Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Impact of Sitagliptin on Non-diabetic Covid-19 Patients

Author(s): Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Naeem Qusty, Athanasios Alexiou and Gaber El-Saber Batiha*

Volume 15, Issue 4, 2022

Published on: 07 January, 2022

Article ID: e020921196069 Pages: 10

DOI: 10.2174/1874467214666210902115650

Price: $65

conference banner
Abstract

Objectives: In coronavirus disease 2019 (Covid-19), SARS-CoV-2 may use dipeptidyl peptidase 4 (DPP4) as an entry-point in different tissues expressing these receptors. DPP4 inhibitors (DPP4Is), also named gliptins, like sitagliptin, have anti-inflammatory and antioxidant effects, thereby lessen inflammatory and oxidative stress in diabetic Covid-19 patients. Therefore, the present study aimed to illustrate the potential beneficial effect of sitagliptin in managing Covid-19 in non-diabetic patients.

Methods: A total number of 89 patients with Covid-19 were recruited from a single center at the time of diagnosis. The recruited patients were assigned according to the standard therapy for Covid-19 and our interventional therapy into two groups; Group A: Covid-19 patients on the standard therapy (n=40) and Group B: Covid-19 patients on the standard therapy plus sitagliptin (n=49). The duration of this interventional study was 28 days according to the guideline in managing patients with Covid-19. Routine laboratory investigations, serological tests, Complete Blood Count (CBC), C-reactive Protein (CRP), D-dimer, lactate dehydrogenase (LDH), and serum ferritin were measured to observed Covid-19 severity and complications. Lung Computed Tomography (CT) and clinical scores were evaluated.

Results: The present study illustrated that sitagliptin as an add-on to standard therapy improved clinical outcomes, radiological scores, and inflammatory biomarkers than standard therapy alone in non-diabetic patients with Covid-19 (P<0.01).

Conclusion: Sitagliptin as an add-on to standard therapy in managing non-diabetic Covid-19 patients may have a robust beneficial effect by modulating inflammatory cytokines with subsequent good clinical outcomes.

Keywords: Covid-19, sitagliptin, non-diabetic patients, DPP4, angiotensin-converting enzyme 2, inflammatory cytokines.

Graphical Abstract
[1]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Cruz-Martins, N.; Batiha, G.E. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type ii diabetes mellitus: The anti-inflammatory role of metformin. Front. Med. (Lausanne), 2021, 8, 644295.
[http://dx.doi.org/10.3389/fmed.2021.644295] [PMID: 33718411]
[2]
Al-Kuraishy, H.M.; Al-Niemi, M.S.; Hussain, N.R.; Al-Gareeb, A.I.; Al-Harchan, N.A.; Al-Kurashi, A.H. The potential role of renin angiotensin system (RAS) and dipeptidyl peptidase-4 (DPP-4) in COVID-19: Navigating the uncharted. Selected chapters from the reninangiotensin system; IntechOpen: London, 2020, 2, pp. 151-165.
[3]
Devaux, C.A.; Rolain, J.M.; Raoult, D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J. Microbiol. Immunol. Infect., 2020, 53(3), 425-435.
[http://dx.doi.org/10.1016/j.jmii.2020.04.015] [PMID: 32414646]
[4]
Lugnier, C.; Al-Kuraishy, H.M.; Rousseau, E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem. Pharmacol., 2021, 185, 114431.
[http://dx.doi.org/10.1016/j.bcp.2021.114431] [PMID: 33515531]
[5]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Cruz-Martins, N.; Batiha, G.E. Hyperbilirubinemia in gilbert syndrome attenuates Covid-19 induced-metabolic disturbances: A case-report study. Front. Cardiovasc. Med., 2021, 8, 71.
[http://dx.doi.org/10.3389/fcvm.2021.642181]
[6]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[7]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E. The looming effects of estrogen in Covid-19: A Rocky Rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[8]
Gomez-Peralta, F.; Abreu, C.; Gomez-Rodriguez, S.; Barranco, R.J.; Umpierrez, G.E. Safety and efficacy of DPP4 inhibitor and basal insulin in type 2 diabetes: An updated review and challenging clinical scenarios. Diabetes Ther., 2018, 9(5), 1775-1789.
[http://dx.doi.org/10.1007/s13300-018-0488-z] [PMID: 30117055]
[9]
Al-Kuraishy, H.M.; Sami, O.M.; Hussain, N.R.; Al-Gareeb, A.I. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: The intriguing effect. J. Adv. Pharm. Technol. Res., 2020, 11(3), 142-147.
[http://dx.doi.org/10.4103/japtr.JAPTR_18_20] [PMID: 33102198]
[10]
Lin, S.R.; Chang, C.H.; Tsai, M.J.; Cheng, H.; Chen, J.C.; Leong, M.K.; Weng, C.F. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: From in silico to in vivo. Ther. Adv. Chronic Dis., 2019, 10, 2040622319875305.
[http://dx.doi.org/10.1177/2040622319875305] [PMID: 31555430]
[11]
Abdul-Hadi, M.H.; Naji, M.T.; Shams, H.A.; Sami, O.M.; Al-Harchan, N.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: The potential role of metformin and sitagliptin. Biomed. Biotechnol. Res. J., 2020, 4(2), 166.
[http://dx.doi.org/10.4103/bbrj.bbrj_7_20]
[12]
Li, N.; Wang, L.J.; Jiang, B.; Li, X.Q.; Guo, C.L.; Guo, S.J.; Shi, D.Y. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem., 2018, 151, 145-157.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.041] [PMID: 29609120]
[13]
Lal, P. Gliptins: Better approach for type 2 diabetes. Pharma News, 2021. Available from: https://www.pharmatutor.org/articles/gliptins-better-approach-type-2-diabetes
[14]
He, M.; Deng, M.; Wang, J.; Fan, P.; Wang, Y.; Zhao, X.; He, Y.; Shi, B.; Sui, J. Efficacy and tolerability of sitagliptin and metformin compared with insulin as an initial therapy for newly diagnosed diabetic patients with severe hyperglycaemia. Exp. Ther. Med., 2021, 21(3), 217.
[http://dx.doi.org/10.3892/etm.2021.9649] [PMID: 33574913]
[15]
Abdelrahman, R.S. Sitagliptin exerts anti-apoptotic effect in nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(7), 721-731.
[http://dx.doi.org/10.1007/s00210-017-1367-2] [PMID: 28382499]
[16]
Mozafari, N.; Azadi, S.; Mehdi-Alamdarlou, S.; Ashrafi, H.; Azadi, A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses, 2020, 143, 110111.
[http://dx.doi.org/10.1016/j.mehy.2020.110111] [PMID: 32721805]
[17]
Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; Galliani, S.; Dodesini, A.R.; Lepore, G.; Geni, F.; Fiorina, R.M.; Catena, E.; Corsico, A.; Colombo, R.; Mirani, M.; De Riva, C.; Oleandri, S.E.; Abdi, R.; Bonventre, J.V.; Rusconi, S.; Folli, F.; Di Sabatino, A.; Zuccotti, G.; Galli, M.; Fiorina, P. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care, 2020, 43(12), 2999-3006.
[http://dx.doi.org/10.2337/dc20-1521] [PMID: 32994187]
[18]
Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; Shoham, S.; Murad, M.H.; Mustafa, R.A.; Sultan, S.; Falck-Ytter, Y. Infectious diseases society of america guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis., 2020, ciaa478.
[http://dx.doi.org/10.1093/cid/ciaa478] [PMID: 32338708]
[19]
Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; Ciardi, M.R.; Mastroianni, C.M.; Pugliese, F.; Alessandri, F.; Turriziani, O.; Ricci, P.; Catalano, C. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur. Radiol., 2020, 30(12), 6808-6817.
[http://dx.doi.org/10.1007/s00330-020-07033-y] [PMID: 32623505]
[20]
Rasheed, H.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Hussien, N.R.; Al-Nami, M.S. Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus: Bane or Boon. J. Adv. Pharm. Technol. Res., 2019, 10(4), 163-168.
[http://dx.doi.org/10.4103/japtr.JAPTR_65_19] [PMID: 31742116]
[21]
Al-Naimi, M.S.; Hussien, N.R.; Rasheed, H.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Levothyroxine improves Paraoxonase (PON-1) serum levels in patients with primary hypothyroidism: Case-control study. J. Adv. Pharm. Technol. Res., 2018, 9(3), 113-118.
[http://dx.doi.org/10.4103/japtr.JAPTR_298_18] [PMID: 30338238]
[22]
Gude, F.; Riveiro, V.; Rodríguez-Núñez, N.; Ricoy, J.; Lado-Baleato, Ó.; Lourido, T.; Rábade, C.; Lama, A.; Casal, A.; Abelleira-París, R.; Ferreiro, L.; Suárez-Antelo, J.; Toubes, M.E.; Pou, C.; Taboada-Muñiz, M.; Calle-Velles, F.; Mayán-Conesa, P.; Del Molino, M.L.P.; Galbán-Rodríguez, C.; Álvarez-Escudero, J.; Beceiro-Abad, C.; Molinos-Castro, S.; Agra-Vázquez, N.; Pazo-Núñez, M.; Páez-Guillán, E.; Varela-García, P.; Martínez-Rey, C.; Pernas-Pardavila, H.; Domínguez-Santalla, M.J.; Vidal-Vázquez, M.; Marques-Afonso, A.T.; González-Quintela, A.; González-Juanatey, J.R.; Pose, A.; Valdés, L. Development and validation of a clinical score to estimate progression to severe or critical state in COVID-19 pneumonia hospitalized patients. Sci. Rep., 2020, 10(1), 19794.
[http://dx.doi.org/10.1038/s41598-020-75651-z] [PMID: 33188225]
[23]
Nauck, M.A.; Meier, J.J. Reduced COVID-19 mortality with Sitagliptin treatment? Weighing the dissemination of potentially lifesaving findings against the assurance of high scientific standards. Diabetes Care, 2020, 43(12), 2906-2909.
[http://dx.doi.org/10.2337/dci20-0062] [PMID: 33033068]
[24]
Bardaweel, S.K.; Hajjo, R.; Sabbah, D.A. Sitagliptin: a potential drug for the treatment of COVID-19? Acta Pharm., 2021, 71(2), 175-184.
[http://dx.doi.org/10.2478/acph-2021-0013] [PMID: 33151168]
[25]
Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes, 2020, 12(9), 649-658.
[http://dx.doi.org/10.1111/1753-0407.13052] [PMID: 32394639]
[26]
Scheen, A.J. The safety of gliptins : Updated data in 2018. Expert Opin. Drug Saf., 2018, 17(4), 387-405.
[http://dx.doi.org/10.1080/14740338.2018.1444027] [PMID: 29468916]
[27]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med., 2021, 8, 644095.
[http://dx.doi.org/10.3389/fcvm.2021.644095] [PMID: 34124187]
[28]
Letko, M.; Miazgowicz, K.; McMinn, R.; Seifert, S.N.; Sola, I.; Enjuanes, L.; Carmody, A.; van Doremalen, N.; Munster, V. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep., 2018, 24(7), 1730-1737.
[http://dx.doi.org/10.1016/j.celrep.2018.07.045] [PMID: 30110630]
[29]
Strollo, R.; Pozzilli, P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab. Res. Rev., 2020, 36(8), e3330.
[http://dx.doi.org/10.1002/dmrr.3330] [PMID: 32336007]
[30]
Romacho, T.; Sell, H.; Indrakusuma, I.; Roehrborn, D.; Castañeda, T.R.; Jelenik, T.; Markgraf, D.; Hartwig, S.; Weiss, J.; Al-Hasani, H.; Roden, M.; Eckel, J. DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E590-E599.
[http://dx.doi.org/10.1152/ajpendo.00323.2019] [PMID: 31891536]
[31]
Caci, G.; Albini, A.; Malerba, M.; Noonan, D.M.; Pochetti, P.; Polosa, R. COVID-19 and obesity: Dangerous liaisons. J. Clin. Med., 2020, 9(8), 2511.
[http://dx.doi.org/10.3390/jcm9082511] [PMID: 32759719]
[32]
Li, Y.; Yang, L.; Dong, L.; Yang, Z.W.; Zhang, J.; Zhang, S.L.; Niu, M.J.; Xia, J.W.; Gong, Y.; Zhu, N.; Zhang, X.J.; Zhang, Y.Y.; Wei, X.M.; Zhang, Y.Z.; Zhang, P.; Li, S.Q. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol. Sin., 2019, 40(10), 1322-1333.
[http://dx.doi.org/10.1038/s41401-019-0272-2] [PMID: 31316183]
[33]
Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience, 2020, 23(6), 101160.
[http://dx.doi.org/10.1016/j.isci.2020.101160] [PMID: 32405622]
[34]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alqarni, M.; Cruz-Martins, N.; El-Saber Batiha, G. Pleiotropic effects of tetracyclines in the management of COVID-19: emerging perspectives. Front. Pharmacol., 2021, 12, 642822.
[http://dx.doi.org/10.3389/fphar.2021.642822] [PMID: 33967777]
[35]
Yang, W.; Cai, X.; Han, X.; Ji, L. DPP-4 inhibitors and risk of infections: A meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev., 2016, 32(4), 391-404.
[http://dx.doi.org/10.1002/dmrr.2723] [PMID: 26417956]
[36]
Iacobellis, G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract., 2020, 162, 108125.
[http://dx.doi.org/10.1016/j.diabres.2020.108125] [PMID: 32224164]
[37]
Males, VK Letter to the Editor in response to the article COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract., 2020, 163, 108163.
[38]
Drucker, D.J. Coronavirus infections and type 2 diabetes—shared pathways with therapeutic implications. Endocr. Rev., 2020, 41(3), 457-470.
[http://dx.doi.org/10.1210/endrev/bnaa011] [PMID: 32294179]
[39]
Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther., 2020, 209, 107503.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107503] [PMID: 32061923]
[40]
Tomovic, K.; Lazarevic, J.; Kocic, G.; Deljanin-Ilic, M.; Anderluh, M.; Smelcerovic, A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med. Res. Rev., 2019, 39(1), 404-422.
[http://dx.doi.org/10.1002/med.21513] [PMID: 29806214]
[41]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Renin–Angiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J., 2020, 4(5), 33. [BBRJ].
[42]
Jo, C.H.; Kim, S.; Park, J.S.; Kim, G.H. Anti-inflammatory action of sitagliptin and linagliptin in doxorubicin nephropathy. Kidney Blood Press. Res., 2018, 43(3), 987-999.
[http://dx.doi.org/10.1159/000490688] [PMID: 29913457]
[43]
Birnbaum, Y.; Bajaj, M.; Yang, H.C.; Ye, Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc. Drugs Ther., 2018, 32(2), 135-145.
[http://dx.doi.org/10.1007/s10557-018-6778-x] [PMID: 29508169]
[44]
Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res., 2020, 51(5), 384-387.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[45]
Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses, 2020, 143, 110102.
[http://dx.doi.org/10.1016/j.mehy.2020.110102] [PMID: 32721799]
[46]
Suhail, S.; Zajac, J.; Fossum, C.; Lowater, H.; McCracken, C.; Severson, N.; Laatsch, B.; Narkiewicz-Jodko, A.; Johnson, B.; Liebau, J.; Bhattacharyya, S.; Hati, S. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A review. Protein J., 2020, 39(6), 644-656.
[http://dx.doi.org/10.1007/s10930-020-09935-8] [PMID: 33106987]
[47]
Civantos, E.; Bosch, E.; Ramirez, E.; Zhenyukh, O.; Egido, J.; Lorenzo, O.; Mas, S. Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes Metab. Syndr. Obes., 2017, 10, 207-222.
[http://dx.doi.org/10.2147/DMSO.S132537] [PMID: 28652790]
[48]
McGonagle, D; O'Donnell, JS; Sharif, K; Emery, P; Bridgewood, C Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol., 2020, 2(7), e437-e445s.
[49]
Ferrara, F; Vitiello, A The potential role of Gliptins to fight COVID-19. Authorea Preprints, 2020.
[http://dx.doi.org/10.22541/au.159493007.74229845]
[50]
Rao, P.P.N.; Pham, A.T.; Shakeri, A.; El Shatshat, A.; Zhao, Y.; Karuturi, R.C.; Hefny, A.A. Drug repurposing: Dipeptidyl peptidase IV (DPP4) inhibitors as potential agents to treat SARS-CoV-2 (2019-nCov) infection. Pharmaceuticals (Basel), 2021, 14(1), 44.
[http://dx.doi.org/10.3390/ph14010044] [PMID: 33430081]
[51]
Deacon, C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. (Lausanne), 2019, 10, 80.
[http://dx.doi.org/10.3389/fendo.2019.00080] [PMID: 30828317]
[52]
Schlicht, K.; Rohmann, N.; Geisler, C.; Hollstein, T.; Knappe, C.; Hartmann, K.; Schwarz, J.; Tran, F.; Schunk, D.; Junker, R.; Bahmer, T.; Rosenstiel, P.; Schulte, D.; Türk, K.; Franke, A.; Schreiber, S.; Laudes, M. Circulating levels of soluble Dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int. J. Obes., 2020, 44(11), 2335-2338.
[http://dx.doi.org/10.1038/s41366-020-00689-y] [PMID: 32958905]
[53]
Xu, N.; Shao, Y.; Ye, K.; Qu, Y.; Memet, O.; He, D.; Shen, J. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhal. Toxicol., 2019, 31(2), 52-60.
[http://dx.doi.org/10.1080/08958378.2019.1597220] [PMID: 31068039]
[54]
Rieder, M.; Wirth, L.; Pollmeier, L.; Jeserich, M.; Goller, I.; Baldus, N.; Schmid, B.; Busch, H.J.; Hofmann, M.; Kern, W.; Bode, C. Serum ACE-2, angiotensin II, and aldosterone levels are unchanged in patients with COVID-19. Am. J. Hypertens., 2020, 34(3), 278-281.
[55]
Abouelkheir, M.; El-Metwally, T.H. Dipeptidyl peptidase-4 inhibitors can inhibit angiotensin converting enzyme. Eur. J. Pharmacol., 2019, 862, 172638.
[http://dx.doi.org/10.1016/j.ejphar.2019.172638] [PMID: 31491403]
[56]
Pantanetti, P.; Cangelosi, G.; Ambrosio, G. Potential role of incretins in diabetes and COVID-19 infection: A hypothesis worth exploring. Intern. Emerg. Med., 2020, 15(5), 779-782.
[http://dx.doi.org/10.1007/s11739-020-02389-x] [PMID: 32592113]
[57]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab., 2020, 31(6), 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[58]
Israelsen, S.B.; Pottegård, A.; Sandholdt, H.; Madsbad, S.; Thomsen, R.W.; Benfield, T. Comparable COVID-19 outcomes with current use of GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors among patients with diabetes who tested positive for SARS-CoV-2. Diabetes Obes. Metab., 2021, 23(6), 1397-1401.
[http://dx.doi.org/10.1111/dom.14329] [PMID: 33502076]
[59]
Li, Q.; Chitnis, A.; Hammer, M.; Langer, J. Real-world clinical and economic outcomes of liraglutide versus sitagliptin in patients with type 2 diabetes mellitus in the United States. Diabetes Ther., 2014, 5(2), 579-590.
[http://dx.doi.org/10.1007/s13300-014-0084-9] [PMID: 25256818]
[60]
Qi, Y.; Song, D.; Chen, Y. Colorimetric oligonucleotide-based sensor for ultra-low Hg2+ in contaminated environmental medium: Convenience, sensitivity and mechanism. Sci. Total Environ., 2021, 766, 142579.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142579] [PMID: 33601667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy