/10.1001/archpsyc.56.2.162] [PMID: 10025441]
[14]
Kendler KS, Gruenberg AM, Tsuang MT. A DSM-III family study of the nonschizophrenic psychotic disorders. Am J Psychiatry 1986; 143(9): 1098-105.
[http://dx.doi.org/10.1176/ajp.143.9.1098] [PMID: 3752293]
[15]
Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, Walsh D. The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993; 50(7): 527-40.
[http://dx.doi.org/10.1001/archpsyc.1993.01820190029004] [PMID: 8317947]
[16]
Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P. A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159(4): 539-45.
[http://dx.doi.org/10.1176/appi.ajp.159.4.539] [PMID: 11925290]
[17]
Mortensen PB, Pedersen MG, Pedersen CB. Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant? Psychol Med 2010; 40(2): 201-10.
[http://dx.doi.org/10.1017/S0033291709990419] [PMID: 19607751]
[18]
Mortensen PB, Pedersen CB, Melbye M, Mors O, Ewald H. Individual and familial risk factors for bipolar affective disorders in Denmark. Arch Gen Psychiatry 2003; 60(12): 1209-15.
[http://dx.doi.org/10.1001/archpsyc.60.12.1209] [PMID: 14662553]
[19]
Kendler KS, McGuire M, Gruenberg AM. Examining the validity of DSM-III—R schizoaffective disorder and its putative subtypes in the Roscommon Family Study. Am J Psychiatry 1995; 152(5): 755-64.
[20]
Laursen TM, Labouriau R, Licht RW, Bertelsen A, Munk-Olsen T, Mortensen PB. Family history of psychiatric illness as a risk factor for schizoaffective disorder: A Danish register-based cohort study. Arch Gen Psychiatry 2005; 62(8): 841-8.
[http://dx.doi.org/10.1001/archpsyc.62.8.841] [PMID: 16061761]
[21]
Van Snellenberg JX, de Candia T. Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. Arch Gen Psychiatry 2009; 66(7): 748-55.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.64] [PMID: 19581566]
[22]
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013; 381(9875): 1371-9.
[http://dx.doi.org/10.1016/S0140-6736(12)62129-1] [PMID: 23453885]
[23]
Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60(12): 1187-92.
[http://dx.doi.org/10.1001/archpsyc.60.12.1187] [PMID: 14662550]
[24]
Johansson V, Kuja-Halkola R, Cannon TD, Hultman CM, Hedman AM. A population-based heritability estimate of bipolar disorder - In a Swedish twin sample. Psychiatry Res 2019; 278: 180-7.
[http://dx.doi.org/10.1016/j.psychres.2019.06.010] [PMID: 31207455]
[25]
Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13(8): 537-51.
[http://dx.doi.org/10.1038/nrg3240] [PMID: 22777127]
[26]
Stahl EA, Breen G, Forstner AJ, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet 2019; 51(5): 793-803.
[http://dx.doi.org/10.1038/s41588-019-0397-8] [PMID: 31043756]
[27]
Lee SH, Ripke S, Neale BM, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45(9): 984-94.
[http://dx.doi.org/10.1038/ng.2711] [PMID: 23933821]
[28]
Ripke S, Sanders AR, Kendler KS. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43(10): 969-76.
[http://dx.doi.org/10.1038/ng.940] [PMID: 21926974]
[29]
Harrison PJ, Hall N, Mould A, Al-Juffali N, Tunbridge EM. Cellular calcium in bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2019. Epub ahead of print
[http://dx.doi.org/10.1038/s41380-019-0622-y] [PMID: 31801967]
[30]
Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119(1): 19-31.
[http://dx.doi.org/10.1016/j.cell.2004.09.011] [PMID: 15454078]
[31]
Woodside BL, Borroni AM, Hammonds MD, Teyler TJ. NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiol Learn Mem 2004; 81(2): 105-14.
[http://dx.doi.org/10.1016/j.nlm.2003.10.003] [PMID: 14990230]
[32]
Moosmang S, Haider N, Klugbauer N, et al. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 2005; 25(43): 9883-92.
[http://dx.doi.org/10.1523/JNEUROSCI.1531-05.2005] [PMID: 16251435]
[33]
White JA, McKinney BC, John MC, Powers PA, Kamp TJ, Murphy GG. Conditional forebrain deletion of the L-type calcium channel Ca V 1.2 disrupts remote spatial memories in mice. Learn Mem 2008; 15(1): 1-5.
[http://dx.doi.org/10.1101/lm.773208] [PMID: 18174367]
[34]
Bigos KL, Mattay VS, Callicott JH, et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67(9): 939-45.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.96] [PMID: 20819988]
[35]
Garrett AS, Reiss AL, Howe ME, et al. Abnormal amygdala and prefrontal cortex activation to facial expressions in pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry 2012; 51(8): 821-31.
[http://dx.doi.org/10.1016/j.jaac.2012.06.005] [PMID: 22840553]
[36]
Becerril K, Barch D. Influence of emotional processing on working memory in schizophrenia. Schizophr Bull 2011; 37(5): 1027-38.
[http://dx.doi.org/10.1093/schbul/sbq009] [PMID: 20176860]
[37]
McIntosh AM, Moorhead TWJ, Job D, et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2008; 13(11): 1054-9.
[http://dx.doi.org/10.1038/sj.mp.4002103] [PMID: 17925794]
[38]
Fernandez PA, Tang DG, Cheng L, Prochiantz A, Mudge AW, Raff MC. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 2000; 28(1): 81-90.
[http://dx.doi.org/10.1016/S0896-6273(00)00087-8] [PMID: 11086985]
[39]
Konrad A, Vucurevic G, Musso F, Stoeter P, Dahmen N, Winterer G. ErbB4 genotype predicts left frontotemporal structural connectivity in human brain. Neuropsychopharmacology 2009; 34(3): 641-50.
[http://dx.doi.org/10.1038/npp.2008.112] [PMID: 18668031]
[40]
Taveggia C, Thaker P, Petrylak A, et al. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 2008; 56(3): 284-93.
[http://dx.doi.org/10.1002/glia.20612] [PMID: 18080294]
[41]
Thomson PA, Christoforou A, Morris SW, et al. Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007; 12(1): 94-104.
[http://dx.doi.org/10.1038/sj.mp.4001889] [PMID: 16940976]
[42]
Green EK, Raybould R, Macgregor S, et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62(6): 642-8.
[http://dx.doi.org/10.1001/archpsyc.62.6.642] [PMID: 15939841]
[43]
Georgieva L, Dimitrova A, Ivanov D, et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry 2008; 64(5): 419-27.
[http://dx.doi.org/10.1016/j.biopsych.2008.03.025] [PMID: 18466881]
[44]
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci 2011; 2(11): 609-32.
[http://dx.doi.org/10.1021/cn200062k] [PMID: 22116789]
[45]
Blackwood DHR, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69(2): 428-33.
[http://dx.doi.org/10.1086/321969] [PMID: 11443544]
[46]
Millar JK, Wilson-Annan JC, Anderson S, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9(9): 1415-23.
[http://dx.doi.org/10.1093/hmg/9.9.1415] [PMID: 10814723]
[47]
Sachs NA, Sawa A, Holmes SE, Ross CA, DeLisi LE, Margolis RL. A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry 2005; 10(8): 758-64.
[http://dx.doi.org/10.1038/sj.mp.4001667] [PMID: 15940305]
[48]
Hennah W, Varilo T, Kestilä M, et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12(23): 3151-9.
[http://dx.doi.org/10.1093/hmg/ddg341] [PMID: 14532331]
[49]
Hodgkinson CA, Goldman D, Jaeger J, et al. Disrupted in schizophrenia 1 (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75(5): 862-72.
[http://dx.doi.org/10.1086/425586] [PMID: 15386212]
[50]
Maeda K, Nwulia E, Chang J, et al. Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry 2006; 60(9): 929-35.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.032] [PMID: 16814263]
[51]
Hennah W, Thomson P, McQuillin A, et al. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 2009; 14(9): 865-73.
[http://dx.doi.org/10.1038/mp.2008.22] [PMID: 18317464]
[52]
Thomson PA, Wray NR, Millar JK, et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10(7): 657-668, 616.
[http://dx.doi.org/10.1038/sj.mp.4001669] [PMID: 15838535]
[53]
Mouaffak F, Kebir O, Chayet M, et al. Association of Disrupted in Schizophrenia 1 (DISC1) missense variants with ultra-resistant schizophrenia. Pharmacogenomics J 2011; 11(4): 267-73.
[http://dx.doi.org/10.1038/tpj.2010.40] [PMID: 20531374]
[54]
Callicott JH, Straub RE, Pezawas L, et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102(24): 8627-32.
[http://dx.doi.org/10.1073/pnas.0500515102] [PMID: 15939883]
[55]
Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460(7256): 748-52.
[http://dx.doi.org/10.1038/nature08185] [PMID: 19571811]
[56]
Ripke S, O’Dushlaine C, Chambert K, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45(10): 1150-9.
[http://dx.doi.org/10.1038/ng.2742] [PMID: 23974872]
[57]
Andreassen OA, Thompson WK, Schork AJ, et al. Correction: Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 2015; 11(11): e1005544.
[http://dx.doi.org/10.1371/journal.pgen.1005544] [PMID: 26540268]
[58]
Ivleva EI, Bidesi AS, Keshavan MS, et al. Gray matter volume as an intermediate phenotype for psychosis: Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry 2013; 170(11): 1285-96.
[http://dx.doi.org/10.1176/appi.ajp.2013.13010126] [PMID: 24185241]
[59]
Ivleva EI, Bidesi AS, Thomas BP, et al. Brain gray matter phenotypes across the psychosis dimension. Psychiatry Res Neuroimaging 2012; 204(1): 13-24.
[http://dx.doi.org/10.1016/j.pscychresns.2012.05.001] [PMID: 23177922]
[60]
Lee DK, Lee H, Park K, Joh E, Kim CE, Ryu S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 2020; 15(5): e0232826.
[http://dx.doi.org/10.1371/journal.pone.0232826] [PMID: 32379845]
[61]
De Peri L, Crescini A, Deste G, Fusar-Poli P, Sacchetti E, Vita A. Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: A meta-analysis of controlled magnetic resonance imaging studies. Curr Pharm Des 2012; 18(4): 486-94.
[http://dx.doi.org/10.2174/138161212799316253] [PMID: 22239579]
[62]
Hajek T, Kopecek M, Kozeny J, Gunde E, Alda M, Höschl C. Amygdala volumes in mood disorders-meta-analysis of magnetic resonance volumetry studies. J Affect Disord 2009; 115(3): 395-410.
[http://dx.doi.org/10.1016/j.jad.2008.10.007] [PMID: 19019455]
[63]
Sorella S, Lapomarda G, Messina I, et al. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin 2019; 23: 101854.
[http://dx.doi.org/10.1016/j.nicl.2019.101854] [PMID: 31121524]
[64]
Skudlarski P, Schretlen DJ, Thaker GK, et al. Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. Am J Psychiatry 2013; 170(8): 886-98.
[http://dx.doi.org/10.1176/appi.ajp.2013.12111448] [PMID: 23771210]
[65]
McIntosh AM, Muñoz Maniega S, Lymer GKS, et al. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry 2008; 64(12): 1088-92.
[http://dx.doi.org/10.1016/j.biopsych.2008.07.026] [PMID: 18814861]
[66]
Squarcina L, Bellani M, Rossetti MG, et al. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One 2017; 12(6): e0178089.
[http://dx.doi.org/10.1371/journal.pone.0178089] [PMID: 28658249]
[67]
Tønnesen S, Kaufmann T, Doan NT, et al. White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep 2018; 8(1): 14129.
[http://dx.doi.org/10.1038/s41598-018-32355-9] [PMID: 30237410]
[68]
Sussmann JE, Lymer GKS, McKirdy J, et al. White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord 2009; 11(1): 11-8.
[http://dx.doi.org/10.1111/j.1399-5618.2008.00646.x] [PMID: 19133962]
[69]
Kumar J, Iwabuchi S, Oowise S, Balain V, Palaniyappan L, Liddle PF. Shared white-matter dysconnectivity in schizophrenia and bipolar disorder with psychosis. Psychol Med 2015; 45(4): 759-70.
[http://dx.doi.org/10.1017/S0033291714001810] [PMID: 25089761]
[70]
Tkachev D, Mimmack ML, Ryan MM, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362(9386): 798-805.
[http://dx.doi.org/10.1016/S0140-6736(03)14289-4] [PMID: 13678875]
[71]
Uranova N, Orlovskaya D, Vikhreva O, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55(5): 597-610.
[http://dx.doi.org/10.1016/S0361-9230(01)00528-7] [PMID: 11576756]
[72]
Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 2002; 27(10): 1193-200.
[http://dx.doi.org/10.1023/A:1020981510759] [PMID: 12462417]
[73]
Ji E, Lejuste F, Sarrazin S, Houenou J. From the microscope to the magnet: Disconnection in schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2019; 98: 47-57.
[http://dx.doi.org/10.1016/j.neubiorev.2019.01.005] [PMID: 30629976]
[74]
Argyelan M, Ikuta T, DeRosse P, et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull 2014; 40(1): 100-10.
[http://dx.doi.org/10.1093/schbul/sbt092] [PMID: 23851068]
[75]
Du Y, Pearlson GD, Liu J, et al. A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: Application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage 2015; 122: 272-80.
[http://dx.doi.org/10.1016/j.neuroimage.2015.07.054] [PMID: 26216278]
[76]
Ongür D, Lundy M, Greenhouse I, et al. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res 2010; 183(1): 59-68.
[http://dx.doi.org/10.1016/j.pscychresns.2010.04.008] [PMID: 20553873]
[77]
Baker JT, Holmes AJ, Masters GA, et al. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 2014; 71(2): 109-18.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.3469] [PMID: 24306091]
[78]
Meda SA, Ruaño G, Windemuth A, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci USA 2014; 111(19): E2066-75.
[http://dx.doi.org/10.1073/pnas.1313093111] [PMID: 24778245]
[79]
Lavin C, Melis C, Mikulan E, Gelormini C, Huepe D, Ibañez A. The anterior cingulate cortex: An integrative hub for human socially-driven interactions. Front Neurosci 2013; 7: 64.
[http://dx.doi.org/10.3389/fnins.2013.00064] [PMID: 23658536]
[80]
Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci 2011; 23(2): 121-5.
[http://dx.doi.org/10.1176/jnp.23.2.jnp121] [PMID: 21677237]
[81]
Wenderoth N, Debaere F, Sunaert S, Swinnen SP. The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur J Neurosci 2005; 22(1): 235-46.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04176.x] [PMID: 16029213]
[82]
Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct 2019; 224(9): 3001-18.
[http://dx.doi.org/10.1007/s00429-019-01945-2] [PMID: 31451898]
[83]
Margulies DS, Vincent JL, Kelly C. Precuneus shares intrinsic functional architecture in humans and monkeys. PNAS. 106(47): 20069-74.
[http://dx.doi.org/10.1073/pnas.0905314106]
[84]
Cavanna AE, Trimble MR. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006; 129(Pt 3): 564-83.
[http://dx.doi.org/10.1093/brain/awl004] [PMID: 16399806]
[85]
Meda SA, Gill A, Stevens MC, et al. Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biol Psychiatry 2012; 71(10): 881-9.
[http://dx.doi.org/10.1016/j.biopsych.2012.01.025] [PMID: 22401986]
[86]
Stoyanov D, Aryutova K, Kandilarova S, et al. Diagnostic task specific activations in functional mri and aberrant connectivity of insula with middle frontal gyrus can inform the differential diagnosis of psychosis. Diagnostics (Basel) 2021; 11(1): 95.
[http://dx.doi.org/10.3390/diagnostics11010095] [PMID: 33435624]
[87]
Mamah D, Barch DM, Repovš G. Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. J Affect Disord 2013; 150(2): 601-9.
[http://dx.doi.org/10.1016/j.jad.2013.01.051] [PMID: 23489402]
[88]
Samudra N, Ivleva EI, Hubbard NA, et al. Alterations in hippocampal connectivity across the psychosis dimension. Psychiatry Res Neuroimaging 2015; 233(2): 148-57.
[http://dx.doi.org/10.1016/j.pscychresns.2015.06.004] [PMID: 26123450]
[89]
Knöchel C, Stäblein M, Storchak H, et al. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. Neuroimage Clin 2014; 6: 134-44.
[http://dx.doi.org/10.1016/j.nicl.2014.08.015] [PMID: 25379425]
[90]
Rashid B, Damaraju E, Pearlson GD, Calhoun VD. Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Front Hum Neurosci 2014; 8: 897.
[http://dx.doi.org/10.3389/fnhum.2014.00897] [PMID: 25426048]
[91]
Hall J, Whalley HC, Marwick K, et al. Hippocampal function in schizophrenia and bipolar disorder. Psychol Med 2010; 40(5): 761-70.
[http://dx.doi.org/10.1017/S0033291709991000] [PMID: 19732478]
[92]
Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 2008; 29(11): 1265-75.
[http://dx.doi.org/10.1002/hbm.20463] [PMID: 17894392]
[93]
Brandt CL, Eichele T, Melle I, et al. Working memory networks and activation patterns in schizophrenia and bipolar disorder: comparison with healthy controls. Br J Psychiatry 2014; 204: 290-8.
[http://dx.doi.org/10.1192/bjp.bp.113.129254] [PMID: 24434074]
[94]
Wu G, Wang Y, Mwansisya TE, et al. Effective connectivity of the posterior cingulate and medial prefrontal cortices relates to working memory impairment in schizophrenic and bipolar patients. Schizophr Res 2014; 158(1-3): 85-90.
[http://dx.doi.org/10.1016/j.schres.2014.06.033] [PMID: 25043264]
[95]
Birur B, Kraguljac NV, Shelton RC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophrenia 2017; 3: 15.
[96]
Kraguljac NV, Reid M, White D, et al. Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res Neuroimaging 2012; 203(2-3): 111-25.
[http://dx.doi.org/10.1016/j.pscychresns.2012.02.003] [PMID: 22981426]
[97]
Molina V, Sánchez J, Sanz J, et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiatry 2007; 22(8): 505-12.
[http://dx.doi.org/10.1016/j.eurpsy.2007.07.006] [PMID: 17904824]
[98]
Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ. Hypofrontality in schizophrenia: A meta-analysis of functional imaging studies. Acta Psychiatr Scand 2004; 110(4): 243-56.
[http://dx.doi.org/10.1111/j.1600-0447.2004.00376.x] [PMID: 15352925]
[99]
Gonul AS, Coburn K, Kula M. Cerebral blood flow, metabolic, receptor, and transporter changes in bipolar disorder: the role of PET and SPECT studies. Int Rev Psychiatry 2009; 21(4): 323-35.
[http://dx.doi.org/10.1080/09540260902962131] [PMID: 20374147]
[100]
Hamm JP, Ethridge LE, Shapiro JR, et al. Spatiotemporal and frequency domain analysis of auditory paired stimuli processing in schizophrenia and bipolar disorder with psychosis. Psychophysiology 2012; 49(4): 522-30.
[http://dx.doi.org/10.1111/j.1469-8986.2011.01327.x] [PMID: 22176721]
[101]
Tamminga CA, Pearlson G, Keshavan M, Sweeney J, Clementz B, Thaker G. Bipolar and schizophrenia network for intermediate phenotypes: outcomes across the psychosis continuum. Schizophr Bull 2014; 40 (Suppl. 2): S131-7.
[http://dx.doi.org/10.1093/schbul/sbt179] [PMID: 24562492]
[102]
Ethridge LE, Hamm JP, Shapiro JR, et al. Neural activations during auditory oddball processing discriminating schizophrenia and psychotic bipolar disorder. Biol Psychiatry 2012; 72(9): 766-74.
[http://dx.doi.org/10.1016/j.biopsych.2012.03.034] [PMID: 22572033]
[103]
Maia TV, Frank MJ. An integrative perspective on the role of dopamine in schizophrenia. Dopamine Hypothe Schizophrenia 2017; 81: 52-66.
[104]
McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 2019; 42(3): 205-20.
[http://dx.doi.org/10.1016/j.tins.2018.12.004] [PMID: 30621912]
[105]
Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 2018; 8(1): 30.
[http://dx.doi.org/10.1038/s41398-017-0071-9] [PMID: 29382821]
[106]
Stahl SM. Antipsychotic agents. Stahl’s Essential Psychopharmacology. Cambridge, United Kingdom: Cambridge University Press 2013; pp. 141-59.
[107]
Pearlson GD, Wong DF, Tune LE, et al. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 1995; 52(6): 471-7.
[http://dx.doi.org/10.1001/archpsyc.1995.03950180057008] [PMID: 7771917]
[108]
Wong DF, Pearlson GD, Tune LE, et al. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cereb Blood Flow Metab 1997; 17(3): 331-42.
[http://dx.doi.org/10.1097/00004647-199703000-00010] [PMID: 9119906]
[109]
Yatham LN, Liddle PF, Lam RW, et al. PET study of the effects of valproate on dopamine D(2) receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am J Psychiatry 2002; 159(10): 1718-23.
[http://dx.doi.org/10.1176/appi.ajp.159.10.1718] [PMID: 12359678]
[110]
Suhara T, Nakayama K, Inoue O, et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl) 1992; 106(1): 14-8.
[http://dx.doi.org/10.1007/BF02253582] [PMID: 1531387]
[111]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[112]
Asghar SJ, Tanay VAMI, Baker GB, Greenshaw A, Silverstone PH. Relationship of plasma amphetamine levels to physiological, subjective, cognitive and biochemical measures in healthy volunteers. Hum Psychopharmacol 2003; 18(4): 291-9.
[http://dx.doi.org/10.1002/hup.480] [PMID: 12766934]
[113]
Jacobs D, Silverstone T. Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol Med 1986; 16(2): 323-9.
[http://dx.doi.org/10.1017/S0033291700009132] [PMID: 3726006]
[114]
Harsch HH, Miller M, Young LD. Induction of mania by L-dopa in a nonbipolar patient. J Clin Psychopharmacol 1985; 5(6): 338-9.
[http://dx.doi.org/10.1097/00004714-198512000-00006] [PMID: 4066999]
[115]
Ko GN, Leckman JF, Heninger GR. Induction of rapid mood cycling during L-dopa treatment in a bipolar patient. Am J Psychiatry 1981; 138(12): 1624-5.
[http://dx.doi.org/10.1176/ajp.138.12.1624] [PMID: 7304798]
[116]
Fisher G, Pelonero AL, Ferguson C. Mania precipitated by prednisone and bromocriptine. Gen Hosp Psychiatry 1991; 13(5): 345-6.
[http://dx.doi.org/10.1016/0163-8343(91)90041-T] [PMID: 1743505]
[117]
Kemperman CJF, Zwanikken GJ. Psychiatric side effects of bromocriptine therapy for postpartum galactorrhoea. J R Soc Med 1987; 80(6): 387-8.
[http://dx.doi.org/10.1177/014107688708000620] [PMID: 3625697]
[118]
Wingo AP, Ghaemi SN. Frequency of stimulant treatment and of stimulant-associated mania/hypomania in bipolar disorder patients. Psychopharmacol Bull 2008; 41(4): 37-47.
[PMID: 19015628]
[119]
Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses 2013; 80(6): 791-4.
[http://dx.doi.org/10.1016/j.mehy.2013.03.013] [PMID: 23557849]
[120]
Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 1997; 9(1): 1-17.
[http://dx.doi.org/10.1176/jnp.9.1.1] [PMID: 9017523]
[121]
Bortolozzi A, Díaz-Mataix L, Scorza MC, Celada P, Artigas F. The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 2005; 95(6): 1597-607.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03485.x] [PMID: 16277612]
[122]
Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr 2018; 23(3): 187-91.
[http://dx.doi.org/10.1017/S1092852918001013] [PMID: 29954475]
[123]
Abi-Dargham A. Alterations of serotonin transmission in schizophrenia. Int Rev Neurobiol. Academic Press 2007; 78: pp. 133-64.
[124]
Jones MT, Strassnig MT, Harvey PD. Emerging 5-HT receptor antagonists for the treatment of Schizophrenia. Expert Opin Emerg Drugs 2020; 25(2): 189-200.
[http://dx.doi.org/10.1080/14728214.2020.1773792] [PMID: 32449404]
[125]
Helfer B, Samara MT, Huhn M, et al. Efficacy and safety of antidepressants added to antipsychotics for schizophrenia: A systematic review and meta-analysis. Am J Psychiatry 2016; 173(9): 876-86.
[http://dx.doi.org/10.1176/appi.ajp.2016.15081035] [PMID: 27282362]
[126]
Mahmood T, Silverstone T. Serotonin and bipolar disorder. J Affect Disord 2001; 66(1): 1-11.
[http://dx.doi.org/10.1016/S0165-0327(00)00226-3] [PMID: 11532527]
[127]
Yatham LN, Liddle PF, Erez J, et al. Brain serotonin-2 receptors in acute mania. Br J Psychiatry 2010; 196(1): 47-51.
[http://dx.doi.org/10.1192/bjp.bp.108.057919] [PMID: 20044660]
[128]
López-Figueroa AL, Norton CS, López-Figueroa MO, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 2004; 55(3): 225-33.
[http://dx.doi.org/10.1016/j.biopsych.2003.09.017] [PMID: 14744462]
[129]
Benard V, Vaiva G, Masson M, Geoffroy PA. Lithium and suicide prevention in bipolar disorder. Encephale 2016; 42(3): 234-41.
[http://dx.doi.org/10.1016/j.encep.2016.02.006] [PMID: 27000268]
[130]
Massot O, Rousselle JC, Fillion MP, Januel D, Plantefol M, Fillion G. 5-HT1B receptors: A novel target for lithium. Possible involvement in mood disorders. Neuropsychopharmacology 1999; 21(4): 530-41.
[http://dx.doi.org/10.1016/S0893-133X(99)00042-1] [PMID: 10481837]
[131]
Arrúe A, Dávila R, Zumárraga M, et al. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients. Neurochem Res 2010; 35(2): 247-53.
[http://dx.doi.org/10.1007/s11064-009-0048-z] [PMID: 19701707]
[132]
Guidotti A, Auta J, Davis JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Arch Gen Psychiatry 2000; 57(11): 1061-9.
[http://dx.doi.org/10.1001/archpsyc.57.11.1061] [PMID: 11074872]
[133]
Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 2007; 104(24): 10164-9.
[http://dx.doi.org/10.1073/pnas.0703806104] [PMID: 17553960]
[134]
Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2004; 61(7): 649-57.
[http://dx.doi.org/10.1001/archpsyc.61.7.649] [PMID: 15237077]
[135]
Woo TU, Shrestha K, Amstrong C, Minns MM, Walsh JP, Benes FM. Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res 2007; 96(1-3): 46-61.
[http://dx.doi.org/10.1016/j.schres.2007.06.023] [PMID: 17698324]
[136]
Fatemi SH, Folsom TD, Thuras PD. GABAA and GABAB receptor dysregulation in superior frontal cortex of subjects with schizophrenia and bipolar disorder. Synapse 2017; 71(7): e21973.
[http://dx.doi.org/10.1002/syn.21973] [PMID: 28316115]
[137]
Atagün Mİ, Şıkoğlu EM, Soykan Ç. Perisylvian GABA levels in schizophrenia and bipolar disorder. Metabolism and Neural Function - Charles Roe (Honor Special Issue) 2017; 637: 70-4.
[138]
Morris RGM. NMDA receptors and memory encoding. Neuropharmacology 2013; 74: 32-40.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.014] [PMID: 23628345]
[139]
Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J Psychopharmacol 2015; 29(2): 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[140]
Mueller HT, Meador-Woodruff JH. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 2004; 71(2-3): 361-70.
[http://dx.doi.org/10.1016/j.schres.2004.02.016] [PMID: 15474907]
[141]
Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: A meta-analysis. Bipolar Disord 2012; 14(5): 478-87.
[http://dx.doi.org/10.1111/j.1399-5618.2012.01033.x] [PMID: 22834460]
[142]
Kristiansen LV, Meador-Woodruff JH. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 2005; 78(1): 87-93.
[http://dx.doi.org/10.1016/j.schres.2005.06.012] [PMID: 16023328]
[143]
McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127(1): 108-18.
[http://dx.doi.org/10.1016/j.brainres.2006.09.011] [PMID: 17113057]
[144]
Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61(3): 300-8.
[http://dx.doi.org/10.1001/archpsyc.61.3.300] [PMID: 14993118]
[145]
Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29(3): 311-24.
[http://dx.doi.org/10.1016/j.ijdevneu.2010.08.007] [PMID: 20833242]
[146]
Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2009; 34(6): 1021-9.
[http://dx.doi.org/10.1007/s11064-008-9865-8] [PMID: 18979198]
[147]
Hjelm BE, Rollins B, Mamdani F, et al. Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Mol Neuropsychiatry 2015; 1(4): 201-19.
[http://dx.doi.org/10.1159/000441252] [PMID: 26550561]
[148]
Lidow MS. Calcium signaling dysfunction in schizophrenia: A unifying approach. Brain Res Brain Res Rev 2003; 43(1): 70-84.
[http://dx.doi.org/10.1016/S0165-0173(03)00203-0] [PMID: 14499463]
[149]
de Bartolomeis A, Tomasetti C. Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 2012; 46(2): 275-96.
[http://dx.doi.org/10.1007/s12035-012-8293-6] [PMID: 22763587]
[150]
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4(7): 552-65.
[http://dx.doi.org/10.1038/nrm1150] [PMID: 12838338]
[151]
Malhi GS, Outhred T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs 2016; 30(10): 931-49.
[http://dx.doi.org/10.1007/s40263-016-0380-1] [PMID: 27638546]
[152]
Won E, Kim Y-K. An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int J Mol Sci 2017; 18(12): E2679. Epub ahead of print
[http://dx.doi.org/10.3390/ijms18122679] [PMID: 29232923]
[153]
Jang Y, Lee SH, Lee B, et al. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J Neurosci 2015; 35(34): 11811-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5251-14.2015] [PMID: 26311765]
[154]
Macedo e Cordeiro T, Zhang X, Graubics K. Microbiome and schizophrenia: Current evidence and future challenges. Curr Behav Neurosci Rep 2020; 7: 51-61.
[http://dx.doi.org/10.1007/s40473-020-00206-5]
[155]
Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 2020; 108: 712-31.
[http://dx.doi.org/10.1016/j.neubiorev.2019.12.011] [PMID: 31821833]
[156]
Flowers SA, Ward KM, Clark CT. The gut microbiome in bipolar disorder and pharmacotherapy management. Neuropsychobiology 2020; 79(1): 43-9.
[http://dx.doi.org/10.1159/000504496] [PMID: 31722343]
[157]
Evans SJ, Bassis CM, Hein R, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 2017; 87: 23-9.
[http://dx.doi.org/10.1016/j.jpsychires.2016.12.007] [PMID: 27988330]
[158]
Zheng P, Zeng B, Liu M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 2019; 5(2): eaau8317.
[http://dx.doi.org/10.1126/sciadv.aau8317] [PMID: 30775438]
[159]
Dickerson F, Severance E, Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun 2017; 62: 46-52.
[http://dx.doi.org/10.1016/j.bbi.2016.12.010] [PMID: 28003152]
[160]
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2020; S0920-9964(20)30086-4. Epub ahead of print
[http://dx.doi.org/10.1016/j.schres.2020.02.010] [PMID: 32336581]
[161]
Yuan X, Zhang P, Wang Y, et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res 2018; 201: 299-306.
[http://dx.doi.org/10.1016/j.schres.2018.05.017] [PMID: 29859859]
[162]
Lai J, Jiang J, Zhang P, et al. Gut microbial clues to bipolar disorder: State-of-the-art review of current findings and future directions. Clin Transl Med 2020; 10(4): e146.
[http://dx.doi.org/10.1002/ctm2.146] [PMID: 32898322]
[163]
Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The gut microbiome and schizophrenia: The current state of the field and clinical applications. Front Psychiatry 2020; 11: 156.
[http://dx.doi.org/10.3389/fpsyt.2020.00156] [PMID: 32226399]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy