Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Extracellular Vesicles, Stem Cells and the Role of miRNAs in Neurodegeneration

Author(s): Ayaz M. Belkozhayev, Minnatallah Al-Yozbaki, Alex George, Raigul Ye Niyazova , Kamalidin O. Sharipov , Lee J. Byrne and Cornelia M. Wilson*

Volume 20, Issue 8, 2022

Published on: 14 March, 2022

Page: [1450 - 1478] Pages: 29

DOI: 10.2174/1570159X19666210817150141

Price: $65

conference banner
Abstract

There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington’s disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.

Keywords: Extracellular vesicles, neurodegeneration, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, prion disease, Huntington’s disease, miRNA, stem cells.

Graphical Abstract
[1]
Wang, Y.; Ji, X.; Leak, R.K.; Chen, F.; Cao, G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res. Rev., 2017, 34, 39-50.
[http://dx.doi.org/10.1016/j.arr.2016.11.002] [PMID: 27876573]
[2]
Lee, R.H.; Pulin, A.A.; Seo, M.J.; Kota, D.J.; Ylostalo, J.; Larson, B.L.; Semprun-Prieto, L.; Delafontaine, P.; Prockop, D.J. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 2009, 5(1), 54-63.
[http://dx.doi.org/10.1016/j.stem.2009.05.003] [PMID: 19570514]
[3]
Iso, Y.; Spees, J.L.; Serrano, C.; Bakondi, B.; Pochampally, R.; Song, Y.H.; Sobel, B.E.; Delafontaine, P.; Prockop, D.J. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun., 2007, 354(3), 700-706.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.045] [PMID: 17257581]
[4]
Gao, J.; Dennis, J.E.; Muzic, R.F.; Lundberg, M.; Caplan, A.I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs, 2001, 169(1), 12-20.
[http://dx.doi.org/10.1159/000047856] [PMID: 11340257]
[5]
Bruno, S.; Chiabotto, G.; Favaro, E.; Deregibus, M.C.; Camussi, G. Role of extracellular vesicles in stem cell biology. Am. J. Physiol. Cell Physiol., 2019, 317(2), C303-C313.
[http://dx.doi.org/10.1152/ajpcell.00129.2019] [PMID: 31091143]
[6]
Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; Pasterkamp, G.; de Kleijn, D.P.; Lim, S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.), 2010, 4(3), 214-222.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[7]
Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; Tetta, C.; Camussi, G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol., 2009, 20(5), 1053-1067.
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[8]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[9]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breake-field, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[10]
Lai, C.P.; Kim, E.Y.; Badr, C.E.; Weissleder, R.; Mempel, T.R.; Tannous, B.A.; Breakefield, X.O. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun., 2015, 6, 7029.
[http://dx.doi.org/10.1038/ncomms8029] [PMID: 25967391]
[11]
Ratajczak, J.; Miekus, K.; Kucia, M.; Zhang, J.; Reca, R.; Dvorak, P.; Ratajczak, M.Z. Embryonic stem cell-derived microvesicles repro-gram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006, 20(5), 847-856.
[http://dx.doi.org/10.1038/sj.leu.2404132] [PMID: 16453000]
[12]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[13]
Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; Miller, D.; Zhang, H.G. Treat-ment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther., 2011, 19(10), 1769-1779.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[14]
Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 2008, 8(9), 726-736.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[15]
Romanov, Y.A.; Svintsitskaya, V.A.; Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candi-date MSC-like cells from umbilical cord. Stem Cells, 2003, 21(1), 105-110.
[http://dx.doi.org/10.1634/stemcells.21-1-105] [PMID: 12529557]
[16]
Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 2002, 13(12), 4279-4295.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[17]
In ’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4), 1548-1549.
[http://dx.doi.org/10.1182/blood-2003-04-1291] [PMID: 12900350]
[18]
Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004, 22(5), 649-658.
[http://dx.doi.org/10.1634/stemcells.22-5-649] [PMID: 15342929]
[19]
Boyle, A.J.; McNiece, I.K.; Hare, J.M. Mesenchymal stem cell therapy for cardiac repair. Methods Mol. Biol., 2010, 660, 65-84.
[http://dx.doi.org/10.1007/978-1-60761-705-1_5] [PMID: 20680813]
[20]
Bhandari, D.R.; Seo, K.W.; Sun, B.; Seo, M.S.; Kim, H.S.; Seo, Y.J.; Marcin, J.; Forraz, N.; Roy, H.L.; Larry, D.; Colin, M.; Kang, K.S. The simplest method for in vitro β-cell production from human adult stem cells. Differentiation, 2011, 82(3), 144-152.
[http://dx.doi.org/10.1016/j.diff.2011.06.003] [PMID: 21782317]
[21]
Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T. Adipose tissue-derived mesen-chymal stem cells as a source of human hepatocytes. Hepatology, 2007, 46(1), 219-228.
[http://dx.doi.org/10.1002/hep.21704] [PMID: 17596885]
[22]
Pournasr, B.; Mohamadnejad, M.; Bagheri, M.; Aghdami, N.; Shahsavani, M.; Malekzadeh, R.; Baharvand, H. In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Arch. Iran Med., 2011, 14(4), 244-249.
[PMID: 21726099]
[23]
Yin, L.; Zhu, Y.; Yang, J.; Ni, Y.; Zhou, Z.; Chen, Y.; Wen, L. Adipose tissue-derived mesenchymal stem cells differentiated into hepato-cyte-like cells in vivo and in vitro. Mol. Med. Rep., 2015, 11(3), 1722-1732.
[http://dx.doi.org/10.3892/mmr.2014.2935] [PMID: 25395242]
[24]
Ferrari, G.; Cusella-De Angelis, G.; Coletta, M.; Paolucci, E.; Stornaiuolo, A.; Cossu, G.; Mavilio, F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998, 279(5356), 1528-1530.
[http://dx.doi.org/10.1126/science.279.5356.1528] [PMID: 9488650]
[25]
Planat-Bénard, V.; Menard, C.; André, M.; Puceat, M.; Perez, A.; Garcia-Verdugo, J.M.; Pénicaud, L.; Casteilla, L. Spontaneous cardiomy-ocyte differentiation from adipose tissue stroma cells. Circ. Res., 2004, 94(2), 223-229.
[http://dx.doi.org/10.1161/01.RES.0000109792.43271.47] [PMID: 14656930]
[26]
Rodríguez, L.V.; Alfonso, Z.; Zhang, R.; Leung, J.; Wu, B.; Ignarro, L.J. Clonogenic multipotent stem cells in human adipose tissue differ-entiate into functional smooth muscle cells. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12167-12172.
[http://dx.doi.org/10.1073/pnas.0604850103] [PMID: 16880387]
[27]
Sanchez-Ramos, J.; Song, S.; Cardozo-Pelaez, F.; Hazzi, C.; Stedeford, T.; Willing, A.; Freeman, T.B.; Saporta, S.; Janssen, W.; Patel, N.; Cooper, D.R.; Sanberg, P.R. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol., 2000, 164(2), 247-256.
[http://dx.doi.org/10.1006/exnr.2000.7389] [PMID: 10915564]
[28]
Wosnitza, M.; Hemmrich, K.; Groger, A.; Gräber, S.; Pallua, N. Plasticity of human adipose stem cells to perform adipogenic and endothe-lial differentiation. Differentiation, 2007, 75(1), 12-23.
[http://dx.doi.org/10.1111/j.1432-0436.2006.00110.x] [PMID: 17244018]
[29]
Majumdar, M.K.; Thiede, M.A.; Haynesworth, S.E.; Bruder, S.P.; Gerson, S.L. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J. Hematother. Stem Cell Res., 2000, 9(6), 841-848.
[http://dx.doi.org/10.1089/152581600750062264] [PMID: 11177595]
[30]
Bifari, F.; Lisi, V.; Mimiola, E.; Pasini, A.; Krampera, M. Immune modulation by mesenchymal stem cells. Transfus. Med. Hemother., 2008, 35(3), 194-204.
[http://dx.doi.org/10.1159/000128968] [PMID: 21547117]
[31]
Forbes, G.M.; Sturm, M.J.; Leong, R.W.; Sparrow, M.P.; Segarajasingam, D.; Cummins, A.G.; Phillips, M.; Herrmann, R.P. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin. Gastroenterol. Hepatol., 2014, 12(1), 64-71.
[http://dx.doi.org/10.1016/j.cgh.2013.06.021] [PMID: 23872668]
[32]
González, M.A.; Gonzalez-Rey, E.; Rico, L.; Büscher, D.; Delgado, M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 2009, 136(3), 978-989.
[http://dx.doi.org/10.1053/j.gastro.2008.11.041] [PMID: 19135996]
[33]
Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol., 2003, 31(10), 890-896.
[http://dx.doi.org/10.1016/S0301-472X(03)00110-3] [PMID: 14550804]
[34]
Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4), 1815-1822.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[35]
Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; Uccel-li, A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006, 107(1), 367-372.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[36]
Jiang, X.X.; Zhang, Y.; Liu, B.; Zhang, S.X.; Wu, Y.; Yu, X.D.; Mao, N. Human mesenchymal stem cells inhibit differentiation and func-tion of monocyte-derived dendritic cells. Blood, 2005, 105(10), 4120-4126.
[http://dx.doi.org/10.1182/blood-2004-02-0586] [PMID: 15692068]
[37]
Nauta, A.J.; Fibbe, W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110(10), 3499-3506.
[http://dx.doi.org/10.1182/blood-2007-02-069716] [PMID: 17664353]
[38]
Shi, M.; Liu, Z.W.; Wang, F.S. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin. Exp. Immunol., 2011, 164(1), 1-8.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04327.x] [PMID: 21352202]
[39]
Chapel, A.; Bertho, J.M.; Bensidhoum, M.; Fouillard, L.; Young, R.G.; Frick, J.; Demarquay, C.; Cuvelier, F.; Mathieu, E.; Trompier, F.; Dudoignon, N.; Germain, C.; Mazurier, C.; Aigueperse, J.; Borneman, J.; Gorin, N.C.; Gourmelon, P.; Thierry, D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med., 2003, 5(12), 1028-1038.
[http://dx.doi.org/10.1002/jgm.452] [PMID: 14661178]
[40]
Fong, E.L.; Chan, C.K.; Goodman, S.B. Stem cell homing in musculoskeletal injury. Biomaterials, 2011, 32(2), 395-409.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.101] [PMID: 20933277]
[41]
Mouiseddine, M.; François, S.; Semont, A.; Sache, A.; Allenet, B.; Mathieu, N.; Frick, J.; Thierry, D.; Chapel, A. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br. J. Radiol., 2007, 80(Spec No 1), S49-S55.
[http://dx.doi.org/10.1259/bjr/25927054] [PMID: 17704326]
[42]
Kidd, S.; Spaeth, E.; Dembinski, J.L.; Dietrich, M.; Watson, K.; Klopp, A.; Battula, V.L.; Weil, M.; Andreeff, M.; Marini, F.C. Direct evi-dence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 2009, 27(10), 2614-2623.
[http://dx.doi.org/10.1002/stem.187] [PMID: 19650040]
[43]
Galland, S.; Stamenkovic, I. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression. J. Pathol., 2020, 250(5), 555-572.
[http://dx.doi.org/10.1002/path.5357] [PMID: 31608444]
[44]
Kirchner, B.; Buschmann, D.; Paul, V.; Pfaffl, M.W. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves. PLoS One, 2020, 15(2), e0229606.
[http://dx.doi.org/10.1371/journal.pone.0229606] [PMID: 32109241]
[45]
Cufaro, M.C.; Pieragostino, D.; Lanuti, P.; Rossi, C.; Cicalini, I.; Federici, L.; De Laurenzi, V.; Del Boccio, P. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: The contribution of proteomics. J. Oncol., 2019, 2019, 1639854.
[http://dx.doi.org/10.1155/2019/1639854] [PMID: 31281356]
[46]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.A.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; Del Portillo, H.A.; De-maret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; El Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.I.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M. Kosanović M.M.; Kovács, A.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, A.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Mura-ca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.; Powell, B.H.; Pra-da, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Taha-ra, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.Y.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zim-mermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[47]
Latifkar, A.; Hur, Y.H.; Sanchez, J.C.; Cerione, R.A.; Antonyak, M.A. New insights into extracellular vesicle biogenesis and function. J. Cell Sci., 2019, 132(13), 132.
[http://dx.doi.org/10.1242/jcs.222406] [PMID: 31263077]
[48]
Gézsi, A.; Kovács, Á.; Visnovitz, T.; Buzás, E.I. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp. Mol. Med., 2019, 51(3), 1-11.
[http://dx.doi.org/10.1038/s12276-019-0226-2] [PMID: 30872567]
[49]
Tang, T.T.; Lv, L.L.; Lan, H.Y.; Liu, B.C. Extracellular vesicles: Opportunities and challenges for the treatment of renal diseases. Front. Physiol., 2019, 10, 226.
[http://dx.doi.org/10.3389/fphys.2019.00226] [PMID: 30941051]
[50]
Kishore, R.; Khan, M. More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair. Circ. Res., 2016, 118(2), 330-343.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307654] [PMID: 26838317]
[51]
Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther., 2018, 188, 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.013] [PMID: 29476772]
[52]
Tricarico, C.; Clancy, J.; D’Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases, 2017, 8(4), 220-232.
[http://dx.doi.org/10.1080/21541248.2016.1215283] [PMID: 27494381]
[53]
Kalra, H.; Simpson, R.J.; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.; Bond, V.C.; Borràs, F.E.; Breakefield, X.; Budnik, V.; Buzas, E.; Camussi, G.; Clayton, A.; Cocucci, E.; Falcon-Perez, J.M.; Gabrielsson, S.; Gho, Y.S.; Gupta, D.; Harsha, H.C.; Hendrix, A.; Hill, A.F.; In-al, J.M.; Jenster, G.; Krämer-Albers, E.M.; Lim, S.K.; Llorente, A.; Lötvall, J.; Marcilla, A.; Mincheva-Nilsson, L.; Nazarenko, I.; Nieu-wland, R.; Nolte-’t Hoen, E.N.; Pandey, A.; Patel, T.; Piper, M.G.; Pluchino, S.; Prasad, T.S.; Rajendran, L.; Raposo, G.; Record, M.; Reid, G.E.; Sánchez-Madrid, F.; Schiffelers, R.M.; Siljander, P.; Stensballe, A.; Stoorvogel, W.; Taylor, D.; Thery, C.; Valadi, H.; van Balkom, B.W.; Vázquez, J.; Vidal, M.; Wauben, M.H.; Yáñez-Mó, M.; Zoeller, M.; Mathivanan, S. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol., 2012, 10(12), e1001450.
[http://dx.doi.org/10.1371/journal.pbio.1001450] [PMID: 23271954]
[54]
EL Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[55]
Borges, F.T.; Reis, L.A.; Schor, N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz. J. Med. Biol. Res., 2013, 46(10), 824-830.
[http://dx.doi.org/10.1590/1414-431X20132964] [PMID: 24141609]
[56]
Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol., 2017, 11(12), 1673-1686.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[57]
Ihara, T.; Yamamoto, T.; Sugamata, M.; Okumura, H.; Ueno, Y. The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch., 1998, 433(5), 443-447.
[http://dx.doi.org/10.1007/s004280050272] [PMID: 9849859]
[58]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 8.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[59]
Mettinger, K.L.; Rameshwar, P.; Kumar, V. Exosomes, Stem Cells and MicroRNA. In: Aging, Cancer Age Related Disorders, Springer. 2018, 9(8), 968.
[60]
Temoche-Diaz, M.M.; Shurtleff, M.J.; Nottingham, R.M.; Yao, J.; Fadadu, R.P.; Lambowitz, A.M.; Schekman, R. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.47544] [PMID: 31436530]
[61]
Pfeifer, P.; Werner, N.; Jansen, F. Role and function of microRNAs in extracellular vesicles in cardiovascular biology. BioMed Res. Int., 2015, 2015, 161393.
[http://dx.doi.org/10.1155/2015/161393] [PMID: 26558258]
[62]
Denk, J.; Boelmans, K.; Siegismund, C.; Lassner, D.; Arlt, S.; Jahn, H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One, 2015, 10(5), e0126423.
[http://dx.doi.org/10.1371/journal.pone.0126423] [PMID: 25992776]
[63]
Ceafalan, L.C.; Ioghen, O.C.; Marta, D.S.; Constantin, A.; Alexandru, N.; Nemecz, M.; Tanko, G.; Filippi, A.; Magda, S.L.; Bojin, F.; Paunescu, V.; Vinereanu, D.; Georgescu, A.; Gherghiceanu, M. Part two: Extracellular vesicles as a risk factor in neurodegenerative dis-eases; IntechOpen, 2019.
[64]
Ciregia, F.; Urbani, A.; Palmisano, G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front. Mol. Neurosci., 2017, 10, 276.
[http://dx.doi.org/10.3389/fnmol.2017.00276] [PMID: 28912682]
[65]
Caruso Bavisotto, C.; Scalia, F.; Marino Gammazza, A.; Carlisi, D.; Bucchieri, F.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F.; Campanella, C. Extracellular Vesicle-Mediated Cell(-) Cell Communication in the Nervous System: Focus on Neurological Diseases. Int. J. Mol. Sci., 2019, 20(2), 434.
[http://dx.doi.org/10.3390/ijms20020434]
[66]
Peters, A.; Fairén, A. Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi-electron microscopic technique. J. Comp. Neurol., 1978, 181(1), 129-171.
[http://dx.doi.org/10.1002/cne.901810108] [PMID: 681555]
[67]
Blackburn, D.; Sargsyan, S.; Monk, P.N.; Shaw, P.J. Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia, 2009, 57(12), 1251-1264.
[http://dx.doi.org/10.1002/glia.20848] [PMID: 19373940]
[68]
Sidoryk-Wegrzynowicz, M.; Wegrzynowicz, M.; Lee, E.; Bowman, A.B.; Aschner, M. Role of astrocytes in brain function and disease. Toxicol. Pathol., 2011, 39(1), 115-123.
[http://dx.doi.org/10.1177/0192623310385254] [PMID: 21075920]
[69]
Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263.
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[70]
Agnati, L.F.; Guidolin, D.; Maura, G.; Marcoli, M.; Leo, G.; Carone, C.; De Caro, R.; Genedani, S.; Borroto-Escuela, D.O.; Fuxe, K. Infor-mation handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J. Neural Transm. (Vienna), 2014, 121(12), 1431-1449.
[http://dx.doi.org/10.1007/s00702-014-1240-0] [PMID: 24866694]
[71]
Guescini, M.; Genedani, S.; Stocchi, V.; Agnati, L.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna), 2010, 117(1), 1-4.
[http://dx.doi.org/10.1007/s00702-009-0288-8] [PMID: 19680595]
[72]
Pascua-Maestro, R.; González, E.; Lillo, C.; Ganfornina, M.D.; Falcón-Pérez, J.M.; Sanchez, D. Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front. Cell. Neurosci., 2019, 12, 526.
[http://dx.doi.org/10.3389/fncel.2018.00526] [PMID: 30687015]
[73]
Taylor, A.R.; Robinson, M.B.; Gifondorwa, D.J.; Tytell, M.; Milligan, C.E. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev. Neurobiol., 2007, 67(13), 1815-1829.
[http://dx.doi.org/10.1002/dneu.20559] [PMID: 17701989]
[74]
Wang, G.; Dinkins, M.; He, Q.; Zhu, G.; Poirier, C.; Campbell, A.; Mayer-Proschel, M.; Bieberich, E. Astrocytes secrete exosomes en-riched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J. Biol. Chem., 2012, 287(25), 21384-21395.
[http://dx.doi.org/10.1074/jbc.M112.340513] [PMID: 22532571]
[75]
Willis, C.M.; Ménoret, A.; Jellison, E.R.; Nicaise, A.M.; Vella, A.T.; Crocker, S.J. A refined bead-free method to identify astrocytic exo-somes in primary glial cultures and blood plasma. Front. Neurosci., 2017, 11, 335.
[http://dx.doi.org/10.3389/fnins.2017.00335] [PMID: 28663721]
[76]
Venturini, A.; Passalacqua, M.; Pelassa, S.; Pastorino, F.; Tedesco, M.; Cortese, K.; Gagliani, M.C.; Leo, G.; Maura, G.; Guidolin, D.; Ag-nati, L.F.; Marcoli, M.; Cervetto, C. Exosomes from astrocyte processes: Signaling to neurons. Front. Pharmacol., 2019, 10, 1452.
[http://dx.doi.org/10.3389/fphar.2019.01452] [PMID: 31849688]
[77]
Gosselin, R.D.; Meylan, P.; Decosterd, I. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front. Cell. Neurosci., 2013, 7, 251.
[http://dx.doi.org/10.3389/fncel.2013.00251] [PMID: 24368897]
[78]
Guitart, K.; Loers, G.; Buck, F.; Bork, U.; Schachner, M.; Kleene, R. Improvement of neuronal cell survival by astrocyte-derived exo-somes under hypoxic and ischemic conditions depends on prion protein. Glia, 2016, 64(6), 896-910.
[http://dx.doi.org/10.1002/glia.22963] [PMID: 26992135]
[79]
Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 8.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[80]
Domingues, H.S.; Portugal, C.C.; Socodato, R.; Relvas, J.B. Corrigendum: Oligodendrocyte, astrocyte and microglia crosstalk in myelin development, damage, and repair. Front. Cell Dev. Biol., 2016, 4, 79.
[http://dx.doi.org/10.3389/fcell.2016.00079] [PMID: 27562149]
[81]
Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Amphornrat, J.; Thilemann, S.; Saab, A.S.; Kirchhoff, F.; Möbius, W.; Goebbels, S.; Nave, K.A.; Schneider, A.; Simons, M.; Klugmann, M.; Trotter, J.; Krämer-Albers, E.M. Neurotransmitter-triggered transfer of exosomes mediates oli-godendrocyte-neuron communication. PLoS Biol., 2013, 11(7), e1001604.
[http://dx.doi.org/10.1371/journal.pbio.1001604] [PMID: 23874151]
[82]
Fröhlich, D.; Kuo, W.P.; Frühbeis, C.; Sun, J.J.; Zehendner, C.M.; Luhmann, H.J.; Pinto, S.; Toedling, J.; Trotter, J.; Krämer-Albers, E.M. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 369.
[http://dx.doi.org/10.1098/rstb.2013.0510] [PMID: 25135971]
[83]
Frühbeis, C.; Kuo-Elsner, W.P.; Barth, K.; Peris, L.; Tenzer, S.; Möbius, W.; Werner, H.B.; Nave, K-A.; Fröhlich, D.; Krämer-Albers, E-M. Oligodendrocyte-derived exosomes promote axonal transport and axonal long-term maintenance bioRxiv, 2019, 2019.12.20.884171.
[84]
Delpech, J.C.; Herron, S.; Botros, M.B.; Ikezu, T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci., 2019, 42(5), 361-372.
[http://dx.doi.org/10.1016/j.tins.2019.02.007] [PMID: 30926143]
[85]
Yin, J.; Valin, K.L.; Dixon, M.L.; Leavenworth, J.W. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J. Immunol. Res., 2017, 2017, 5150678.
[http://dx.doi.org/10.1155/2017/5150678] [PMID: 29410971]
[86]
Ueno, M.; Fujita, Y.; Tanaka, T.; Nakamura, Y.; Kikuta, J.; Ishii, M.; Yamashita, T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci., 2013, 16(5), 543-551.
[http://dx.doi.org/10.1038/nn.3358] [PMID: 23525041]
[87]
Glebov, K.; Löchner, M.; Jabs, R.; Lau, T.; Merkel, O.; Schloss, P.; Steinhäuser, C.; Walter, J. Serotonin stimulates secretion of exosomes from microglia cells. Glia, 2015, 63(4), 626-634.
[http://dx.doi.org/10.1002/glia.22772] [PMID: 25451814]
[88]
Potolicchio, I.; Carven, G.J.; Xu, X.; Stipp, C.; Riese, R.J.; Stern, L.J.; Santambrogio, L. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol., 2005, 175(4), 2237-2243.
[http://dx.doi.org/10.4049/jimmunol.175.4.2237] [PMID: 16081791]
[89]
Drago, F.; Lombardi, M.; Prada, I.; Gabrielli, M.; Joshi, P.; Cojoc, D.; Franck, J.; Fournier, I.; Vizioli, J.; Verderio, C. ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Front. Pharmacol., 2017, 8, 910.
[http://dx.doi.org/10.3389/fphar.2017.00910] [PMID: 29321741]
[90]
Fauré, J.; Lachenal, G.; Court, M.; Hirrlinger, J.; Chatellard-Causse, C.; Blot, B.; Grange, J.; Schoehn, G.; Goldberg, Y.; Boyer, V.; Kirch-hoff, F.; Raposo, G.; Garin, J.; Sadoul, R. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci., 2006, 31(4), 642-648.
[http://dx.doi.org/10.1016/j.mcn.2005.12.003] [PMID: 16446100]
[91]
Lachenal, G.; Pernet-Gallay, K.; Chivet, M.; Hemming, F.J.; Belly, A.; Bodon, G.; Blot, B.; Haase, G.; Goldberg, Y.; Sadoul, R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci., 2011, 46(2), 409-418.
[http://dx.doi.org/10.1016/j.mcn.2010.11.004] [PMID: 21111824]
[92]
Sharma, P.; Mesci, P.; Carromeu, C.; McClatchy, D.R.; Schiapparelli, L.; Yates, J.R., III; Muotri, A.R.; Cline, H.T. Exosomes regulate neu-rogenesis and circuit assembly. Proc. Natl. Acad. Sci. USA, 2019, 116(32), 16086-16094.
[http://dx.doi.org/10.1073/pnas.1902513116] [PMID: 31320591]
[93]
Bahrini, I.; Song, J.H.; Diez, D.; Hanayama, R. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci. Rep., 2015, 5, 7989.
[http://dx.doi.org/10.1038/srep07989] [PMID: 25612542]
[94]
Lee, S.; Mankhong, S.; Kang, J.H. Extracellular vesicle as a source of Alzheimer’s biomarkers: Opportunities and challenges. Int. J. Mol. Sci., 2019, 20(7), 20.
[http://dx.doi.org/10.3390/ijms20071728] [PMID: 30965555]
[95]
Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123), 921-923.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[96]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[97]
Rajendran, L.; Honsho, M.; Zahn, T.R.; Keller, P.; Geiger, K.D.; Verkade, P.; Simons, K. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11172-11177.
[http://dx.doi.org/10.1073/pnas.0603838103] [PMID: 16837572]
[98]
Sharples, R.A.; Vella, L.J.; Nisbet, R.M.; Naylor, R.; Perez, K.; Barnham, K.J.; Masters, C.L.; Hill, A.F. Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes. FASEB J., 2008, 22(5), 1469-1478.
[http://dx.doi.org/10.1096/fj.07-9357com] [PMID: 18171695]
[99]
Asai, H.; Ikezu, S.; Tsunoda, S.; Medalla, M.; Luebke, J.; Haydar, T.; Wolozin, B.; Butovsky, O.; Kügler, S.; Ikezu, T. Depletion of micro-glia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci., 2015, 18(11), 1584-1593.
[http://dx.doi.org/10.1038/nn.4132] [PMID: 26436904]
[100]
Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; Bieberich, E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging, 2014, 35(8), 1792-1800.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.012] [PMID: 24650793]
[101]
Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Reactive glia not only associ-ates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol., 2011, 179(3), 1373-1384.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.047] [PMID: 21777559]
[102]
Crotti, A.; Sait, H.R.; McAvoy, K.M.; Estrada, K.; Ergun, A.; Szak, S.; Marsh, G.; Jandreski, L.; Peterson, M.; Reynolds, T.L.; Dalkilic-Liddle, I.; Cameron, A.; Cahir-McFarland, E.; Ransohoff, R.M. BIN1 favors the spreading of Tau via extracellular vesicles. Sci. Rep., 2019, 9(1), 9477.
[http://dx.doi.org/10.1038/s41598-019-45676-0] [PMID: 31263146]
[103]
Nelson, P.T.; Wang, W.X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J. Alzheimers Dis., 2010, 21(1), 75-79.
[http://dx.doi.org/10.3233/JAD-2010-091603] [PMID: 20413881]
[104]
Zhu, H.C.; Wang, L.M.; Wang, M.; Song, B.; Tan, S.; Teng, J.F.; Duan, D.X. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res. Bull., 2012, 88(6), 596-601.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.018] [PMID: 22721728]
[105]
Kim, J.; Yoon, H.; Ramírez, C.M.; Lee, S.M.; Hoe, H.S.; Fernández-Hernando, C.; Kim, J. MiR-106b impairs cholesterol efflux and in-creases Aβ levels by repressing ABCA1 expression. Exp. Neurol., 2012, 235(2), 476-483.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.010] [PMID: 22119192]
[106]
Ben Halima, S.; Siegel, G.; Rajendran, L. miR-186 in Alzheimer’s disease: a big hope for a small RNA? J. Neurochem., 2016, 137(3), 308-311.
[http://dx.doi.org/10.1111/jnc.13573] [PMID: 27029568]
[107]
Patel, N.; Hoang, D.; Miller, N.; Ansaloni, S.; Huang, Q.; Rogers, J.T.; Lee, J.C.; Saunders, A.J. MicroRNAs can regulate human APP lev-els. Mol. Neurodegener., 2008, 3, 10.
[http://dx.doi.org/10.1186/1750-1326-3-10] [PMID: 18684319]
[108]
Yang, L.B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; Li, R.; Shen, Y. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med., 2003, 9(1), 3-4.
[http://dx.doi.org/10.1038/nm0103-3] [PMID: 12514700]
[109]
Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; Prinjha, R.K.; Richardson, J.C.; Saunders, A.M.; Roses, A.D.; Richards, C.A. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis., 2008, 14(1), 27-41.
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[110]
Sethi, P.; Lukiw, W.J. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neo-cortex. Neurosci. Lett., 2009, 459(2), 100-104.
[http://dx.doi.org/10.1016/j.neulet.2009.04.052] [PMID: 19406203]
[111]
Schonrock, N.; Ke, Y.D.; Humphreys, D.; Staufenbiel, M.; Ittner, L.M.; Preiss, T.; Götz, J. Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS One, 2010, 5(6), e11070.
[http://dx.doi.org/10.1371/journal.pone.0011070] [PMID: 20552018]
[112]
Coolen, M.; Katz, S.; Bally-Cuif, L. miR-9: a versatile regulator of neurogenesis. Front. Cell. Neurosci., 2013, 7, 220.
[http://dx.doi.org/10.3389/fncel.2013.00220] [PMID: 24312010]
[113]
Schonrock, N.; Humphreys, D.T.; Preiss, T.; Götz, J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J. Mol. Neurosci., 2012, 46(2), 324-335.
[http://dx.doi.org/10.1007/s12031-011-9587-2] [PMID: 21720722]
[114]
Mairet-Coello, G.; Courchet, J.; Pieraut, S.; Courchet, V.; Maximov, A.; Polleux, F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron, 2013, 78(1), 94-108.
[http://dx.doi.org/10.1016/j.neuron.2013.02.003] [PMID: 23583109]
[115]
Wu, J.; Xie, X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol., 2006, 7(9), R85.
[http://dx.doi.org/10.1186/gb-2006-7-9-r85] [PMID: 17002790]
[116]
Chang, F.; Zhang, L.H.; Xu, W.P.; Jing, P.; Zhan, P.Y. microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calci-um/calmodulin-dependent protein kinase kinase 2. Mol. Med. Rep., 2014, 9(5), 1917-1922.
[http://dx.doi.org/10.3892/mmr.2014.2013] [PMID: 24603903]
[117]
Wang, W.X.; Rajeev, B.W.; Stromberg, A.J.; Ren, N.; Tang, G.; Huang, Q.; Rigoutsos, I.; Nelson, P.T. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor pro-tein-cleaving enzyme 1. J. Neurosci., 2008, 28(5), 1213-1223.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[118]
Augustin, R.; Endres, K.; Reinhardt, S.; Kuhn, P.H.; Lichtenthaler, S.F.; Hansen, J.; Wurst, W.; Trümbach, D. Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Med. Genet., 2012, 13, 35.
[http://dx.doi.org/10.1186/1471-2350-13-35] [PMID: 22594617]
[119]
Yao, J.; Hennessey, T.; Flynt, A.; Lai, E.; Beal, M.F.; Lin, M.T. MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One, 2010, 5(12), e15546.
[http://dx.doi.org/10.1371/journal.pone.0015546] [PMID: 21179570]
[120]
Vickrey, B.G.; Mittman, B.S.; Connor, K.I.; Pearson, M.L.; Della Penna, R.D.; Ganiats, T.G.; Demonte, R.W., Jr; Chodosh, J.; Cui, X.; Vassar, S.; Duan, N.; Lee, M. The effect of a disease management intervention on quality and outcomes of dementia care: a randomized, controlled trial. Ann. Intern. Med., 2006, 145(10), 713-726.
[http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00004] [PMID: 17116916]
[121]
Voisin, T.; Vellas, B. Diagnosis and treatment of patients with severe Alzheimer’s disease. Drugs Aging, 2009, 26(2), 135-144.
[http://dx.doi.org/10.2165/0002512-200926020-00005] [PMID: 19220070]
[122]
Emamzadeh, F.N.; Surguchov, A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci., 2018, 12, 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[123]
Zafar, S.; Yaddanapudi, S.S. Parkinson Disease. StatPearls, 2021. StatPearls Publishing, 2022 Jan-. Available from: https://www. ncbi.nlm.nih.gov/books/NBK470193/
[124]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3, 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[125]
El-Agnaf, O.M.; Salem, S.A.; Paleologou, K.E.; Cooper, L.J.; Fullwood, N.J.; Gibson, M.J.; Curran, M.D.; Court, J.A.; Mann, D.M.; Ikeda, S.; Cookson, M.R.; Hardy, J.; Allsop, D. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, in-cluding human plasma. FASEB J., 2003, 17(13), 1945-1947.
[http://dx.doi.org/10.1096/fj.03-0098fje] [PMID: 14519670]
[126]
Emmanouilidou, E.; Melachroinou, K.; Roumeliotis, T.; Garbis, S.D.; Ntzouni, M.; Margaritis, L.H.; Stefanis, L.; Vekrellis, K. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci., 2010, 30(20), 6838-6851.
[http://dx.doi.org/10.1523/JNEUROSCI.5699-09.2010] [PMID: 20484626]
[127]
Alvarez-Erviti, L.; Seow, Y.; Schapira, A.H.; Gardiner, C.; Sargent, I.L.; Wood, M.J.; Cooper, J.M. Lysosomal dysfunction increases exo-some-mediated alpha-synuclein release and transmission. Neurobiol. Dis., 2011, 42(3), 360-367.
[http://dx.doi.org/10.1016/j.nbd.2011.01.029] [PMID: 21303699]
[128]
Danzer, K.M.; Kranich, L.R.; Ruf, W.P.; Cagsal-Getkin, O.; Winslow, A.R.; Zhu, L.; Vanderburg, C.R.; McLean, P.J. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener., 2012, 7, 42.
[http://dx.doi.org/10.1186/1750-1326-7-42] [PMID: 22920859]
[129]
Cao, Z. Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Feng, T. α-Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci. Lett., 2019, 696, 114-120.
[http://dx.doi.org/10.1016/j.neulet.2018.12.030] [PMID: 30579996]
[130]
Chang, C.; Lang, H.; Geng, N.; Wang, J.; Li, N.; Wang, X. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci. Lett., 2013, 548, 190-195.
[http://dx.doi.org/10.1016/j.neulet.2013.06.009] [PMID: 23792198]
[131]
Cooper, J.M.; Wiklander, P.B.; Nordin, J.Z.; Al-Shawi, R.; Wood, M.J.; Vithlani, M.; Schapira, A.H.; Simons, J.P.; El-Andaloussi, S. Alva-rez-Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord., 2014, 29(12), 1476-1485.
[http://dx.doi.org/10.1002/mds.25978] [PMID: 25112864]
[132]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrako-va, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[133]
Etheridge, A.; Lee, I.; Hood, L.; Galas, D.; Wang, K. Extracellular microRNA: a new source of biomarkers. Mutat. Res., 2011, 717(1-2), 85-90.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.004] [PMID: 21402084]
[134]
Kamal, M.A.; Mushtaq, G.; Greig, N.H. Current update on synopsis of miRNA dysregulation in neurological disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(4), 492-501.
[http://dx.doi.org/10.2174/1871527314666150225143637] [PMID: 25714967]
[135]
Palanichamy, J.K.; Rao, D.S. miRNA dysregulation in cancer: towards a mechanistic understanding. Front. Genet., 2014, 5, 54.
[http://dx.doi.org/10.3389/fgene.2014.00054] [PMID: 24672539]
[136]
Goh, S.Y.; Chao, Y.X.; Dheen, S.T.; Tan, E.K.; Tay, S.S. Role of MicroRNAs in Parkinson’s Disease. Int. J. Mol. Sci., 2019, 20(22), 20.
[http://dx.doi.org/10.3390/ijms20225649] [PMID: 31718095]
[137]
Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial func-tion. Hum. Mol. Genet., 2011, 20(15), 3067-3078.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[138]
Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect. Med., 2012, 2(9), a009415.
[http://dx.doi.org/10.1101/cshperspect.a009415] [PMID: 22951446]
[139]
Shimura, H.; Hattori, N.; Kubo, Si.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K.; Suzuki, T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 2000, 25(3), 302-305.
[http://dx.doi.org/10.1038/77060] [PMID: 10888878]
[140]
Illarioshkin, S.N.; Periquet, M.; Rawal, N.; Lücking, C.B.; Zagorovskaya, T.B.; Slominsky, P.A.; Miloserdova, O.V.; Markova, E.D.; Lim-borska, S.A.; Ivanova-Smolenskaya, I.A.; Brice, A. Mutation analysis of the parkin gene in Russian families with autosomal recessive ju-venile parkinsonism. Mov. Disord., 2003, 18(8), 914-919.
[http://dx.doi.org/10.1002/mds.10467] [PMID: 12889082]
[141]
Lindberg, I.; Shorter, J.; Wiseman, R.L.; Chiti, F.; Dickey, C.A.; McLean, P.J. Chaperones in Neurodegeneration. J. Neurosci., 2015, 35(41), 13853-13859.
[http://dx.doi.org/10.1523/JNEUROSCI.2600-15.2015] [PMID: 26468185]
[142]
Auluck, P.K.; Chan, H.Y.; Trojanowski, J.Q.; Lee, V.M.; Bonini, N.M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 2002, 295(5556), 865-868.
[http://dx.doi.org/10.1126/science.1067389] [PMID: 11823645]
[143]
Klucken, J.; Shin, Y.; Masliah, E.; Hyman, B.T.; McLean, P.J. Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. J. Biol. Chem., 2004, 279(24), 25497-25502.
[http://dx.doi.org/10.1074/jbc.M400255200] [PMID: 15044495]
[144]
Zhang, Z.; Cheng, Y. miR-16-1 promotes the aberrant α-synuclein accumulation in parkinson disease via targeting heat shock protein 70. Sci. World J., 2014, 2014, 938348.
[PMID: 25054189]
[145]
Alvarez-Erviti, L.; Seow, Y.; Schapira, A.H.; Rodriguez-Oroz, M.C.; Obeso, J.A.; Cooper, J.M. Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis., 2013, 4, e545.
[http://dx.doi.org/10.1038/cddis.2013.73] [PMID: 23492776]
[146]
Kim, J.; Inoue, K.; Ishii, J.; Vanti, W.B.; Voronov, S.V.; Murchison, E.; Hannon, G.; Abeliovich, A. A MicroRNA feedback circuit in mid-brain dopamine neurons. Science, 2007, 317(5842), 1220-1224.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[147]
Imran, M.; Mahmood, S. An overview of human prion diseases. Virol. J., 2011, 8, 559.
[http://dx.doi.org/10.1186/1743-422X-8-559] [PMID: 22196171]
[148]
Avni, A.; Swasthi, H.M.; Majumdar, A.; Mukhopadhyay, S. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. Prog. Mol. Biol. Transl. Sci., 2019, 166, 109-143.
[http://dx.doi.org/10.1016/bs.pmbts.2019.05.005] [PMID: 31521230]
[149]
Creutzfeldt, H.G. On a particular focal disease of the central nervous system (preliminary communication), 1920. Alzheimer Dis. Assoc. Disord., 1989, 3(1-2), 3-25.
[http://dx.doi.org/10.1097/00002093-198903010-00002] [PMID: 2663042]
[150]
Duckett, S.; Stern, J. Origins of the Creutzfeldt and Jakob concept. J. Hist. Neurosci., 1999, 8(1), 21-34.
[http://dx.doi.org/10.1076/jhin.8.1.21.1771] [PMID: 11624133]
[151]
Kübler, E.; Oesch, B.; Raeber, A.J. Diagnosis of prion diseases. Br. Med. Bull., 2003, 66, 267-279.
[http://dx.doi.org/10.1093/bmb/66.1.267] [PMID: 14522864]
[152]
Puckett, C.; Concannon, P.; Casey, C.; Hood, L. Genomic structure of the human prion protein gene. Am. J. Hum. Genet., 1991, 49(2), 320-329.
[PMID: 1678248]
[153]
Mackenzie, G.; Will, R. Creutzfeldt-Jakob disease: recent developments. F1000 Res., 2017, 6, 2053.
[http://dx.doi.org/10.12688/f1000research.12681.1] [PMID: 29225787]
[154]
Chen, C.; Dong, X.P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty, 2016, 5(1), 47.
[http://dx.doi.org/10.1186/s40249-016-0143-8] [PMID: 27251305]
[155]
Mead, S.; Stumpf, M.P.; Whitfield, J.; Beck, J.A.; Poulter, M.; Campbell, T.; Uphill, J.B.; Goldstein, D.; Alpers, M.; Fisher, E.M.; Collinge, J. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science, 2003, 300(5619), 640-643.
[http://dx.doi.org/10.1126/science.1083320] [PMID: 12690204]
[156]
Geschwind, M.D. Prion Diseases. Continuum (Minneap. Minn.), 2015, 21 (6 Neuroinfectious Disease), 1612-1638.
[http://dx.doi.org/10.1212/CON.0000000000000251] [PMID: 26633779]
[157]
Roos, R.; Gajdusek, D.C.; Gibbs, C.J., Jr The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain, 1973, 96(1), 1-20.
[http://dx.doi.org/10.1093/brain/96.1.1] [PMID: 4633062]
[158]
Masters, C.L.; Gajdusek, D.C.; Gibbs, C.J. Jr Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain, 1981, 104(3), 559-588.
[http://dx.doi.org/10.1093/brain/104.3.559] [PMID: 6791762]
[159]
Colby, D.W.; Prusiner, S.B. Prions. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a006833.
[http://dx.doi.org/10.1101/cshperspect.a006833] [PMID: 21421910]
[160]
Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA, 1998, 95(23), 13363-13383.
[http://dx.doi.org/10.1073/pnas.95.23.13363] [PMID: 9811807]
[161]
Kosik, K.S. The neuronal microRNA system. Nat. Rev. Neurosci., 2006, 7(12), 911-920.
[http://dx.doi.org/10.1038/nrn2037] [PMID: 17115073]
[162]
Llorens, F.; Thüne, K.; Martí, E.; Kanata, E.; Dafou, D.; Díaz-Lucena, D.; Vivancos, A.; Shomroni, O.; Zafar, S.; Schmitz, M.; Michel, U.; Fernández-Borges, N.; Andréoletti, O.; Del Río, J.A.; Díez, J.; Fischer, A.; Bonn, S.; Sklaviadis, T.; Torres, J.M.; Ferrer, I.; Zerr, I. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing ma-chinery and biogenesis. PLoS Pathog., 2018, 14(1), e1006802.
[http://dx.doi.org/10.1371/journal.ppat.1006802] [PMID: 29357384]
[163]
Gibbings, D.; Leblanc, P.; Jay, F.; Pontier, D.; Michel, F.; Schwab, Y.; Alais, S.; Lagrange, T.; Voinnet, O. Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol, 2012, 19(5), 517-524. S1.
[http://dx.doi.org/10.1038/nsmb.2273] [PMID: 22484317]
[164]
Lukiw, W.J. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 2007, 18(3), 297-300.
[http://dx.doi.org/10.1097/WNR.0b013e3280148e8b] [PMID: 17314675]
[165]
Martins, M.; Rosa, A.; Guedes, L.C.; Fonseca, B.V.; Gotovac, K.; Violante, S.; Mestre, T.; Coelho, M.; Rosa, M.M.; Martin, E.R.; Vance, J.M.; Outeiro, T.F.; Wang, L.; Borovecki, F.; Ferreira, J.J.; Oliveira, S.A. Convergence of miRNA expression profiling, α-synuclein interac-ton and GWAS in Parkinson’s disease. PLoS One, 2011, 6(10), e25443.
[http://dx.doi.org/10.1371/journal.pone.0025443] [PMID: 22003392]
[166]
Bellingham, S.A.; Coleman, B.M.; Hill, A.F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res., 2012, 40(21), 10937-10949.
[http://dx.doi.org/10.1093/nar/gks832] [PMID: 22965126]
[167]
Boese, A.S.; Saba, R.; Campbell, K.; Majer, A.; Medina, S.; Burton, L.; Booth, T.F.; Chong, P.; Westmacott, G.; Dutta, S.M.; Saba, J.A.; Booth, S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci., 2016, 71, 13-24.
[http://dx.doi.org/10.1016/j.mcn.2015.12.001] [PMID: 26658803]
[168]
Lukiw, W.J.; Dua, P.; Pogue, A.I.; Eicken, C.; Hill, J.M. Upregulation of micro RNA-146a (miRNA-146a), a marker for inflammatory neu-rodegeneration, in sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Straussler-Scheinker (GSS) syndrome. J. Toxicol. Environ. Health A, 2011, 74(22-24), 1460-1468.
[http://dx.doi.org/10.1080/15287394.2011.618973] [PMID: 22043907]
[169]
Montag, J.; Hitt, R.; Opitz, L.; Schulz-Schaeffer, W.J.; Hunsmann, G.; Motzkus, D. Upregulation of miRNA hsa-miR-342-3p in experi-mental and idiopathic prion disease. Mol. Neurodegener., 2009, 4, 36.
[http://dx.doi.org/10.1186/1750-1326-4-36] [PMID: 19712440]
[170]
Saba, R.; Goodman, C.D.; Huzarewich, R.L.; Robertson, C.; Booth, S.A. A miRNA signature of prion induced neurodegeneration. PLoS One, 2008, 3(11), e3652.
[http://dx.doi.org/10.1371/journal.pone.0003652] [PMID: 18987751]
[171]
Saba, R.; Gushue, S.; Huzarewich, R.L.; Manguiat, K.; Medina, S.; Robertson, C.; Booth, S.A. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One, 2012, 7(2), e30832.
[http://dx.doi.org/10.1371/journal.pone.0030832] [PMID: 22363497]
[172]
Vinken, P.J.; Bruyn, G.W.; Klawans, H.L. Handbook of clinical neurology, North-Holland, c: Amsterdam. 1968.
[173]
Myers, R.H. Huntington’s disease genetics. NeuroRx, 2004, 1(2), 255-262.
[http://dx.doi.org/10.1602/neurorx.1.2.255] [PMID: 15717026]
[174]
MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Datson, N.; Shaw, D.; Harper, P.S. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[175]
Duyao, M.; Ambrose, C.; Myers, R.; Novelletto, A.; Persichetti, F.; Frontali, M.; Folstein, S.; Ross, C.; Franz, M.; Abbott, M. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet., 1993, 4(4), 387-392.
[http://dx.doi.org/10.1038/ng0893-387] [PMID: 8401587]
[176]
Wilson, C.M.; Mushtaq, G.; Kamal, M.A.; Terro, F. The Role of Endoproteolytic Processing in Neurodegeneration. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1222-1230.
[http://dx.doi.org/10.2174/1871527315666160922163511] [PMID: 27667336]
[177]
Yamamoto, A.; Lucas, J.J.; Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell, 2000, 101(1), 57-66.
[http://dx.doi.org/10.1016/S0092-8674(00)80623-6] [PMID: 10778856]
[178]
Hodges, A.; Strand, A.D.; Aragaki, A.K.; Kuhn, A.; Sengstag, T.; Hughes, G.; Elliston, L.A.; Hartog, C.; Goldstein, D.R.; Thu, D.; Hol-lingsworth, Z.R.; Collin, F.; Synek, B.; Holmans, P.A.; Young, A.B.; Wexler, N.S.; Delorenzi, M.; Kooperberg, C.; Augood, S.J.; Faull, R.L.; Olson, J.M.; Jones, L.; Luthi-Carter, R. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum. Mol. Genet., 2006, 15(6), 965-977.
[http://dx.doi.org/10.1093/hmg/ddl013] [PMID: 16467349]
[179]
Zuccato, C.; Belyaev, N.; Conforti, P.; Ooi, L.; Tartari, M.; Papadimou, E.; MacDonald, M.; Fossale, E.; Zeitlin, S.; Buckley, N.; Cattaneo, E. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J. Neurosci., 2007, 27(26), 6972-6983.
[http://dx.doi.org/10.1523/JNEUROSCI.4278-06.2007] [PMID: 17596446]
[180]
Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; Riga-monti, D.; Cattaneo, E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet., 2003, 35(1), 76-83.
[http://dx.doi.org/10.1038/ng1219] [PMID: 12881722]
[181]
Johnson, R.; Buckley, N.J. Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromolecular Med., 2009, 11(3), 183-199.
[http://dx.doi.org/10.1007/s12017-009-8063-4] [PMID: 19458943]
[182]
Johnson, R.; Teh, C.H.; Jia, H.; Vanisri, R.R.; Pandey, T.; Lu, Z.H.; Buckley, N.J.; Stanton, L.W.; Lipovich, L. Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 2009, 15(1), 85-96.
[http://dx.doi.org/10.1261/rna.1127009] [PMID: 19050060]
[183]
Martí, E.; Pantano, L.; Bañez-Coronel, M.; Llorens, F.; Miñones-Moyano, E.; Porta, S.; Sumoy, L.; Ferrer, I.; Estivill, X. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res., 2010, 38(20), 7219-7235.
[http://dx.doi.org/10.1093/nar/gkq575] [PMID: 20591823]
[184]
Shah, S.Z.A.; Zhao, D.; Hussain, T.; Sabir, N.; Yang, L. Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases. Front. Aging Neurosci., 2018, 10, 139.
[http://dx.doi.org/10.3389/fnagi.2018.00139] [PMID: 29867448]
[185]
Lee, S.T.; Chu, K. Im, W.S.; Yoon, H.J.; Im, J.Y.; Park, J.E.; Park, K.H.; Jung, K.H.; Lee, S.K.; Kim, M.; Roh, J.K. Altered microRNA regulation in Huntington’s disease models. Exp. Neurol., 2011, 227(1), 172-179.
[http://dx.doi.org/10.1016/j.expneurol.2010.10.012] [PMID: 21035445]
[186]
Kocerha, J.; Xu, Y.; Prucha, M.S.; Zhao, D.; Chan, A.W. microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol. Brain, 2014, 7, 46.
[http://dx.doi.org/10.1186/1756-6606-7-46] [PMID: 24929669]
[187]
Johnson, R.; Zuccato, C.; Belyaev, N.D.; Guest, D.J.; Cattaneo, E.; Buckley, N.J. A microRNA-based gene dysregulation pathway in Hun-tington’s disease. Neurobiol. Dis., 2008, 29(3), 438-445.
[http://dx.doi.org/10.1016/j.nbd.2007.11.001] [PMID: 18082412]
[188]
Das, E.; Jana, N.R.; Bhattacharyya, N.P. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh(Q111)/Hdh(Q111) cells. Biochem. Biophys. Res. Commun., 2013, 437(2), 217-224.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.041] [PMID: 23796713]
[189]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[190]
Talbot, K. Motor neuron disease: the bare essentials. Pract. Neurol., 2009, 9(5), 303-309.
[http://dx.doi.org/10.1136/jnnp.2009.188151] [PMID: 19762894]
[191]
Pupillo, E.; Messina, P.; Logroscino, G.; Beghi, E. Long-term survival in amyotrophic lateral sclerosis: a population-based study. Ann. Neurol., 2014, 75(2), 287-297.
[http://dx.doi.org/10.1002/ana.24096] [PMID: 24382602]
[192]
Martin, S.; Al Khleifat, A.; Al-Chalabi, A. What causes amyotrophic lateral sclerosis? F1000 Res., 2017, 6, 371.
[http://dx.doi.org/10.12688/f1000research.10476.1] [PMID: 28408982]
[193]
Al-Chalabi, A.; van den Berg, L.H.; Veldink, J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat. Rev. Neurol., 2017, 13(2), 96-104.
[http://dx.doi.org/10.1038/nrneurol.2016.182] [PMID: 27982040]
[194]
Liu, Z.J.; Li, H.F.; Tan, G.H.; Tao, Q.Q.; Ni, W.; Cheng, X.W.; Xiong, Z.Q.; Wu, Z.Y. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system. Neurobiol. Aging, 2014, 35(12), 2881.e11-2881.e15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.003] [PMID: 25109764]
[195]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[196]
Arai, T.; Hasegawa, M.; Akiyama, H.; Ikeda, K.; Nonaka, T.; Mori, H.; Mann, D.; Tsuchiya, K.; Yoshida, M.; Hashizume, Y.; Oda, T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclero-sis. Biochem. Biophys. Res. Commun., 2006, 351(3), 602-611.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.093] [PMID: 17084815]
[197]
Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.; Waite, A.; Rollinson, S.; Chiò, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J.; van Swieten, J.C.; Abramzon, Y.; Johnson, J.O.; Sendtner, M.; Pamphlett, R.; Orrell, R.W.; Mead, S.; Sidle, K.C.; Houlden, H.; Rohrer, J.D.; Morrison, K.E.; Pall, H.; Talbot, K.; Ansorge, O.; Hernandez, D.G.; Arepalli, S.; Sabatelli, M.; Mora, G.; Corbo, M.; Giannini, F.; Calvo, A.; Englund, E.; Borghero, G.; Floris, G.L.; Remes, A.M.; Laaksovirta, H.; McCluskey, L.; Trojanowski, J.Q.; Van Deerlin, V.M.; Schel-lenberg, G.D.; Nalls, M.A.; Drory, V.E.; Lu, C.S.; Yeh, T.H.; Ishiura, H.; Takahashi, Y.; Tsuji, S.; Le Ber, I.; Brice, A.; Drepper, C.; Wil-liams, N.; Kirby, J.; Shaw, P.; Hardy, J.; Tienari, P.J.; Heutink, P.; Morris, H.R.; Pickering-Brown, S.; Traynor, B.J. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol., 2012, 11(4), 323-330.
[http://dx.doi.org/10.1016/S1474-4422(12)70043-1] [PMID: 22406228]
[198]
Benussi, L.; Rossi, G.; Glionna, M.; Tonoli, E.; Piccoli, E.; Fostinelli, S.; Paterlini, A.; Flocco, R.; Albani, D.; Pantieri, R.; Cereda, C.; For-loni, G.; Tagliavini, F.; Binetti, G.; Ghidoni, R. C9ORF72 hexanucleotide repeat number in frontotemporal lobar degeneration: a genotype-phenotype correlation study. J. Alzheimers Dis., 2014, 38(4), 799-808.
[http://dx.doi.org/10.3233/JAD-131028] [PMID: 24064469]
[199]
Volk, A.E.; Weishaupt, J.H.; Andersen, P.M.; Ludolph, A.C.; Kubisch, C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med. Genetik, 2018, 30(2), 252-258.
[http://dx.doi.org/10.1007/s11825-018-0185-3] [PMID: 30220791]
[200]
Walker, C.; Herranz-Martin, S.; Karyka, E.; Liao, C.; Lewis, K.; Elsayed, W.; Lukashchuk, V.; Chiang, S.C.; Ray, S.; Mulcahy, P.J.; Jurga, M.; Tsagakis, I.; Iannitti, T.; Chandran, J.; Coldicott, I.; De Vos, K.J.; Hassan, M.K.; Higginbottom, A.; Shaw, P.J.; Hautbergue, G.M.; Az-zouz, M.; El-Khamisy, S.F. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci., 2017, 20(9), 1225-1235.
[http://dx.doi.org/10.1038/nn.4604] [PMID: 28714954]
[201]
Taylor, J.P.; Brown, R.H., Jr; Cleveland, D.W. Decoding ALS: from genes to mechanism. Nature, 2016, 539(7628), 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[202]
Batra, G.; Jain, M.; Singh, R.S.; Sharma, A.R.; Singh, A.; Prakash, A.; Medhi, B. Novel therapeutic targets for amyotrophic lateral sclerosis. Indian J. Pharmacol., 2019, 51(6), 418-425.
[http://dx.doi.org/10.4103/ijp.IJP_823_19] [PMID: 32029967]
[203]
García, M.L.; Fernández, A.; Solas, M.T. Mitochondria, motor neurons and aging. J. Neurol. Sci., 2013, 330(1-2), 18-26.
[http://dx.doi.org/10.1016/j.jns.2013.03.019] [PMID: 23628465]
[204]
Ono, Y.; Tanaka, H.; Takata, M.; Nagahara, Y.; Noda, Y.; Tsuruma, K.; Shimazawa, M.; Hozumi, I.; Hara, H. SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci. Lett., 2014, 559, 174-178.
[http://dx.doi.org/10.1016/j.neulet.2013.12.005] [PMID: 24334165]
[205]
Foran, E.; Trotti, D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2009, 11(7), 1587-1602.
[http://dx.doi.org/10.1089/ars.2009.2444] [PMID: 19413484]
[206]
Lin, C.L.; Bristol, L.A.; Jin, L.; Dykes-Hoberg, M.; Crawford, T.; Clawson, L.; Rothstein, J.D. Aberrant RNA processing in a neurodegen-erative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 1998, 20(3), 589-602.
[http://dx.doi.org/10.1016/S0896-6273(00)80997-6] [PMID: 9539131]
[207]
Blokhuis, A.M.; Groen, E.J.; Koppers, M.; van den Berg, L.H.; Pasterkamp, R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol., 2013, 125(6), 777-794.
[http://dx.doi.org/10.1007/s00401-013-1125-6] [PMID: 23673820]
[208]
Gagliardi, D.; Comi, G.P.; Bresolin, N.; Corti, S. MicroRNAs as regulators of cell death mechanisms in amyotrophic lateral sclerosis. J. Cell. Mol. Med., 2019, 23(3), 1647-1656.
[http://dx.doi.org/10.1111/jcmm.13976] [PMID: 30614179]
[209]
Rizzuti, M.; Filosa, G.; Melzi, V.; Calandriello, L.; Dioni, L.; Bollati, V.; Bresolin, N.; Comi, G.P.; Barabino, S.; Nizzardo, M.; Corti, S. MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci. Rep., 2018, 8(1), 10105.
[http://dx.doi.org/10.1038/s41598-018-28366-1] [PMID: 29973608]
[210]
Li, L.H.; Tu, Q.Y.; Deng, X.H.; Xia, J.; Hou, D.R.; Guo, K.; Zi, X.H. Mutant presenilin2 promotes apoptosis through the p53/miR-34a axis in neuronal cells. Brain Res., 2017, 1662, 57-64.
[http://dx.doi.org/10.1016/j.brainres.2017.01.034] [PMID: 28189560]
[211]
McCubrey, J.A.; Fitzgerald, T.L.; Yang, L.V.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Montalto, G.; Cervello, M.; Neri, L.M.; Cocco, L.; Martelli, A.M.; Laidler, P. Dulińska-Litewka, J.; Rakus, D.; Gizak, A.; Nicoletti, F.; Falzone, L.; Candido, S.; Libra, M. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017, 8(8), 14221-14250.
[http://dx.doi.org/10.18632/oncotarget.13991] [PMID: 27999207]
[212]
Waller, R.; Wyles, M.; Heath, P.R.; Kazoka, M.; Wollff, H.; Shaw, P.J.; Kirby, J.; Small, R.N.A. Sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neural and glial activity. Front. Neurosci., 2018, 11, 731.
[http://dx.doi.org/10.3389/fnins.2017.00731] [PMID: 29375285]
[213]
Wang, N.; Zhang, L.; Lu, Y.; Zhang, M.; Zhang, Z.; Wang, K.; Lv, J. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway. Biomed. Pharmacother., 2017, 89, 1187-1195.
[http://dx.doi.org/10.1016/j.biopha.2017.03.011] [PMID: 28320085]
[214]
Grad, L.I.; Yerbury, J.J.; Turner, B.J.; Guest, W.C.; Pokrishevsky, E.; O’Neill, M.A.; Yanai, A.; Silverman, J.M.; Zeineddine, R.; Corcoran, L.; Kumita, J.R.; Luheshi, L.M.; Yousefi, M.; Coleman, B.M.; Hill, A.F.; Plotkin, S.S.; Mackenzie, I.R.; Cashman, N.R. Intercellular propa-gated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3620-3625.
[http://dx.doi.org/10.1073/pnas.1312245111] [PMID: 24550511]
[215]
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2008, 372(9648), 1502-1517.
[http://dx.doi.org/10.1016/S0140-6736(08)61620-7] [PMID: 18970977]
[216]
Weinshenker, B.G. Epidemiology of multiple sclerosis. Neurol. Clin., 1996, 14(2), 291-308.
[http://dx.doi.org/10.1016/S0733-8619(05)70257-7] [PMID: 8827172]
[217]
Brust, C.M. Current diagnosis & treatment in neurology, 2nd ed; McGraw-Hill Medical: New York, 2012.
[218]
Koch-Henriksen, N.; Sørensen, P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol., 2010, 9(5), 520-532.
[http://dx.doi.org/10.1016/S1474-4422(10)70064-8] [PMID: 20398859]
[219]
Kurtzke, J.F. Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio Doctoralis. Neurol. Sci., 2000, 21(6), 383-403.
[http://dx.doi.org/10.1007/s100720070055] [PMID: 11441577]
[220]
Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J., 2017, 19(1), 1-10.
[PMID: 28367411]
[221]
de Sa, J.C.; Airas, L.; Bartholome, E.; Grigoriadis, N.; Mattle, H.; Oreja-Guevara, C.; O’Riordan, J.; Sellebjerg, F.; Stankoff, B.; Vass, K.; Walczak, A.; Wiendl, H.; Kieseier, B.C. Symptomatic therapy in multiple sclerosis: a review for a multimodal approach in clinical practice. Ther. Adv. Neurol. Disord., 2011, 4(3), 139-168.
[http://dx.doi.org/10.1177/1756285611403646] [PMID: 21694816]
[222]
Holland, B.E. Factors affecting quality of life in persons with multiple sclerosis. The University of Texas at Arlington; The University of Texas: Texas, 2014, p. 116.
[223]
Huang, W.J.; Chen, W.W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med., 2017, 13(6), 3163-3166.
[http://dx.doi.org/10.3892/etm.2017.4410] [PMID: 28588671]
[224]
Weiner, H.L. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol., 2008, 255(Suppl. 1), 3-11.
[http://dx.doi.org/10.1007/s00415-008-1002-8] [PMID: 18317671]
[225]
Gandhi, R.; Laroni, A.; Weiner, H.L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol., 2010, 221(1-2), 7-14.
[http://dx.doi.org/10.1016/j.jneuroim.2009.10.015] [PMID: 19931190]
[226]
Kasper, L.H.; Shoemaker, J. Multiple sclerosis immunology: The healthy immune system vs. the MS immune system. Neurology, 2010, 74(Suppl. 1), S2-S8.
[http://dx.doi.org/10.1212/WNL.0b013e3181c97c8f] [PMID: 20038759]
[227]
Kouchaki, E.; Salehi, M.; Reza Sharif, M.; Nikoueinejad, H.; Akbari, H. Numerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis. Iran. J. Basic Med. Sci., 2014, 17(4), 250-255.
[PMID: 24904717]
[228]
Olah, M.; Amor, S.; Brouwer, N.; Vinet, J.; Eggen, B.; Biber, K.; Boddeke, H.W. Identification of a microglia phenotype supportive of remyelination. Glia, 2012, 60(2), 306-321.
[http://dx.doi.org/10.1002/glia.21266] [PMID: 22072381]
[229]
Roumier, A.; Béchade, C.; Poncer, J.C.; Smalla, K.H.; Tomasello, E.; Vivier, E.; Gundelfinger, E.D.; Triller, A.; Bessis, A. Impaired synap-tic function in the microglial KARAP/DAP12-deficient mouse. J. Neurosci., 2004, 24(50), 11421-11428.
[http://dx.doi.org/10.1523/JNEUROSCI.2251-04.2004] [PMID: 15601948]
[230]
Wake, H.; Moorhouse, A.J.; Jinno, S.; Kohsaka, S.; Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci., 2009, 29(13), 3974-3980.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[231]
Blonda, M.; Amoruso, A.; Grasso, R.; Di Francescantonio, V.; Avolio, C. Multiple sclerosis treatments affect monocyte-derived mi-crovesicle production. Front. Neurol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fneur.2017.00422] [PMID: 28878732]
[232]
Roberts, C.T., Jr; Kurre, P. Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res., 2013, 73(11), 3200-3205.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0265] [PMID: 23695552]
[233]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[234]
Vickers, K.C.; Remaley, A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol., 2012, 23(2), 91-97.
[http://dx.doi.org/10.1097/MOL.0b013e328350a425] [PMID: 22418571]
[235]
Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 2012, 7(3), e30679.
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[236]
Kanada, M.; Bachmann, M.H.; Hardy, J.W.; Frimannson, D.O.; Bronsart, L.; Wang, A.; Sylvester, M.D.; Schmidt, T.L.; Kaspar, R.L.; Butte, M.J.; Matin, A.C.; Contag, C.H. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl. Acad. Sci. USA, 2015, 112(12), E1433-E1442.
[http://dx.doi.org/10.1073/pnas.1418401112] [PMID: 25713383]
[237]
Sáenz-Cuesta, M.; Osorio-Querejeta, I.; Otaegui, D. Extracellular vesicles in multiple sclerosis: What are they telling us? Front. Cell. Neurosci., 2014, 8, 100.
[http://dx.doi.org/10.3389/fncel.2014.00100] [PMID: 24734004]
[238]
Zare-Shahabadi, A.; Renaudineau, Y.; Rezaei, N. MicroRNAs and multiple sclerosis: from physiopathology toward therapy. Expert Opin. Ther. Targets, 2013, 17(12), 1497-1507.
[http://dx.doi.org/10.1517/14728222.2013.838219] [PMID: 24053428]
[239]
Jagot, F.; Davoust, N. Is It worth Considering Circulating microRNAs in Multiple Sclerosis? Front. Immunol., 2016, 7, 129.
[http://dx.doi.org/10.3389/fimmu.2016.00129] [PMID: 27092141]
[240]
Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science, 2010, 330(6005), 779-782.
[http://dx.doi.org/10.1126/science.1190927] [PMID: 21051629]
[241]
Xiao, C.; Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell, 2009, 136(1), 26-36.
[http://dx.doi.org/10.1016/j.cell.2008.12.027] [PMID: 19135886]
[242]
Regev, K.; Healy, B.C.; Paul, A.; Diaz-Cruz, C.; Mazzola, M.A.; Raheja, R.; Glanz, B.I.; Kivisäkk, P.; Chitnis, T.; Jagodic, M.; Piehl, F.; Olsson, T.; Khademi, M.; Hauser, S.; Oksenberg, J.; Khoury, S.J.; Weiner, H.L.; Gandhi, R. Identification of MS-specific serum miRNAs in an international multicenter study. Neurol. Neuroimmunol. Neuroinflamm., 2018, 5(5), e491.
[http://dx.doi.org/10.1212/NXI.0000000000000491] [PMID: 30175165]
[243]
Cheng, L.C.; Pastrana, E.; Tavazoie, M.; Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci., 2009, 12(4), 399-408.
[http://dx.doi.org/10.1038/nn.2294] [PMID: 19287386]
[244]
Du, C.; Liu, C.; Kang, J.; Zhao, G.; Ye, Z.; Huang, S.; Li, Z.; Wu, Z.; Pei, G. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol., 2009, 10(12), 1252-1259.
[http://dx.doi.org/10.1038/ni.1798] [PMID: 19838199]
[245]
Eve, D.J.; Marty, P.J.; McDermott, R.J.; Klasko, S.K.; Sanberg, P. Resource for stem cell research. Am. J. Health Educ., 2008, 39(3), 167-179.
[246]
Ma, D.K.; Bonaguidi, M.A.; Ming, G.L.; Song, H. Adult neural stem cells in the mammalian central nervous system. Cell Res., 2009, 19(6), 672-682.
[http://dx.doi.org/10.1038/cr.2009.56] [PMID: 19436263]
[247]
Drukker, M.; Katz, G.; Urbach, A.; Schuldiner, M.; Markel, G.; Itskovitz-Eldor, J.; Reubinoff, B.; Mandelboim, O.; Benvenisty, N. Charac-terization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 2002, 99(15), 9864-9869.
[http://dx.doi.org/10.1073/pnas.142298299] [PMID: 12114532]
[248]
Biehl, J.K.; Russell, B. Introduction to stem cell therapy. J. Cardiovasc. Nurs., 2009, 24(2), 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[249]
Jaenisch, R.; Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132(4), 567-582.
[http://dx.doi.org/10.1016/j.cell.2008.01.015] [PMID: 18295576]
[250]
Marson, A.; Levine, S.S.; Cole, M.F.; Frampton, G.M.; Brambrink, T.; Johnstone, S.; Guenther, M.G.; Johnston, W.K.; Wernig, M.; New-man, J.; Calabrese, J.M.; Dennis, L.M.; Volkert, T.L.; Gupta, S.; Love, J.; Hannett, N.; Sharp, P.A.; Bartel, D.P.; Jaenisch, R.; Young, R.A. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134(3), 521-533.
[http://dx.doi.org/10.1016/j.cell.2008.07.020] [PMID: 18692474]
[251]
Alhadlaq, A.; Mao, J.J. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J. Bone Joint Surg. Am., 2005, 87(5), 936-944.
[http://dx.doi.org/10.2106/JBJS.D.02104] [PMID: 15866954]
[252]
Madrazo, I.; Drucker-Colín, R.; Díaz, V.; Martínez-Mata, J.; Torres, C.; Becerril, J.J. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med., 1987, 316(14), 831-834.
[http://dx.doi.org/10.1056/NEJM198704023161402] [PMID: 3821826]
[253]
Barker, R.A.; Parmar, M.; Studer, L.; Takahashi, J. Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson’s Disease: Dawn of a New Era. Cell Stem Cell, 2017, 21(5), 569-573.
[http://dx.doi.org/10.1016/j.stem.2017.09.014] [PMID: 29100010]
[254]
Kirkeby, A.; Parmar, M.; Barker, R.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic: A European approach (STEM-PD). In: Prog. Brain Res; , 2017; 230, pp. 165-190.
[http://dx.doi.org/10.1016/bs.pbr.2016.11.011] [PMID: 28552228]
[255]
Yu, D.X.; Marchetto, M.C.; Gage, F.H. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell, 2013, 12(6), 678-688.
[http://dx.doi.org/10.1016/j.stem.2013.05.018] [PMID: 23746977]
[256]
Kang, J.M.; Yeon, B.K.; Cho, S.J.; Suh, Y.H. Stem Cell Therapy for Alzheimer’s Disease: A Review of Recent Clinical Trials. J. Alzheimers Dis., 2016, 54(3), 879-889.
[http://dx.doi.org/10.3233/JAD-160406] [PMID: 27567851]
[257]
Xuan, A.G.; Luo, M.; Ji, W.D.; Long, D.H. Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci. Lett., 2009, 450(2), 167-171.
[http://dx.doi.org/10.1016/j.neulet.2008.12.001] [PMID: 19070649]
[258]
Marks, P.W.; Witten, C.M.; Califf, R.M. Clarifying Stem-Cell Therapy’s Benefits and Risks. N. Engl. J. Med., 2017, 376(11), 1007-1009.
[http://dx.doi.org/10.1056/NEJMp1613723] [PMID: 27959704]
[259]
Stuckey, D.W.; Shah, K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat. Rev. Cancer, 2014, 14(10), 683-691.
[http://dx.doi.org/10.1038/nrc3798] [PMID: 25176333]
[260]
Granero-Molto, F.; Weis, J.A.; Longobardi, L.; Spagnoli, A. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin. Biol. Ther., 2008, 8(3), 255-268.
[http://dx.doi.org/10.1517/14712598.8.3.255] [PMID: 18294098]
[261]
Wei, X.; Yang, X.; Han, Z.P.; Qu, F.F.; Shao, L.; Shi, Y.F. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol. Sin., 2013, 34(6), 747-754.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[262]
Siniscalco, D.; Giordano, C.; Galderisi, U.; Luongo, L.; Alessio, N.; Di Bernardo, G.; de Novellis, V.; Rossi, F.; Maione, S. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell. Mol. Life Sci., 2010, 67(4), 655-669.
[http://dx.doi.org/10.1007/s00018-009-0202-4] [PMID: 19937263]
[263]
Teixeira, F.G.; Carvalho, M.M.; Sousa, N.; Salgado, A.J. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell. Mol. Life Sci., 2013, 70(20), 3871-3882.
[http://dx.doi.org/10.1007/s00018-013-1290-8] [PMID: 23456256]
[264]
Castorina, A.; Szychlinska, M.A.; Marzagalli, R.; Musumeci, G. Mesenchymal stem cells-based therapy as a potential treatment in neuro-degenerative disorders: is the escape from senescence an answer? Neural Regen. Res., 2015, 10(6), 850-858.
[http://dx.doi.org/10.4103/1673-5374.158352] [PMID: 26199588]
[265]
Li, Y.; Chen, J.; Chen, X.G.; Wang, L.; Gautam, S.C.; Xu, Y.X.; Katakowski, M.; Zhang, L.J.; Lu, M.; Janakiraman, N.; Chopp, M. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology, 2002, 59(4), 514-523.
[http://dx.doi.org/10.1212/WNL.59.4.514] [PMID: 12196642]
[266]
Lu, D.; Mahmood, A.; Chopp, M. Biologic transplantation and neurotrophin-induced neuroplasticity after traumatic brain injury. J. Head Trauma Rehabil., 2003, 18(4), 357-376.
[http://dx.doi.org/10.1097/00001199-200307000-00006] [PMID: 16222130]
[267]
Mahmood, A.; Lu, D.; Chopp, M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma, 2004, 21(1), 33-39.
[http://dx.doi.org/10.1089/089771504772695922] [PMID: 14987463]
[268]
Chen, X.; Katakowski, M.; Li, Y.; Lu, D.; Wang, L.; Zhang, L.; Chen, J.; Xu, Y.; Gautam, S.; Mahmood, A.; Chopp, M. Human bone mar-row stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res., 2002, 69(5), 687-691.
[http://dx.doi.org/10.1002/jnr.10334] [PMID: 12210835]
[269]
Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7), 1556-1564.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[270]
Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab., 2013, 33(11), 1711-1715.
[http://dx.doi.org/10.1038/jcbfm.2013.152] [PMID: 23963371]
[271]
Baek, G.; Choi, H.; Kim, Y.; Lee, H.C.; Choi, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl. Med., 2019, 8(9), 880-886.
[http://dx.doi.org/10.1002/sctm.18-0226] [PMID: 31045328]
[272]
Vakhshiteh, F.; Atyabi, F.; Ostad, S.N. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int. J. Nanomedicine, 2019, 14, 2847-2859.
[http://dx.doi.org/10.2147/IJN.S200036] [PMID: 31114198]
[273]
Grange, C.; Tapparo, M.; Collino, F.; Vitillo, L.; Damasco, C.; Deregibus, M.C.; Tetta, C.; Bussolati, B.; Camussi, G. Microvesicles re-leased from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res., 2011, 71(15), 5346-5356.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0241] [PMID: 21670082]
[274]
Lee, H.K.; Finniss, S.; Cazacu, S.; Bucris, E.; Ziv-Av, A.; Xiang, C.; Bobbitt, K.; Rempel, S.A.; Hasselbach, L.; Mikkelsen, T.; Slavin, S.; Brodie, C. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migra-tion and self-renewal. Oncotarget, 2013, 4(2), 346-361.
[http://dx.doi.org/10.18632/oncotarget.868] [PMID: 23548312]
[275]
The Safety and the Efficacy Evaluation of Allogenic Adipose MSC-Exos in Patients With Alzheimer's Disease. In: ClinicalTrials. gov;, 2020.
[276]
Therapeutic Potential of Stem Cell Conditioned Medium on Chronic Ulcer Wounds. In: ClinicalTrials.gov;, 2021.
[277]
microRNAs Role in Pre-eclampsia Diagnosis. In: ClinicalTrials. gov, 2021.
[278]
Exosome of Mesenchymal Stem Cells for Multiple Organ Dysfuntion Syndrome After Surgical Repaire of Acute Type A Aortic Dissection. In: ClinicalTrials.gov, 2021.
[279]
Klein, M.E.; Lioy, D.T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, R.H. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci., 2007, 10(12), 1513-1514.
[http://dx.doi.org/10.1038/nn2010] [PMID: 17994015]
[280]
Smith, P.Y.; Delay, C.; Girard, J.; Papon, M.A.; Planel, E.; Sergeant, N.; Buée, L.; Hébert, S.S. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum. Mol. Genet., 2011, 20(20), 4016-4024.
[http://dx.doi.org/10.1093/hmg/ddr330] [PMID: 21807765]
[281]
An, F.; Gong, G.; Wang, Y.; Bian, M.; Yu, L.; Wei, C. MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget, 2017, 8(69), 114065-114071.
[http://dx.doi.org/10.18632/oncotarget.23119] [PMID: 29371969]
[282]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Stroop-er, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6415-6420.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[283]
Madadi, S.; Saidijam, M.; Yavari, B.; Soleimani, M. Downregulation of serum miR-106b: a potential biomarker for Alzheimer disease. Arch. Physiol. Biochem., 2020, 1-5.
[http://dx.doi.org/10.1080/13813455.2020.1734842] [PMID: 32141790]
[284]
Liu, C.G.; Wang, J.L.; Li, L.; Xue, L.X.; Zhang, Y.Q.; Wang, P.C. MicroRNA-135a and -200b, potential Biomarkers for Alzheimers disease, regulate β secretase and amyloid precursor protein. Brain Res., 2014, 1583, 55-64.
[http://dx.doi.org/10.1016/j.brainres.2014.04.026] [PMID: 25152461]
[285]
Yang, T.T.; Liu, C.G.; Gao, S.C.; Zhang, Y.; Wang, P.C. The Serum Exosome Derived MicroRNA-135a, -193b, and -384 Were Potential Alzheimer’s Disease Biomarkers. Biomed. Environ. Sci., 2018, 31(2), 87-96.
[PMID: 29606187]
[286]
Lukiw, W.J.; Alexandrov, P.N.; Zhao, Y.; Hill, J.M.; Bhattacharjee, S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport, 2012, 23(10), 621-626.
[http://dx.doi.org/10.1097/WNR.0b013e32835542b0] [PMID: 22660168]
[287]
Sierksma, A.; Lu, A.; Salta, E.; Vanden Eynden, E.; Callaerts-Vegh, Z.; D’Hooge, R.; Blum, D.; Buée, L.; Fiers, M.; De Strooper, B. Dereg-ulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener., 2018, 13(1), 54.
[http://dx.doi.org/10.1186/s13024-018-0285-1] [PMID: 30314521]
[288]
Li, T.R.; Jia, Y.J.; Ma, C.; Qiu, W.Y.; Wang, Q.; Shao, X.Q.; Lv, R.J. The role of the microRNA-146a/complement factor H/interleukin-1β-mediated inflammatory loop circuit in the perpetuate inflammation of chronic temporal lobe epilepsy. Dis. Model. Mech., 2018, 11.
[http://dx.doi.org/10.1242/dmm.031708]
[289]
Long, J.M.; Ray, B.; Lahiri, D.K. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J. Biol. Chem., 2012, 287(37), 31298-31310.
[http://dx.doi.org/10.1074/jbc.M112.366336] [PMID: 22733824]
[290]
Wang, H.; Li, X.; Li, T.; Wang, L.; Wu, X.; Liu, J.; Xu, Y.; Wei, W. Multiple roles of microRNA-146a in immune responses and hepatocel-lular carcinoma. Oncol. Lett., 2019, 18(5), 5033-5042.
[http://dx.doi.org/10.3892/ol.2019.10862] [PMID: 31612014]
[291]
Kou, X.; Chen, D.; Chen, N. The Regulation of microRNAs in Alzheimer’s Disease. Front. Neurol., 2020, 11, 288.
[http://dx.doi.org/10.3389/fneur.2020.00288] [PMID: 32362867]
[292]
Parsi, S.; Smith, P.Y.; Goupil, C.; Dorval, V.; Hébert, S.S. Preclinical Evaluation of miR-15/107 Family Members as Multifactorial Drug Targets for Alzheimer’s Disease. Mol. Ther. Nucleic Acids, 2015, 4, e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[293]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Bergmans, B.; Papadopoulou, A.S.; Delacourte, A.; De Strooper, B. MicroRNA regulation of Alz-heimer’s Amyloid precursor protein expression. Neurobiol. Dis., 2009, 33(3), 422-428.
[http://dx.doi.org/10.1016/j.nbd.2008.11.009] [PMID: 19110058]
[294]
Delay, C.; Calon, F.; Mathews, P.; Hébert, S.S. Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function. Mol. Neurodegener., 2011, 6, 70.
[http://dx.doi.org/10.1186/1750-1326-6-70] [PMID: 21982160]
[295]
Tan, L.; Yu, J.T.; Liu, Q.Y.; Tan, M.S.; Zhang, W.; Hu, N.; Wang, Y.L.; Sun, L.; Jiang, T.; Tan, L. Circulating miR-125b as a biomarker of Alzheimer’s disease. J. Neurol. Sci., 2014, 336(1-2), 52-56.
[http://dx.doi.org/10.1016/j.jns.2013.10.002] [PMID: 24139697]
[296]
Geekiyanage, H.; Chan, C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β novel targets in sporadic Alzheimer’s disease. J. Neurosci., 2011, 31(41), 14820-14830.
[http://dx.doi.org/10.1523/JNEUROSCI.3883-11.2011] [PMID: 21994399]
[297]
Boissonneault, V.; Plante, I.; Rivest, S.; Provost, P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid pre-cursor protein-converting enzyme 1. J. Biol. Chem., 2009, 284(4), 1971-1981.
[http://dx.doi.org/10.1074/jbc.M807530200] [PMID: 18986979]
[298]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[299]
Wang, M.; Qin, L.; Tang, B. MicroRNAs in Alzheimer’s Disease. Front. Genet., 2019, 10, 153.
[http://dx.doi.org/10.3389/fgene.2019.00153] [PMID: 30881384]
[300]
Wang, X.; Liu, D.; Huang, H.Z.; Wang, Z.H.; Hou, T.Y.; Yang, X.; Pang, P.; Wei, N.; Zhou, Y.F.; Dupras, M.J.; Calon, F.; Wang, Y.T.; Man, H.Y.; Chen, J.G.; Wang, J.Z.; Hébert, S.S.; Lu, Y.; Zhu, L.Q. A Novel MicroRNA-124/PTPN1 Signal Pathway Mediates Synaptic and Memory Deficits in Alzheimer’s Disease. Biol. Psychiatry, 2018, 83(5), 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[301]
Smirnova, L.; Gräfe, A.; Seiler, A.; Schumacher, S.; Nitsch, R.; Wulczyn, F.G. Regulation of miRNA expression during neural cell specifi-cation. Eur. J. Neurosci., 2005, 21(6), 1469-1477.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03978.x] [PMID: 15845075]
[302]
Cao, J.; Huang, M.; Guo, L.; Zhu, L.; Hou, J.; Zhang, L.; Pero, A.; Ng, S.; El Gaamouch, F.; Elder, G.; Sano, M.; Goate, A.; Tcw, J.; Haroutunian, V.; Zhang, B.; Cai, D. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s dis-ease pathogenesis. Mol. Psychiatry, 2020.
[PMID: 32632205]
[303]
Kole, A.J.; Swahari, V.; Hammond, S.M.; Deshmukh, M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev., 2011, 25(2), 125-130.
[http://dx.doi.org/10.1101/gad.1975411] [PMID: 21245165]
[304]
Sarkar, S.; Jun, S.; Rellick, S.; Quintana, D.D.; Cavendish, J.Z.; Simpkins, J.W. Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res., 2016, 1646, 139-151.
[http://dx.doi.org/10.1016/j.brainres.2016.05.026] [PMID: 27235866]
[305]
Higaki, S.; Muramatsu, M.; Matsuda, A.; Matsumoto, K.; Satoh, J.I.; Michikawa, M.; Niida, S. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS One, 2018, 13(5), e0196929.
[http://dx.doi.org/10.1371/journal.pone.0196929] [PMID: 29738527]
[306]
Fu, J.; Peng, L.; Tao, T.; Chen, Y.; Li, Z.; Li, J. Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed. Pharmacother., 2019, 119, 109409.
[http://dx.doi.org/10.1016/j.biopha.2019.109409] [PMID: 31518873]
[307]
Wang, Z.H.; Zhang, J.L.; Duan, Y.L.; Zhang, Q.S.; Li, G.F.; Zheng, D.L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother., 2015, 74, 252-256.
[http://dx.doi.org/10.1016/j.biopha.2015.08.025] [PMID: 26349993]
[308]
Recasens, A.; Perier, C.; Sue, C.M. Role of microRNAs in the Regulation of α-Synuclein Expression: A Systematic Review. Front. Mol. Neurosci., 2016, 9, 128.
[http://dx.doi.org/10.3389/fnmol.2016.00128] [PMID: 27917109]
[309]
Zhao, L.; Wang, Z. MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson’s Disease. Parkinsons Dis., 2019, 2019, 1743183.
[http://dx.doi.org/10.1155/2019/1743183] [PMID: 31191899]
[310]
Dong, H.; Wang, C.; Lu, S.; Yu, C.; Huang, L.; Feng, W.; Xu, H.; Chen, X.; Zen, K.; Yan, Q.; Liu, W.; Zhang, C.; Zhang, C.Y. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers, 2016, 21(2), 129-137.
[http://dx.doi.org/10.3109/1354750X.2015.1118544] [PMID: 26631297]
[311]
Tatura, R.; Kraus, T.; Giese, A.; Arzberger, T.; Buchholz, M.; Höglinger, G.; Müller, U. Parkinson’s disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat. Disord., 2016, 33, 115-121.
[http://dx.doi.org/10.1016/j.parkreldis.2016.09.028] [PMID: 27717584]
[312]
Prajapati, P.; Sripada, L.; Singh, K.; Bhatelia, K.; Singh, R.; Singh, R. TNF-α regulates miRNA targeting mitochondrial complex-I and in-duces cell death in dopaminergic cells. Biochim. Biophys. Acta, 2015, 1852(3), 451-461.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.019] [PMID: 25481834]
[313]
Junn, E.; Lee, K.W.; Jeong, B.S.; Chan, T.W.; Im, J.Y.; Mouradian, M.M. Repression of alpha-synuclein expression and toxicity by mi-croRNA-7. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 13052-13057.
[http://dx.doi.org/10.1073/pnas.0906277106] [PMID: 19628698]
[314]
Zhou, Y.; Lu, M.; Du, R.H.; Qiao, C.; Jiang, C.Y.; Zhang, K.Z.; Ding, J.H.; Hu, G. MicroRNA-7 targets Nod-like receptor protein 3 in-flammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol. Neurodegener., 2016, 11, 28.
[http://dx.doi.org/10.1186/s13024-016-0094-3] [PMID: 27084336]
[315]
Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.010] [PMID: 26453926]
[316]
Chaudhuri, A.D.; Choi, D.C.; Kabaria, S.; Tran, A.; Junn, E. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J. Biol. Chem., 2016, 291(12), 6483-6493.
[http://dx.doi.org/10.1074/jbc.M115.691352] [PMID: 26801612]
[317]
Doxakis, E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J. Biol. Chem., 2010, 285(17), 12726-12734.
[http://dx.doi.org/10.1074/jbc.M109.086827] [PMID: 20106983]
[318]
Decressac, M.; Mattsson, B.; Weikop, P.; Lundblad, M.; Jakobsson, J.; Björklund, A. TFEB-mediated autophagy rescues midbrain dopa-mine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. USA, 2013, 110(19), E1817-E1826.
[http://dx.doi.org/10.1073/pnas.1305623110] [PMID: 23610405]
[319]
Xiong, R.; Wang, Z.; Zhao, Z.; Li, H.; Chen, W.; Zhang, B.; Wang, L.; Wu, L.; Li, W.; Ding, J.; Chen, S. MicroRNA-494 reduces DJ-1 ex-pression and exacerbates neurodegeneration. Neurobiol. Aging, 2014, 35(3), 705-714.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.027] [PMID: 24269020]
[320]
Cho, H.J.; Liu, G.; Jin, S.M.; Parisiadou, L.; Xie, C.; Yu, J.; Sun, L.; Ma, B.; Ding, J.; Vancraenenbroeck, R.; Lobbestael, E.; Baekelandt, V.; Taymans, J.M.; He, P.; Troncoso, J.C.; Shen, Y.; Cai, H. MicroRNA-205 regulates the expression of Parkinson’s disease-related leu-cine-rich repeat kinase 2 protein. Hum. Mol. Genet., 2013, 22(3), 608-620.
[http://dx.doi.org/10.1093/hmg/dds470] [PMID: 23125283]
[321]
Cardo, L.F.; Coto, E.; Ribacoba, R.; Mata, I.F.; Moris, G.; Menéndez, M.; Alvarez, V. The screening of the 3'UTR sequence of LRRK2 identified an association between the rs66737902 polymorphism and Parkinson’s disease. J. Hum. Genet., 2014, 59(6), 346-348.
[http://dx.doi.org/10.1038/jhg.2014.26] [PMID: 24758914]
[322]
Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Dua, P.; Alexandrov, P.N.; Hill, J.M.; Lukiw, W.J. Regulation of TREM2 expression by an NF-кB-sensitive miRNA-34a. Neuroreport, 2013, 24(6), 318-323.
[http://dx.doi.org/10.1097/WNR.0b013e32835fb6b0] [PMID: 23462268]
[323]
Zhao, Y.; Jaber, V.; Lukiw, W.J. Over-Expressed Pathogenic miRNAs in Alzheimer’s Disease (AD) and Prion Disease (PrD) Drive Defi-cits in TREM2-Mediated Aβ42 Peptide Clearance. Front. Aging Neurosci., 2016, 8, 140.
[http://dx.doi.org/10.3389/fnagi.2016.00140] [PMID: 27378912]
[324]
Thackray, A.M.; Lam, B.; Shahira, B. Ab Razak, A.; Yeo, G.; Bujdoso, R. Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem. J., 2020, 477(4), 833-852.
[http://dx.doi.org/10.1042/BCJ20190872] [PMID: 32108870]
[325]
Tai, M.C.; Kajino, T.; Nakatochi, M.; Arima, C.; Shimada, Y.; Suzuki, M.; Miyoshi, H.; Yatabe, Y.; Yanagisawa, K.; Takahashi, T. miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. Carcinogenesis, 2015, 36(12), 1464-1473.
[http://dx.doi.org/10.1093/carcin/bgv152] [PMID: 26483346]
[326]
Cui, J.G.; Li, Y.Y.; Zhao, Y.; Bhattacharjee, S.; Lukiw, W.J. Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J. Biol. Chem., 2010, 285(50), 38951-38960.
[http://dx.doi.org/10.1074/jbc.M110.178848] [PMID: 20937840]
[327]
Alleaume-Butaux, A.; Nicot, S.; Pietri, M.; Baudry, A.; Dakowski, C.; Tixador, P.; Ardila-Osorio, H.; Haeberlé, A.M.; Bailly, Y.; Peyrin, J.M.; Launay, J.M.; Kellermann, O.; Schneider, B. Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neurito-genesis Defects and Prion Accumulation. PLoS Pathog., 2015, 11(8), e1005073.
[http://dx.doi.org/10.1371/journal.ppat.1005073] [PMID: 26241960]
[328]
Feng, B.; Chakrabarti, S. miR-320 Regulates Glucose-Induced Gene Expression in Diabetes. ISRN Endocrinol., 2012, 2012, 549875.
[http://dx.doi.org/10.5402/2012/549875] [PMID: 22900199]
[329]
LaCasse, R.A.; Striebel, J.F.; Favara, C.; Kercher, L.; Chesebro, B. Role of Erk1/2 activation in prion disease pathogenesis: absence of CCR1 leads to increased Erk1/2 activation and accelerated disease progression. J. Neuroimmunol., 2008, 196(1-2), 16-26.
[http://dx.doi.org/10.1016/j.jneuroim.2008.02.009] [PMID: 18396336]
[330]
Caetano, F.A.; Lopes, M.H.; Hajj, G.N.; Machado, C.F.; Pinto Arantes, C.; Magalhães, A.C. Vieira, Mde.P.; Américo, T.A.; Massensini, A.R.; Priola, S.A.; Vorberg, I.; Gomez, M.V.; Linden, R.; Prado, V.F.; Martins, V.R.; Prado, M.A. Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J. Neurosci., 2008, 28(26), 6691-6702.
[http://dx.doi.org/10.1523/JNEUROSCI.1701-08.2008] [PMID: 18579743]
[331]
Relaño-Ginés, A.; Lehmann, S.; Crozet, C. Prion diseases and adult neurogenesis: how do prions counteract the brain’s endogenous repair machinery? Prion, 2014, 8(3), 240-246.
[http://dx.doi.org/10.4161/pri.29021] [PMID: 24831876]
[332]
Evangelisti, C.; Florian, M.C.; Massimi, I.; Dominici, C.; Giannini, G.; Galardi, S.; Buè, M.C.; Massalini, S.; McDowell, H.P.; Messi, E.; Gulino, A.; Farace, M.G.; Ciafrè, S.A. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J., 2009, 23(12), 4276-4287.
[http://dx.doi.org/10.1096/fj.09-134965] [PMID: 19713529]
[333]
Han, N.; Zhao, W.; Zhang, Z.; Zheng, P. MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1. Biochem. Biophys. Res. Commun., 2016, 470(1), 175-180.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.020] [PMID: 26773497]
[334]
Fan, X.Y.; Tian, C.; Wang, H.; Xu, Y.; Ren, K.; Zhang, B.Y.; Gao, C.; Shi, Q.; Meng, G.; Zhang, L.B.; Zhao, Y.J.; Shao, Q.X.; Dong, X.P. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci. Rep., 2015, 5, 14728.
[http://dx.doi.org/10.1038/srep14728] [PMID: 26423766]
[335]
Hao, Z.; Wang, G. Autophagy and Prion Disease. Adv. Exp. Med. Biol., 2020, 1207, 75-85.
[http://dx.doi.org/10.1007/978-981-15-4272-5_4] [PMID: 32671739]
[336]
Burak, K.; Lamoureux, L.; Boese, A.; Majer, A.; Saba, R.; Niu, Y.; Frost, K.; Booth, S.A. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol. Dis., 2018, 112, 1-13.
[http://dx.doi.org/10.1016/j.nbd.2017.12.011] [PMID: 29277556]
[337]
Norsworthy, P.J.; Thompson, A.G.B.; Mok, T.H.; Guntoro, F.; Dabin, L.C.; Nihat, A.; Paterson, R.W.; Schott, J.M.; Collinge, J.; Mead, S.; Viré, E.A. A blood miRNA signature associates with sporadic Creutzfeldt-Jakob disease diagnosis. Nat. Commun., 2020, 11(1), 3960.
[http://dx.doi.org/10.1038/s41467-020-17655-x] [PMID: 32769986]
[338]
Yang, Y.T.; Jin, S. Effect of PrP105-132 on the secretion of interleukin-6 and interleukin-8 from microglial cells in vitro. Exp. Ther. Med., 2018, 15(1), 999-1004.
[PMID: 29399107]
[339]
Fabbri, E.; Montagner, G.; Bianchi, N.; Finotti, A.; Borgatti, M.; Lampronti, I.; Cabrini, G.; Gambari, R. MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncol. Rep., 2016, 35(5), 2866-2872.
[http://dx.doi.org/10.3892/or.2016.4676] [PMID: 26986724]
[340]
Xiong, J.; Yu, D.; Wei, N.; Fu, H.; Cai, T.; Huang, Y.; Wu, C.; Zheng, X.; Du, Q.; Lin, D.; Liang, Z. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J., 2010, 277(7), 1684-1694.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07594.x] [PMID: 20180843]
[341]
Jovicic, A.; Zaldivar, J.J.F.; Moser, R.; Silva, S. Mde.F.; Luthi-Carter, R. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One, 2013, 8(1), e54222.
[http://dx.doi.org/10.1371/journal.pone.0054222] [PMID: 23349832]
[342]
Chen, D.; Hu, S.; Wu, Z.; Liu, J.; Li, S. The Role of MiR-132 in regulating neural stem cell proliferation, differentiation and neuronal matu-ration. Cell. Physiol. Biochem., 2018, 47(6), 2319-2330.
[http://dx.doi.org/10.1159/000491543] [PMID: 29982261]
[343]
Makeyev, E.V.; Zhang, J.; Carrasco, M.A.; Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell, 2007, 27(3), 435-448.
[http://dx.doi.org/10.1016/j.molcel.2007.07.015] [PMID: 17679093]
[344]
Liu, T. Im, W.; Mook-Jung, I.; Kim, M. MicroRNA-124 slows down the progression of Huntington’s disease by promoting neurogenesis in the striatum. Neural Regen. Res., 2015, 10(5), 786-791.
[http://dx.doi.org/10.4103/1673-5374.156978] [PMID: 26109954]
[345]
Moumné, L.; Betuing, S.; Caboche, J. Multiple Aspects of Gene Dysregulation in Huntington’s Disease. Front. Neurol., 2013, 4, 127.
[http://dx.doi.org/10.3389/fneur.2013.00127] [PMID: 24167500]
[346]
Tan, L.; Yu, J.T.; Tan, L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol., 2015, 51(3), 1249-1262.
[http://dx.doi.org/10.1007/s12035-014-8803-9] [PMID: 24973986]
[347]
Kunkanjanawan, T.; Carter, R.L.; Prucha, M.S.; Yang, J.; Parnpai, R.; Chan, A.W. miR-196a ameliorates cytotoxicity and cellular pheno-type in transgenic Huntington’s disease monkey neural cells. PLoS One, 2016, 11(9), e0162788.
[http://dx.doi.org/10.1371/journal.pone.0162788] [PMID: 27631085]
[348]
Hoss, A.G.; Labadorf, A.; Latourelle, J.C.; Kartha, V.K.; Hadzi, T.C.; Gusella, J.F.; MacDonald, M.E.; Chen, J.F.; Akbarian, S.; Weng, Z.; Vonsattel, J.P.; Myers, R.H. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal in-volvement. BMC Med. Genomics, 2015, 8, 10.
[http://dx.doi.org/10.1186/s12920-015-0083-3] [PMID: 25889241]
[349]
Hoss, A.G.; Lagomarsino, V.N.; Frank, S.; Hadzi, T.C.; Myers, R.H.; Latourelle, J.C. Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain. Mov. Disord., 2015, 30(14), 1961-1964.
[http://dx.doi.org/10.1002/mds.26457] [PMID: 26573701]
[350]
Jamwal, S.; Kumar, P. Antidepressants for neuroprotection in Huntington’s disease: A review. Eur. J. Pharmacol., 2015, 769, 33-42.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.033] [PMID: 26511378]
[351]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[352]
Sonkoly, E.; Ståhle, M.; Pivarcsi, A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflamma-tion. Semin. Cancer Biol., 2008, 18(2), 131-140.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.005] [PMID: 18291670]
[353]
Sinha, M.; Ghose, J.; Das, E.; Bhattarcharyya, N.P. Altered microRNAs in STHdh(Q111)/Hdh(Q111) cells: miR-146a targets TBP. Biochem. Biophys. Res. Commun., 2010, 396(3), 742-747.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.007] [PMID: 20451497]
[354]
Laprairie, R.B.; Petr, G.T.; Sun, Y.; Fischer, K.D.; Denovan-Wright, E.M.; Rosenberg, P.A. Huntington’s disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1. Neurochem. Int., 2019, 123, 85-94.
[http://dx.doi.org/10.1016/j.neuint.2018.04.015] [PMID: 29709465]
[355]
Sinha, M.; Ghose, J.; Bhattarcharyya, N.P. Micro RNA -214,-150,-146a and-125b target Huntingtin gene. RNA Biol., 2011, 8(6), 1005-1021.
[http://dx.doi.org/10.4161/rna.8.6.16035] [PMID: 22048026]
[356]
Kozlowska, E.; Krzyzosiak, W.J.; Koscianska, E. Regulation of huntingtin gene expression by miRNA-137, -214, -148a, and their respec-tive isomiRs. Int. J. Mol. Sci., 2013, 14(8), 16999-17016.
[http://dx.doi.org/10.3390/ijms140816999] [PMID: 23965969]
[357]
Chang, K.H.; Wu, Y.R.; Chen, C.M. Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J. Rare Dis., 2017, 12(1), 185.
[http://dx.doi.org/10.1186/s13023-017-0742-x] [PMID: 29258536]
[358]
Freischmidt, A.; Müller, K.; Ludolph, A.C.; Weishaupt, J.H. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol. Commun., 2013, 1, 42.
[http://dx.doi.org/10.1186/2051-5960-1-42] [PMID: 24252274]
[359]
Taguchi, Y.H.; Wang, H. Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci., 2018, 19(5), 19.
[http://dx.doi.org/10.3390/ijms19051318] [PMID: 29710810]
[360]
Kovanda, A.; Leonardis, L.; Zidar, J.; Koritnik, B.; Dolenc-Groselj, L.; Ristic Kovacic, S.; Curk, T.; Rogelj, B. Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci. Rep., 2018, 8(1), 5609.
[http://dx.doi.org/10.1038/s41598-018-23139-2] [PMID: 29618798]
[361]
Vistbakka, J.; Elovaara, I.; Lehtimäki, T.; Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler., 2017, 23(3), 403-412.
[http://dx.doi.org/10.1177/1352458516651141] [PMID: 27246141]
[362]
D’Erchia, A.M.; Gallo, A.; Manzari, C.; Raho, S.; Horner, D.S.; Chiara, M.; Valletti, A.; Aiello, I.; Mastropasqua, F.; Ciaccia, L.; Locatelli, F.; Pisani, F.; Nicchia, G.P.; Svelto, M.; Pesole, G.; Picardi, E. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci. Rep., 2017, 7(1), 10046.
[http://dx.doi.org/10.1038/s41598-017-10488-7] [PMID: 28855684]
[363]
Recabarren-Leiva, D.; Alarcón, M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci., 2018, 193, 110-123.
[http://dx.doi.org/10.1016/j.lfs.2017.12.016] [PMID: 29241710]
[364]
Liguori, M.; Nuzziello, N.; Introna, A.; Consiglio, A.; Licciulli, F.; D’Errico, E.; Scarafino, A.; Distaso, E.; Simone, I.L. Dysregulation of MicroRNAs and Target Genes Networks in Peripheral Blood of Patients With Sporadic Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci., 2018, 11, 288.
[http://dx.doi.org/10.3389/fnmol.2018.00288] [PMID: 30210287]
[365]
Liguori, M.; Nuzziello, N.; Licciulli, F.; Consiglio, A.; Simone, M.; Viterbo, R.G.; Creanza, T.M.; Ancona, N.; Tortorella, C.; Margari, L.; Grillo, G.; Giordano, P.; Liuni, S.; Trojano, M. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an in-tegrated approach to uncover novel pathogenic mechanisms of the disease. Hum. Mol. Genet., 2018, 27(1), 66-79.
[http://dx.doi.org/10.1093/hmg/ddx385] [PMID: 29087462]
[366]
Satoh, J.; Kino, Y.; Niida, S. MicroRNA-seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark. Insights, 2015, 10, 21-31.
[http://dx.doi.org/10.4137/BMI.S25132] [PMID: 25922570]
[367]
Di Pietro, L.; Lattanzi, W.; Bernardini, C. Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclero-sis. Int. J. Mol. Sci., 2018, 19(5), 19.
[http://dx.doi.org/10.3390/ijms19051534] [PMID: 29786645]
[368]
Ebrahimkhani, S.; Vafaee, F.; Young, P.E.; Hur, S.S.J.; Hawke, S.; Devenney, E.; Beadnall, H.; Barnett, M.H.; Suter, C.M.; Buckland, M.E. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci. Rep., 2017, 7(1), 14293.
[http://dx.doi.org/10.1038/s41598-017-14301-3] [PMID: 29084979]
[369]
Chang, W.S.; Wang, Y.H.; Zhu, X.T.; Wu, C.J. Genome-Wide Profiling of miRNA and mRNA Expression in Alzheimer’s Disease. Med. Sci. Monit., 2017, 23, 2721-2731.
[http://dx.doi.org/10.12659/MSM.905064] [PMID: 28578378]
[370]
Si, Y.; Cui, X.; Crossman, D.K.; Hao, J.; Kazamel, M.; Kwon, Y.; King, P.H. Muscle microRNA signatures as biomarkers of disease pro-gression in amyotrophic lateral sclerosis. Neurobiol. Dis., 2018, 114, 85-94.
[http://dx.doi.org/10.1016/j.nbd.2018.02.009] [PMID: 29486297]
[371]
Raheja, R.; Regev, K.; Healy, B.C.; Mazzola, M.A.; Beynon, V.; Von Glehn, F.; Paul, A.; Diaz-Cruz, C.; Gholipour, T.; Glanz, B.I.; Kivi-sakk, P.; Chitnis, T.; Weiner, H.L.; Berry, J.D.; Gandhi, R. Correlating serum micrornas and clinical parameters in amyotrophic lateral scle-rosis. Muscle Nerve, 2018, 58(2), 261-269.
[http://dx.doi.org/10.1002/mus.26106] [PMID: 29466830]
[372]
Devier, D.J.; Lovera, J.F.; Lukiw, W.J. Increase in NF-κB-sensitive miRNA-146a and miRNA-155 in multiple sclerosis (MS) and pro-inflammatory neurodegeneration. Front. Mol. Neurosci., 2015, 8, 5.
[http://dx.doi.org/10.3389/fnmol.2015.00005] [PMID: 25784854]
[373]
Wu, T.; Chen, G. miRNAs Participate in MS Pathological Processes and Its Therapeutic Response. Mediators Inflamm., 2016, 2016, 4578230.
[http://dx.doi.org/10.1155/2016/4578230] [PMID: 27073296]
[374]
Tufekci, K.U.; Oner, M.G.; Genc, S.; Genc, K. MicroRNAs and multiple sclerosis. Autoimmune Dis., 2010, 2011, 807426.
[PMID: 21188194]
[375]
Hu, Z.; Cui, Y.; Qiao, X.; He, X.; Li, F.; Luo, C.; Wang, S.; Li, C.; Dai, R. Silencing miR-150 ameliorates experimental autoimmune en-cephalomyelitis. Front. Neurosci., 2018, 12, 465.
[http://dx.doi.org/10.3389/fnins.2018.00465] [PMID: 30050402]
[376]
Noorbakhsh, F.; Ellestad, K.K.; Maingat, F.; Warren, K.G.; Han, M.H.; Steinman, L.; Baker, G.B.; Power, C. Impaired neurosteroid syn-thesis in multiple sclerosis. Brain, 2011, 134(Pt 9), 2703-2721.
[http://dx.doi.org/10.1093/brain/awr200] [PMID: 21908875]
[377]
Dolati, S.; Marofi, F.; Babaloo, Z.; Aghebati-Maleki, L.; Roshangar, L.; Ahmadi, M.; Rikhtegar, R.; Yousefi, M. Dysregulated network of miRNAs involved in the pathogenesis of multiple sclerosis. Biomed. Pharmacother., 2018, 104, 280-290.
[http://dx.doi.org/10.1016/j.biopha.2018.05.050] [PMID: 29775896]
[378]
Groen, K.; Maltby, V.E.; Lea, R.A.; Sanders, K.A.; Fink, J.L.; Scott, R.J.; Tajouri, L.; Lechner-Scott, J. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med. Genomics, 2018, 11(1), 48.
[http://dx.doi.org/10.1186/s12920-018-0365-7] [PMID: 29783973]
[379]
Witte, M.E.; Nijland, P.G.; Drexhage, J.A.; Gerritsen, W.; Geerts, D.; van Het Hof, B.; Reijerkerk, A.; de Vries, H.E.; van der Valk, P.; van Horssen, J. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol., 2013, 125(2), 231-243.
[http://dx.doi.org/10.1007/s00401-012-1052-y] [PMID: 23073717]
[380]
Zhang, Q.; Ma, X.F.; Dong, M.Z.; Tan, J.; Zhang, J.; Zhuang, L.K.; Liu, S.S.; Xin, Y.N. MiR-30b-5p regulates the lipid metabolism by targeting PPARGC1A in Huh-7 cell line. Lipids Health Dis., 2020, 19(1), 76.
[http://dx.doi.org/10.1186/s12944-020-01261-3] [PMID: 32299444]
[381]
Tavakolpour, V.; Shokri, G.; Naser Moghadasi, A.; Mozafari Nahavandi, P.; Hashemi, M.; Kouhkan, F. Increased expression of mir-301a in PBMCs of patients with relapsing-remitting multiple sclerosis is associated with reduced NKRF and PIAS3 expression levels and dis-ease activity. J. Neuroimmunol., 2018, 325, 79-86.
[http://dx.doi.org/10.1016/j.jneuroim.2018.10.002] [PMID: 30316680]
[382]
Ma, X.; Zhou, J.; Zhong, Y.; Jiang, L.; Mu, P.; Li, Y.; Singh, N.; Nagarkatti, M.; Nagarkatti, P. Expression, regulation and function of mi-croRNAs in multiple sclerosis. Int. J. Med. Sci., 2014, 11(8), 810-818.
[http://dx.doi.org/10.7150/ijms.8647] [PMID: 24936144]
[383]
Fenoglio, C.; Ridolfi, E.; Cantoni, C.; De Riz, M.; Bonsi, R.; Serpente, M.; Villa, C.; Pietroboni, A.M.; Naismith, R.T.; Alvarez, E.; Parks, B.J.; Bresolin, N.; Cross, A.H.; Piccio, L.M.; Galimberti, D.; Scarpini, E. Decreased circulating miRNA levels in patients with primary pro-gressive multiple sclerosis. Mult. Scler., 2013, 19(14), 1938-1942.
[http://dx.doi.org/10.1177/1352458513485654] [PMID: 24277735]
[384]
Junker, A.; Krumbholz, M.; Eisele, S.; Mohan, H.; Augstein, F.; Bittner, R.; Lassmann, H.; Wekerle, H.; Hohlfeld, R.; Meinl, E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain, 2009, 132(Pt 12), 3342-3352.
[http://dx.doi.org/10.1093/brain/awp300] [PMID: 19952055]
[385]
Mycko, M.P.; Cichalewska, M.; Cwiklinska, H.; Selmaj, K.W. miR-155-3p Drives the Development of Autoimmune Demyelination by Regulation of Heat Shock Protein 40. J. Neurosci., 2015, 35(50), 16504-16515.
[http://dx.doi.org/10.1523/JNEUROSCI.2830-15.2015] [PMID: 26674874]
[386]
Liu, S.Q.; Jiang, S.; Li, C.; Zhang, B.; Li, Q.J. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J. Biol. Chem., 2014, 289(18), 12446-12456.
[http://dx.doi.org/10.1074/jbc.M114.550723] [PMID: 24644282]
[387]
Ichiyama, K.; Gonzalez-Martin, A.; Kim, B.S.; Jin, H.Y.; Jin, W.; Xu, W.; Sabouri-Ghomi, M.; Xu, S.; Zheng, P.; Xiao, C.; Dong, C. The MicroRNA-183-96-182 Cluster Promotes T Helper 17 Cell Pathogenicity by Negatively Regulating Transcription Factor Foxo1 Expres-sion. Immunity, 2016, 44(6), 1284-1298.
[http://dx.doi.org/10.1016/j.immuni.2016.05.015] [PMID: 27332731]
[388]
Nuzziello, N.; Vilardo, L.; Pelucchi, P.; Consiglio, A.; Liuni, S.; Trojano, M.; Liguori, M. Investigating the Role of MicroRNA and Tran-scription Factor Co-regulatory Networks in Multiple Sclerosis Pathogenesis. Int. J. Mol. Sci., 2018, 19(11), 19.
[http://dx.doi.org/10.3390/ijms19113652] [PMID: 30463275]
[389]
Cardiac Changes in Early Parkinson's Disease: A Follow up Study. In: ClinicalTrials.gov, 2020.
[390]
Safety Evaluation of Cellavita HD Administered Intravenously in Participants With Huntington's Disease (SAVE-DH). In: Clinical- Trials.gov, 2020.
[391]
CJD (Creutzfeldt-Jakob Disease) Quinacrine Study. In: Clinical- Trials.gov, 2020.
[392]
Human Neural Stem Cell Transplantation in Amyotrophic Lateral Sclerosis (ALS) (hNSCALS). In: ClinicalTrials.gov, 2020.
[393]
Neural Stem Cell Transplantation in Multiple Sclerosis Patients (STEMS). In: ClinicalTrials.gov, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy