Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Reviewing Antiviral Research against Viruses Causing Human Diseases - a Structure-Guided Approach

Author(s): Arunima Sikdar*, Rupali Gupta and Evzen Boura*

Volume 15, Issue 2, 2022

Published on: 20 December, 2021

Article ID: e040821195275 Pages: 32

DOI: 10.2174/1874467214666210804152836

Price: $65

conference banner
Abstract

The smallest of all the pathogens, viruses, have continuously been the foremost strange microorganisms. Viral infections can cause extreme sicknesses as evidenced by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are also regularly observed as consequences of numerous viral infections. Besides, numerous viral infections are of oncoviruses, which can trigger different types of cancer. Nearly every year, a modern infectious species emerges, debilitating the world population with an annihilating episode. Subsequently, there is a need to create antivirals to combat such rising infections. From the discovery of the antiviral drug Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was approved by the FDA in 2018, the whole process and criteria of creating antivirals have changed significantly. In this article, different auxiliary science strategies are described that can serve as a referral for therapeutic innovation.

Keywords: Antivirals, virus, cancer, drug design, COVID-19, structural biology, X-ray crystallography, cryo-EM.

Graphical Abstract
[1]
Cohen, S.; Au, S.; Panté, N. How viruses access the nucleus. 2011, 1813(9), 1634-1645.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.009]
[2]
Smith, A.E.; Helenius, A. How viruses enter animal cells. Science, 2004, 304(5668), 237-242.
[http://dx.doi.org/10.1126/science.1094823] [PMID: 15073366]
[3]
Poltronieri, P.; Sun, B.; Mallardo, M.; Viruses, R.N.A. RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Curr. Genomics, 2015, 16(5), 327-335.
[http://dx.doi.org/10.2174/1389202916666150707160613] [PMID: 27047253]
[4]
Krupovic, M.; Forterre, P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann. N. Y. Acad. Sci., 2015, 1341, 41-53.
[http://dx.doi.org/10.1111/nyas.12675] [PMID: 25675979]
[5]
Meng, W.; Yang, Q.; Vrancken, B.; Chen, Z.; Liu, D.; Chen, L.; Zhao, X.; François, S.; Ma, T.; Gao, R.; Ru, W.; Li, Y.; He, H.; Zhang, G.; Tian, H.; Lu, J. New evidence for the east-west spread of the highly pathogenic avian influenza H5N1 virus between Central Asian and east Asian-Australasian flyways in China. Emerg. Microbes Infect., 2019, 8(1), 823-826.
[http://dx.doi.org/10.1080/22221751.2019.1623719] [PMID: 31164049]
[6]
Fasanmi, O.G.; Kehinde, O.O.; Laleye, A.T.; Ekong, B.; Ahmed, S.S.U.; Fasina, F.O. National surveillance and control costs for highly pathogenic avian influenza H5N1 in poultry: A benefit-cost assessment for a developing economy, Nigeria. Res. Vet. Sci., 2018, 119, 127-133.
[http://dx.doi.org/10.1016/j.rvsc.2018.06.006] [PMID: 29920398]
[7]
Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I.D. World Health, O., Smallpox and its eradication / F. Fenner; World Health Organization: Geneva, 1988.
[8]
Dash, P.K.; Saxena, P.; Abhyankar, A.; Bhargava, R.; Jana, A.M. Emergence of dengue virus type-3 in northern India. Southeast Asian J. Trop. Med. Public Health, 2005, 36(2), 370-377.
[PMID: 15916043]
[9]
Chang, C.; Ortiz, K.; Ansari, A.; Gershwin, M.E. The Zika outbreak of the 21st century. J. Autoimmun., 2016, 68, 1-13.
[http://dx.doi.org/10.1016/j.jaut.2016.02.006] [PMID: 26925496]
[10]
Ho, Y.L.; Joelsons, D.; Leite, G.F.C.; Malbouisson, L.M.S.; Song, A.T.W.; Perondi, B.; Andrade, L.C.; Pinto, L.F.; D’Albuquerque, L.A.C.; Segurado, A.A.C. Severe yellow fever in Brazil: Clinical characteristics and management. J. Travel Med., 2019, 26(5), taz040.
[http://dx.doi.org/10.1093/jtm/taz040] [PMID: 31150098]
[11]
Paules, C.I.; Fauci, A.S. Yellow fever - once again on the radar screen in the americas. N. Engl. J. Med., 2017, 376(15), 1397-1399.
[http://dx.doi.org/10.1056/NEJMp1702172] [PMID: 28273000]
[12]
Sharma, V.; Kaushik, S.; Kumar, R.; Yadav, J.P.; Kaushik, S. Emerging trends of Nipah virus: A review. Rev. Med. Virol., 2019, 29(1), e2010.
[http://dx.doi.org/10.1002/rmv.2010] [PMID: 30251294]
[13]
Palacios, G.; Oberste, M.S. Enteroviruses as agents of emerging infectious diseases. J. Neurovirol., 2005, 11(5), 424-433.
[http://dx.doi.org/10.1080/13550280591002531] [PMID: 16287683]
[14]
Tozay, S.; Fischer, W.A.; Wohl, D.A.; Kilpatrick, K.; Zou, F.; Reeves, E.; Pewu, K.; DeMarco, J.; Loftis, A.J.; King, K.; Grant, D.; Schieffelin, J.; Gorvego, G.; Johnson, H.; Conneh, T.; Williams, G.; Nelson, J.A.E.; Hoover, D.; McMillian, D.; Merenbloom, C.; Hawks, D.; Dube, K.; Brown, J. Long-term complications of ebola virus disease: Prevalence and predictors of major symptoms and the role of inflammation. Clin. Infect. Dis., 2020, 71(7), 1749-1755.
[PMID: 31693114] [http://dx.doi.org/10.1093/cid/ciz1062]
[15]
Skowronski, D.M.; Astell, C.; Brunham, R.C.; Low, D.E.; Petric, M.; Roper, R.L.; Talbot, P.J.; Tam, T.; Babiuk, L. Severe acute respiratory syndrome (SARS): A year in review. Annu. Rev. Med., 2005, 56(1), 357-381.
[http://dx.doi.org/10.1146/annurev.med.56.091103.134135] [PMID: 15660517]
[16]
Cohen, J.; Normile, D. New SARS-like virus in China triggers alarm. Science, 2020, 367(6475), 234-235.
[http://dx.doi.org/10.1126/science.367.6475.234] [PMID: 31949058]
[17]
Villa, T.G.; Feijoo-Siota, L.; Rama, J.L.R.; Ageitos, J.M. Antivirals against animal viruses. Biochem. Pharmacol., 2017, 133, 97-116.
[http://dx.doi.org/10.1016/j.bcp.2016.09.029] [PMID: 27697545]
[18]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[19]
Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci., 2016, 73(23), 4433-4448.
[http://dx.doi.org/10.1007/s00018-016-2299-6] [PMID: 27392606]
[20]
Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res., 2010, 85(1), 1-18.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.002] [PMID: 20018391]
[21]
Chigbu, ; Loonawat, ; Sehgal, ; Patel, ; Jain, Hepatitis c virus infection: Host–virus interaction and mechanisms of viral persistence. Cells, 2019, 8(4), 376.
[http://dx.doi.org/10.3390/cells8040376]
[22]
Anishchenko, M.; Bowen, R.A.; Paessler, S.; Austgen, L.; Greene, I.P.; Weaver, S.C. Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 4994-4999.
[http://dx.doi.org/10.1073/pnas.0509961103] [PMID: 16549790]
[23]
MacLachlan, J.H.; Cowie, B.C.; Hepatitis, B. Hepatitis B virus epidemiology. Cold Spring Harb. Perspect. Med., 2015, 5(5), a021410-a021410.
[http://dx.doi.org/10.1101/cshperspect.a021410] [PMID: 25934461]
[24]
De Clercq, E.; Descamps, J.; De Somer, P.; Holý, A. (S)-9-(2,3-Dihydroxypropyl)adenine: An aliphatic nucleoside analog with broad-spectrum antiviral activity. Science, 1978, 200(4341) [UNKNOWN.].
[http://dx.doi.org/10.1126/science.200.4341.563] [PMID: 205946]
[25]
Zakharova, V. M.; Serpi, M.; Krylov, I. S.; Peterson, L. W.; Breitenbach, J. M.; Borysko, K. Z.; Drach, J. C.; Collins, M.; Hilfinger, J. M.; Kashemirov, B. A.; McKenna, C. E. Tyrosine-based 1-( s )-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine (( s )-hpmpc and ( s )-hpmpa) prodrugs: Synthesis, stability, antiviral activity, and in vivo transport studies. 2011, 54(16), 5680-5693.
[26]
De Clercq, E. The acyclic nucleoside phosphonates from inception to clinical use: Historical perspective. Antiviral Res., 2007, 75(1), 1-13.
[http://dx.doi.org/10.1016/j.antiviral.2006.10.006] [PMID: 17116336]
[27]
Liljas, A. On the complementarity of methods in structural biology. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(Pt 8), 941-945.
[http://dx.doi.org/10.1107/S0907444906008900] [PMID: 16855312]
[28]
Grimes, J.M.; Fuller, S.D.; Stuart, D.I. Complementing crystallography: The role of cryo-electron microscopy in structural biology. Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 10), 1742-1749.
[http://dx.doi.org/10.1107/S0907444999009956] [PMID: 10531524]
[29]
Shi, Y. A glimpse of structural biology through X-ray crystallography. Cell, 2014, 159(5), 995-1014.
[http://dx.doi.org/10.1016/j.cell.2014.10.051] [PMID: 25416941]
[30]
Li, Y.; Kang, C. Solution nmr spectroscopy in target-based drug discovery. Molecules, 2017, 22(9), E1399.
[http://dx.doi.org/10.3390/molecules22091399] [PMID: 28832542]
[31]
Kang, C.B. 19F-NMR in target-based drug discovery. Curr. Med. Chem., 2019. [Epub ahead of Print].
[http://dx.doi.org/10.2174/0929867326666190610160534] [PMID: 31187703]
[32]
García-Nafría, J.; Tate, C.G. Cryo-electron microscopy: Moving beyond x-ray crystal structures for drug receptors and drug development. Annu. Rev. Pharmacol. Toxicol., 2020, 60, 51-71.
[PMID: 31348870]
[33]
Earl, L.A.; Subramaniam, S. Cryo-EM of viruses and vaccine design. Proc. Natl. Acad. Sci. USA, 2016, 113(32), 8903-8905.
[http://dx.doi.org/10.1073/pnas.1609721113] [PMID: 27482113]
[34]
Sundell, G.; Hulander, M.; Pihl, A.; Andersson, M. Atom probe tomography for 3d structural and chemical analysis of individual proteins. Small, 2019, 15(24), e1900316.
[http://dx.doi.org/10.1002/smll.201900316] [PMID: 31058464]
[35]
Ma, Z.; Ni, G.; Damania, B. Innate Sensing of DNA Virus Genomes. Annu. Rev. Virol., 2018, 5(1), 341-362.
[http://dx.doi.org/10.1146/annurev-virology-092917-043244] [PMID: 30265633]
[36]
Kobayashi, K.; Hisamatsu, K.; Suzui, N.; Hara, A.; Tomita, H.; Miyazaki, T. A review of hpv-related head and neck cancer. J. Clin. Med., 2018, 7(9), 241.
[http://dx.doi.org/10.3390/jcm7090241] [PMID: 30150513]
[37]
Russell, L.; Peng, K. W.; Russell, S. J.; Diaz, R. M. Oncolytic Viruses: Priming time for cancer immunotherapy. BioDrug, 2019, 33(5), 485-501.
[38]
Bradshaw, M.J.; Venkatesan, A. Herpes simplex virus-1 encephalitis in adults: Pathophysiology, diagnosis, and management. Neurotherapeutics, 2016, 13(3), 493-508.
[http://dx.doi.org/10.1007/s13311-016-0433-7] [PMID: 27106239]
[39]
Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.E.; Oxman, M.N.; Seward, J.F.; Yamanishi, K. Varicella zoster virus infection. Nat. Rev. Dis. Primers, 2015, 1(1), 15016.
[http://dx.doi.org/10.1038/nrdp.2015.16] [PMID: 27188665]
[40]
Cheeran, M.C.J.; Lokensgard, J.R.; Schleiss, M.R. Neuropathogenesis of congenital cytomegalovirus infection: Disease mechanisms and prospects for intervention. Clin. Microbiol. Rev., 2009, 22(1), 99-126.
[http://dx.doi.org/10.1128/CMR.00023-08] [PMID: 19136436]
[41]
Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein-Barr virus-associated lymphomas. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1732), 20160271.
[http://dx.doi.org/10.1098/rstb.2016.0271] [PMID: 28893938]
[42]
Ali, M.; Rayes-Danan, R. Multicentric castleman disease and kaposi sarcoma: Two HHV8 diseases with different prognosis and treatment. HIV AIDS Rev., 2016, 15, 25-35.
[http://dx.doi.org/10.1016/j.hivar.2016.04.005]
[43]
Pires, C.A.A.; Noronha, M.A.N.; Monteiro, J.C.M.S.; Costa, A.L.C.D.; Abreu Júnior, J.M.C. Kaposi’s sarcoma in persons living with HIV/AIDS: A case series in a tertiary referral hospital. An. Bras. Dermatol., 2018, 93(4), 524-528.
[http://dx.doi.org/10.1590/abd1806-4841.20186978] [PMID: 30066758]
[44]
Walsh, S. R.; Dolin, R. Vaccinia viruses: Vaccines against smallpox and vectors against infectious diseases and tumors. 2011, 10(8), 1221-1240.
[http://dx.doi.org/10.1586/erv.11.79]
[45]
Rogo, L.D.; Mokhtari-Azad, T.; Kabir, M.H.; Rezaei, F. Human parvovirus B19: A review. Acta Virol., 2014, 58(3), 199-213.
[http://dx.doi.org/10.4149/av_2014_03_199] [PMID: 25283854]
[46]
Zou, W.; Wang, Z.; Xiong, M.; Chen, A.Y.; Xu, P.; Ganaie, S.S.; Badawi, Y.; Kleiboeker, S.; Nishimune, H.; Ye, S.Q.; Qiu, J. Human parvovirus b19 utilizes cellular dna replication machinery for viral dna replication. J. Virol., 2018, 92(5), e01881-17.
[http://dx.doi.org/10.1128/JVI.01881-17] [PMID: 29237843]
[47]
Kaufmann, B.; Simpson, A.A.; Rossmann, M.G. The structure of human parvovirus B19. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11628-11633.
[http://dx.doi.org/10.1073/pnas.0402992101] [PMID: 15289612]
[48]
Lukashov, V.V.; Goudsmit, J. Evolutionary relationships among parvoviruses: Virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J. Virol., 2001, 75(6), 2729-2740.
[http://dx.doi.org/10.1128/JVI.75.6.2729-2740.2001] [PMID: 11222696]
[49]
Sun, Y.; Klose, T.; Liu, Y.; Modrow, S.; Rossmann, M.G. Structure of parvovirus b19 decorated by fabs from a human antibody. J. Virol., 2019, 93(9), e01732-18.
[http://dx.doi.org/10.1128/JVI.01732-18] [PMID: 30787153]
[50]
Brianti, P.; De Flammineis, E.; Mercuri, S.R. Review of HPV-related diseases and cancers. New Microbiol., 2017, 40(2), 80-85.
[PMID: 28368072]
[51]
Harden, M.E.; Munger, K. Human papillomavirus molecular biology. Mutat. Res. Rev. Mutat. Res., 2017, 772, 3-12.
[http://dx.doi.org/10.1016/j.mrrev.2016.07.002] [PMID: 28528688]
[52]
Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev., 2003, 16(1), 1-17.
[http://dx.doi.org/10.1128/CMR.16.1.1-17.2003] [PMID: 12525422]
[53]
Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV entry into cells. Mutat. Res. Rev. Mutat. Res., 2017, 772, 13-22.
[http://dx.doi.org/10.1016/j.mrrev.2016.09.004] [PMID: 28528686]
[54]
Maxwell, J.H.; Grandis, J.R.; Ferris, R.L. HPV-associated head and neck cancer: Unique features of epidemiology and clinical management. Annu. Rev. Med., 2016, 67, 91-101.
[http://dx.doi.org/10.1146/annurev-med-051914-021907] [PMID: 26332002]
[55]
Hoppe-Seyler, K.; Bossler, F.; Braun, J.A.; Herrmann, A.L.; Hoppe-Seyler, F. The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol., 2018, 26(2), 158-168.
[http://dx.doi.org/10.1016/j.tim.2017.07.007] [PMID: 28823569]
[56]
Bishop, B.; Dasgupta, J.; Klein, M.; Garcea, R.L.; Christensen, N.D.; Zhao, R.; Chen, X.S. Crystal structures of four types of human papillomavirus L1 capsid proteins: Understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem., 2007, 282(43), 31803-31811.
[http://dx.doi.org/10.1074/jbc.M706380200] [PMID: 17804402]
[57]
Cardone, G.; Moyer, A.L.; Cheng, N.; Thompson, C.D.; Dvoretzky, I.; Lowy, D.R.; Schiller, J.T.; Steven, A.C.; Buck, C.B.; Trus, B.L. Maturation of the human papillomavirus 16 capsid. MBio, 2014, 5(4), e01104-e01114.
[http://dx.doi.org/10.1128/mBio.01104-14] [PMID: 25096873]
[58]
Bousarghin, L.; Touzé, A.; Combita-Rojas, A.L.; Coursaget, P. Positively charged sequences of human papillomavirus type 16 capsid proteins are sufficient to mediate gene transfer into target cells via the heparan sulfate receptor. J. Gen. Virol., 2003, 84(Pt 1), 157-164.
[http://dx.doi.org/10.1099/vir.0.18789-0] [PMID: 12533712]
[59]
Megyeri, K.; Au, W.C.; Rosztoczy, I.; Raj, N.B.; Miller, R.L.; Tomai, M.A.; Pitha, P.M. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol. Cell. Biol., 1995, 15(4), 2207-2218.
[http://dx.doi.org/10.1128/MCB.15.4.2207] [PMID: 7534379]
[60]
Richards, K.H.; Wasson, C.W.; Watherston, O.; Doble, R.; Eric Blair, G.; Wittmann, M.; Macdonald, A. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes. Sci. Rep., 2015, 5, 12922.
[http://dx.doi.org/10.1038/srep12922] [PMID: 26268216]
[61]
Monie, A.; Hung, C-F.; Roden, R.; Wu, T.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics, 2008, 2(1), 97-105.
[PMID: 19707432]
[62]
Szarewski, A. HPV vaccine: Cervarix. Expert Opin. Biol. Ther., 2010, 10(3), 477-487.
[http://dx.doi.org/10.1517/14712591003601944] [PMID: 20132062]
[63]
Cuzick, J. Gardasil 9 joins the fight against cervix cancer. Expert Rev. Vaccines, 2015, 14(8), 1047-1049.
[http://dx.doi.org/10.1586/14760584.2015.1051470] [PMID: 26028344]
[64]
Burd, E.M. Human papillomavirus laboratory testing: The changing paradigm. Clin. Microbiol. Rev., 2016, 29(2), 291-319.
[http://dx.doi.org/10.1128/CMR.00013-15] [PMID: 26912568]
[65]
Crenshaw, B.J.; Jones, L.B.; Bell, C.R.; Kumar, S.; Matthews, Q.L. Perspective on adenoviruses: Epidemiology, pathogenicity, and gene therapy. Biomedicines, 2019, 7(3), E61.
[http://dx.doi.org/10.3390/biomedicines7030061] [PMID: 31430920]
[66]
Gao, W.J.; Jin, Y.; Duan, Z.J. Research progress in human adenovirus. Bing Du Xue Bao, 2014, 30(2), 193-200.
[PMID: 24923175]
[67]
San Martín, C. Latest insights on adenovirus structure and assembly. Viruses, 2012, 4(5), 847-877.
[http://dx.doi.org/10.3390/v4050847] [PMID: 22754652]
[68]
Pereira, H.G.; Valentine, R.C.; Russell, W.C. Crystallization of an adenovirus protein (the hexon). Nature, 1968, 219(5157), 946-947.
[http://dx.doi.org/10.1038/219946a0] [PMID: 4970539]
[69]
Mautner, V.; Pereira, H.G. Crystallization of a second adenovirus protein (the fibre). Nature, 1971, 230(5294), 456-457.
[http://dx.doi.org/10.1038/230456a0] [PMID: 4995710]
[70]
Lindert, S.; Silvestry, M.; Mullen, T.M.; Nemerow, G.R.; Stewart, P.L. Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin. J. Virol., 2009, 83(22), 11491-11501.
[http://dx.doi.org/10.1128/JVI.01214-09] [PMID: 19726496]
[71]
Mac Sweeney, A.; Grosche, P.; Ellis, D.; Combrink, K.; Erbel, P.; Hughes, N.; Sirockin, F.; Melkko, S.; Bernardi, A.; Ramage, P.; Jarousse, N.; Altmann, E. Discovery and structure-based optimization of adenain inhibitors. ACS Med. Chem. Lett., 2014, 5(8), 937-941.
[http://dx.doi.org/10.1021/ml500224t] [PMID: 25147618]
[72]
Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S.; Community, M.A.R. Using the whole-genome sequence to characterize and name human adenoviruses. J. Virol., 2011, 85(11), 5701-5702.
[http://dx.doi.org/10.1128/JVI.00354-11] [PMID: 21450823]
[73]
Yuan, X.H.; Wang, Y.C.; Jin, W.J.; Zhao, B.B.; Chen, C.F.; Yang, J.; Wang, J.F.; Guo, Y.Y.; Liu, J.J.; Zhang, D.; Gong, L.L.; He, Y.W. Structure-based high-throughput epitope analysis of hexon proteins in B and C species human adenoviruses (HAdVs). PLoS One, 2012, 7(3), e32938.
[http://dx.doi.org/10.1371/journal.pone.0032938] [PMID: 22427913]
[74]
Bharucha, T.; Houlihan, C.F.; Breuer, J. Herpesvirus infections of the central nervous system. Semin. Neurol., 2019, 39(3), 369-382.
[http://dx.doi.org/10.1055/s-0039-1687837] [PMID: 31378872]
[75]
Zerboni, L.; Sen, N.; Oliver, S.L.; Arvin, A.M. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol., 2014, 12(3), 197-210.
[http://dx.doi.org/10.1038/nrmicro3215] [PMID: 24509782]
[76]
Hew, K.; Dahlroth, S.L.; Veerappan, S.; Pan, L.X.; Cornvik, T.; Nordlund, P. Structure of the varicella zoster virus thymidylate synthase establishes functional and structural similarities as the human enzyme and potentiates itself as a target of brivudine. PLoS One, 2015, 10(12), e0143947.
[http://dx.doi.org/10.1371/journal.pone.0143947] [PMID: 26630264]
[77]
Shannon-Lowe, C.; Rickinson, A. The global landscape of ebv-associated tumors. Front. Oncol., 2019, 9, 713.
[http://dx.doi.org/10.3389/fonc.2019.00713] [PMID: 31448229]
[78]
Thorley-Lawson, D.A.; Hawkins, J.B.; Tracy, S.I.; Shapiro, M. The pathogenesis of Epstein-Barr virus persistent infection. Curr. Opin. Virol., 2013, 3(3), 227-232.
[http://dx.doi.org/10.1016/j.coviro.2013.04.005] [PMID: 23683686]
[79]
Cohen, J.I.; Fauci, A.S.; Varmus, H.; Nabel, G.J. Epstein-Barr virus: An important vaccine target for cancer prevention. Sci. Transl. Med., 2011, 3(107), 107fs7.
[http://dx.doi.org/10.1126/scitranslmed.3002878] [PMID: 22049067]
[80]
Pagano, J.S.; Whitehurst, C.B.; Andrei, G. Antiviral drugs for EBV. Cancers (Basel), 2018, 10(6), 197.
[http://dx.doi.org/10.3390/cancers10060197] [PMID: 29899236]
[81]
Ahmed, S.I.; Aziz, K.; Gul, A.; Samar, S.S.; Bareeqa, S.B. Risk of multiple sclerosis in epstein-barr virus infection. Cureus, 2019, 11(9), e5699.
[http://dx.doi.org/10.7759/cureus.5699] [PMID: 31720167]
[82]
Szakonyi, G.; Klein, M.G.; Hannan, J.P.; Young, K.A.; Ma, R.Z.; Asokan, R.; Holers, V.M.; Chen, X.S. Structure of the Epstein-Barr virus major envelope glycoprotein. Nat. Struct. Mol. Biol., 2006, 13(11), 996-1001.
[http://dx.doi.org/10.1038/nsmb1161] [PMID: 17072314]
[83]
Messick, T.E.; Smith, G.R.; Soldan, S.S.; McDonnell, M.E.; Deakyne, J.S.; Malecka, K.A.; Tolvinski, L.; van den Heuvel, A.P.J.; Gu, B.W.; Cassel, J.A.; Tran, D.H.; Wassermann, B.R.; Zhang, Y.; Velvadapu, V.; Zartler, E.R.; Busson, P.; Reitz, A.B.; Lieberman, P.M. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Sci. Transl. Med., 2019, 11(482), eaau5612.
[http://dx.doi.org/10.1126/scitranslmed.aau5612] [PMID: 30842315]
[84]
Campos, A.B.; Ribeiro, J.; Boutolleau, D.; Sousa, H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: Current state of the art. Rev. Med. Virol., 2016, 26(3), 161-182.
[http://dx.doi.org/10.1002/rmv.1873] [PMID: 26990717]
[85]
Emery, V.C. Cytomegalovirus: Recent progress in understanding pathogenesis and control. QJM, 2012, 105(5), 401-405.
[http://dx.doi.org/10.1093/qjmed/hcr262] [PMID: 22198913]
[86]
Combs, J.A.; Norton, E.B.; Saifudeen, Z.R.; Honer Zu Bentrup, K.; Katakam, P.V.; Morris, C.A.; Myers, L.; Kaur, A.; Sullivan, D.E.; Zwezdaryk, K.J. Human cytomegalovirus alters host cell mitochondrial function during acute infection. J. Virol., 2019, 94(2), e01183-19.
[http://dx.doi.org/10.1128/JVI.01183-19] [PMID: 31694945]
[87]
Walzer, S.A.; Egerer-Sieber, C.; Sticht, H.; Sevvana, M.; Hohl, K.; Milbradt, J.; Muller, Y.A.; Marschall, M. Crystal structure of the human cytomegalovirus pul50-pul53 core nuclear egress complex provides insight into a unique assembly scaffold for virus-host protein interactions. J. Biol. Chem., 2015, 290(46), 27452-27458.
[http://dx.doi.org/10.1074/jbc.C115.686527] [PMID: 26432641]
[88]
Minces, L.R.; Nguyen, M.H.; Mitsani, D.; Shields, R.K.; Kwak, E.J.; Silveira, F.P.; Abdel-Massih, R.; Pilewski, J.M.; Crespo, M.M.; Bermudez, C.; Bhama, J.K.; Toyoda, Y.; Clancy, C.J. Ganciclovir-resistant cytomegalovirus infections among lung transplant recipients are associated with poor outcomes despite treatment with foscarnet-containing regimens. Antimicrob. Agents Chemother., 2014, 58(1), 128-135.
[http://dx.doi.org/10.1128/AAC.00561-13] [PMID: 24145525]
[89]
Group, V.S. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol., 2002, 133(4), 467-474.
[PMID: 11931780]
[90]
Rohner, E.; Wyss, N.; Heg, Z.; Faralli, Z.; Mbulaiteye, S.M.; Novak, U.; Zwahlen, M.; Egger, M.; Bohlius, J. HIV and human herpesvirus 8 co-infection across the globe: Systematic review and meta-analysis. Int. J. Cancer, 2016, 138(1), 45-54.
[http://dx.doi.org/10.1002/ijc.29687] [PMID: 26175054]
[91]
Radu, O.; Pantanowitz, L. Kaposi sarcoma. Arch. Pathol. Lab. Med., 2013, 137(2), 289-294.
[http://dx.doi.org/10.5858/arpa.2012-0101-RS] [PMID: 23368874]
[92]
Lee, G.M.; Shahian, T.; Baharuddin, A.; Gable, J.E.; Craik, C.S. Enzyme inhibition by allosteric capture of an inactive conformation. J. Mol. Biol., 2011, 411(5), 999-1016.
[http://dx.doi.org/10.1016/j.jmb.2011.06.032] [PMID: 21723875]
[93]
Hughes, A.L.; Irausquin, S.; Friedman, R. The evolutionary biology of poxviruses. Infect. Genet. Evol., 2010, 10(1), 50-59.
[http://dx.doi.org/10.1016/j.meegid.2009.10.001] [PMID: 19833230]
[94]
Babkin, I.V.; Babkina, I.N. Molecular dating in the evolution of vertebrate poxviruses. Intervirology, 2011, 54(5), 253-260.
[http://dx.doi.org/10.1159/000320964] [PMID: 21228539]
[95]
Thèves, C.; Biagini, P.; Crubézy, E. The rediscovery of smallpox. Clin. Microbiol. Infect., 2014, 20(3), 210-218.
[http://dx.doi.org/10.1111/1469-0691.12536] [PMID: 24438205]
[96]
Nichols, D.B.; De Martini, W.; Cottrell, J. Poxviruses utilize multiple strategies to inhibit apoptosis. Viruses, 2017, 9(8), 215.
[http://dx.doi.org/10.3390/v9080215] [PMID: 28786952]
[97]
Henderson, C.E.; Bromek, K.; Mullin, N.P.; Smith, B.O.; Uhrín, D.; Barlow, P.N. Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein. J. Mol. Biol., 2001, 307(1), 323-339.
[http://dx.doi.org/10.1006/jmbi.2000.4477] [PMID: 11243823]
[98]
Phan, J.; Tropea, J.E.; Waugh, D.S. Structure-assisted discovery of Variola major H1 phosphatase inhibitors. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 6), 698-704.
[http://dx.doi.org/10.1107/S0907444907014904] [PMID: 17505108]
[99]
Franco, E.; Bagnato, B.; Marino, M.G.; Meleleo, C.; Serino, L.; Zaratti, L.; Hepatitis, B. Hepatitis B: Epidemiology and prevention in developing countries. World J. Hepatol., 2012, 4(3), 74-80.
[http://dx.doi.org/10.4254/wjh.v4.i3.74] [PMID: 22489259]
[100]
McNaughton, A.L.; D’Arienzo, V.; Ansari, M.A.; Lumley, S.F.; Littlejohn, M.; Revill, P.; McKeating, J.A.; Matthews, P.C. Insights from deep sequencing of the hbv genome-unique, tiny, and misunderstood. Gastroenterology, 2019, 156(2), 384-399.
[http://dx.doi.org/10.1053/j.gastro.2018.07.058] [PMID: 30268787]
[101]
Zampino, R.; Boemio, A.; Sagnelli, C.; Alessio, L.; Adinolfi, L.E.; Sagnelli, E.; Coppola, N. Hepatitis B virus burden in developing countries. World J. Gastroenterol., 2015, 21(42), 11941-11953.
[http://dx.doi.org/10.3748/wjg.v21.i42.11941] [PMID: 26576083]
[102]
Kang, J.A.; Kim, S.; Park, M.; Park, H.J.; Kim, J.H.; Park, S.; Hwang, J.R.; Kim, Y.C.; Jun Kim, Y.; Cho, Y.; Sun Jin, M.; Park, S.G. Ciclopirox inhibits Hepatitis B Virus secretion by blocking capsid assembly. Nat. Commun., 2019, 10(1), 2184.
[http://dx.doi.org/10.1038/s41467-019-10200-5] [PMID: 31097716]
[103]
He, J.; Hao, R.; Liu, D.; Liu, X.; Wu, S.; Guo, S.; Wang, Y.; Tien, P.; Guo, D. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway. J. Gen. Virol., 2016, 97(12), 3368-3378.
[http://dx.doi.org/10.1099/jgv.0.000647] [PMID: 27902332]
[104]
Dansako, H.; Ueda, Y.; Okumura, N.; Satoh, S.; Sugiyama, M.; Mizokami, M.; Ikeda, M.; Kato, N. The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly. FEBS J., 2016, 283(1), 144-156.
[http://dx.doi.org/10.1111/febs.13563] [PMID: 26471009]
[105]
Keating, G.M.; Noble, S. Recombinant hepatitis B vaccine (Engerix-B): A review of its immunogenicity and protective efficacy against hepatitis B. Drugs, 2003, 63(10), 1021-1051.
[http://dx.doi.org/10.2165/00003495-200363100-00006] [PMID: 12699402]
[106]
Chang, M.H.; Chen, D.S. Prevention of hepatitis B. Cold Spring Harb. Perspect. Med., 2015, 5(3), a021493-a021493.
[http://dx.doi.org/10.1101/cshperspect.a021493] [PMID: 25732034]
[107]
Baltimore, D. Viral genetic systems. Trans. N. Y. Acad. Sci., 1971, 33(3), 327-332.
[http://dx.doi.org/10.1111/j.2164-0947.1971.tb02600.x] [PMID: 4327120]
[108]
Koonin, E.V.; Dolja, V.V. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol., 1993, 28(5), 375-430.
[http://dx.doi.org/10.3109/10409239309078440] [PMID: 8269709]
[109]
Ahlquist, P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol., 2006, 4(5), 371-382.
[http://dx.doi.org/10.1038/nrmicro1389] [PMID: 16582931]
[110]
Reguera, J.; Gerlach, P.; Cusack, S. Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases. Curr. Opin. Struct. Biol., 2016, 36, 75-84.
[http://dx.doi.org/10.1016/j.sbi.2016.01.002] [PMID: 26826467]
[111]
Koonin, E.V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol., 1991, 72(Pt 9), 2197-2206.
[http://dx.doi.org/10.1099/0022-1317-72-9-2197] [PMID: 1895057]
[112]
te Velthuis, A.J. Common and unique features of viral RNA-dependent polymerases. Cell. Mol. Life Sci., 2014, 71(22), 4403-4420.
[http://dx.doi.org/10.1007/s00018-014-1695-z] [PMID: 25080879]
[113]
Appleby, T.C.; Perry, J.K.; Murakami, E.; Barauskas, O.; Feng, J.; Cho, A.; Fox, D., III; Wetmore, D.R.; McGrath, M.E.; Ray, A.S.; Sofia, M.J.; Swaminathan, S.; Edwards, T.E. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 2015, 347(6223), 771-775.
[http://dx.doi.org/10.1126/science.1259210] [PMID: 25678663]
[114]
Li, G.; De Clercq, E. Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Res., 2017, 142, 83-122.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.014] [PMID: 28238877]
[115]
Lam, A.M.; Edwards, T.E.; Mosley, R.T.; Murakami, E.; Bansal, S.; Lugo, C.; Bao, H.; Otto, M.J.; Sofia, M.J.; Furman, P.A. Molecular and structural basis for the roles of hepatitis C virus polymerase NS5B amino acids 15, 223, and 321 in viral replication and drug resistance. Antimicrob. Agents Chemother., 2014, 58(11), 6861-6869.
[http://dx.doi.org/10.1128/AAC.03847-14] [PMID: 25182647]
[116]
McCauley, J.A.; McIntyre, C.J.; Rudd, M.T.; Nguyen, K.T.; Romano, J.J.; Butcher, J.W.; Gilbert, K.F.; Bush, K.J.; Holloway, M.K.; Swestock, J.; Wan, B.L.; Carroll, S.S.; DiMuzio, J.M.; Graham, D.J.; Ludmerer, S.W.; Mao, S.S.; Stahlhut, M.W.; Fandozzi, C.M.; Trainor, N.; Olsen, D.B.; Vacca, J.P.; Liverton, N.J. Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4a protease inhibitor. J. Med. Chem., 2010, 53(6), 2443-2463.
[http://dx.doi.org/10.1021/jm9015526] [PMID: 20163176]
[117]
Hayashi, N.; Nakamuta, M.; Takehara, T.; Kumada, H.; Takase, A.; Howe, A.Y.; Ludmerer, S.W.; Mobashery, N. Vaniprevir plus peginterferon alfa-2b and ribavirin in treatment-naive Japanese patients with hepatitis C virus genotype 1 infection: A randomized phase III study. J. Gastroenterol., 2016, 51(4), 390-403.
[http://dx.doi.org/10.1007/s00535-015-1120-x] [PMID: 26403160]
[118]
Jensen, D.; Sherman, K.E.; Hézode, C.; Pol, S.; Zeuzem, S.; de Ledinghen, V.; Tran, A.; Elkhashab, M.; Younes, Z.H.; Kugelmas, M.; Mauss, S.; Everson, G.; Luketic, V.; Vierling, J.; Serfaty, L.; Brunetto, M.; Heo, J.; Bernstein, D.; McPhee, F.; Hennicken, D.; Mendez, P.; Hughes, E.; Noviello, S. Daclatasvir and asunaprevir plus peginterferon alfa and ribavirin in HCV genotype 1 or 4 non-responders. J. Hepatol., 2015, 63(1), 30-37.
[http://dx.doi.org/10.1016/j.jhep.2015.02.018] [PMID: 25703086]
[119]
Raedler, L. A. Viekira pak (ombitasvir, paritaprevir, and ritonavir tablets; dasabuvir tablets): All-oral fixed combination approved for genotype 1 chronic hepatitis c infection. Am Health Drug Benefits, 2015, 8(Spec Feature), 142-147.
[120]
Casaos, J.; Gorelick, N.L.; Huq, S.; Choi, J.; Xia, Y.; Serra, R.; Felder, R.; Lott, T.; Kast, R.E.; Suk, I.; Brem, H.; Tyler, B.; Skuli, N. The use of ribavirin as an anticancer therapeutic: Will it go viral? Mol. Cancer Ther., 2019, 18(7), 1185-1194.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0666] [PMID: 31263027]
[121]
Reynolds, P.; Marzi, A. Ebola and Marburg virus vaccines. Virus Genes, 2017, 53(4), 501-515.
[http://dx.doi.org/10.1007/s11262-017-1455-x] [PMID: 28447193]
[122]
Martin, B.; Hoenen, T.; Canard, B.; Decroly, E. Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res., 2016, 135, 1-14.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.001] [PMID: 27640102]
[123]
Sweiti, H.; Ekwunife, O.; Jaschinski, T.; Lhachimi, S.K. Repurposed therapeutic agents targeting the ebola virus: A systematic review. Curr. Ther. Res. Clin. Exp., 2017, 84, 10-21.
[http://dx.doi.org/10.1016/j.curtheres.2017.01.007] [PMID: 28761574]
[124]
Gehring, G.; Rohrmann, K.; Atenchong, N.; Mittler, E.; Becker, S.; Dahlmann, F.; Pöhlmann, S.; Vondran, F.W.; David, S.; Manns, M.P.; Ciesek, S.; von Hahn, T. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J. Antimicrob. Chemother., 2014, 69(8), 2123-2131.
[http://dx.doi.org/10.1093/jac/dku091] [PMID: 24710028]
[125]
Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science, 2015, 347(6225), 995-998.
[http://dx.doi.org/10.1126/science.1258758] [PMID: 25722412]
[126]
Beck, S.; Henß, L.; Weidner, T.; Herrmann, J.; Müller, R.; Chao, Y.K.; Grimm, C.; Weber, C.; Sliva, K.; Schnierle, B.S. Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library. Antiviral Res., 2016, 132, 85-91.
[http://dx.doi.org/10.1016/j.antiviral.2016.05.017] [PMID: 27241689]
[127]
Henß, L.; Beck, S.; Weidner, T.; Biedenkopf, N.; Sliva, K.; Weber, C.; Becker, S.; Schnierle, B.S. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol. J., 2016, 13, 149.
[http://dx.doi.org/10.1186/s12985-016-0607-2] [PMID: 27581733]
[128]
Daniel, J.A.; Chau, N.; Abdel-Hamid, M.K.; Hu, L.; von Kleist, L.; Whiting, A.; Krishnan, S.; Maamary, P.; Joseph, S.R.; Simpson, F.; Haucke, V.; McCluskey, A.; Robinson, P.J. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic, 2015, 16(6), 635-654.
[http://dx.doi.org/10.1111/tra.12272] [PMID: 25693808]
[129]
Zhao, Y.; Ren, J.; Fry, E.E.; Xiao, J.; Townsend, A.R.; Stuart, D.I. Structures of ebola virus glycoprotein complexes with tricyclic antidepressant and antipsychotic drugs. J. Med. Chem., 2018, 61(11), 4938-4945.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00350] [PMID: 29741894]
[130]
Ehrhardt, S.A.; Zehner, M.; Krähling, V.; Cohen-Dvashi, H.; Kreer, C.; Elad, N.; Gruell, H.; Ercanoglu, M.S.; Schommers, P.; Gieselmann, L.; Eggeling, R.; Dahlke, C.; Wolf, T.; Pfeifer, N.; Addo, M.M.; Diskin, R.; Becker, S.; Klein, F. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med., 2019, 25(10), 1589-1600.
[http://dx.doi.org/10.1038/s41591-019-0602-4] [PMID: 31591605]
[131]
Smither, S.J.; Eastaugh, L.S.; Steward, J.A.; Nelson, M.; Lenk, R.P.; Lever, M.S. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res., 2014, 104, 153-155.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.012] [PMID: 24462697]
[132]
Zhang, T.; Zhai, M.; Ji, J.; Zhang, J.; Tian, Y.; Liu, X. Recent progress on the treatment of Ebola virus disease with Favipiravir and other related strategies. Bioorg. Med. Chem. Lett., 2017, 27(11), 2364-2368.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.028] [PMID: 28462833]
[133]
Shtanko, O.; Sakurai, Y.; Reyes, A.N.; Noël, R.; Cintrat, J.C.; Gillet, D.; Barbier, J.; Davey, R.A. Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral Res., 2018, 149, 154-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.016] [PMID: 29175127]
[134]
Johansen, L.M.; Brannan, J.M.; Delos, S.E.; Shoemaker, C.J.; Stossel, A.; Lear, C.; Hoffstrom, B.G.; Dewald, L.E.; Schornberg, K.L.; Scully, C.; Lehár, J.; Hensley, L.E.; White, J.M.; Olinger, G.G. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci. Transl. Med., 2013, 5(190), 190ra79.
[http://dx.doi.org/10.1126/scitranslmed.3005471] [PMID: 23785035]
[135]
Qiu, X.; Kroeker, A.; He, S.; Kozak, R.; Audet, J.; Mbikay, M.; Chrétien, M. Prophylactic efficacy of quercetin 3-β-o-d-glucoside against ebola virus infection. Antimicrob. Agents Chemother., 2016, 60(9), 5182-5188.
[http://dx.doi.org/10.1128/AAC.00307-16] [PMID: 27297486]
[136]
Nishimura, H.; Yamaya, M. A synthetic serine protease inhibitor, nafamostat mesilate, is a drug potentially applicable to the treatment of ebola virus disease. Tohoku J. Exp. Med., 2015, 237(1), 45-50.
[http://dx.doi.org/10.1620/tjem.237.45] [PMID: 26346967]
[137]
Li, H.; Yu, F.; Xia, S.; Yu, Y.; Wang, Q.; Lv, M.; Wang, Y.; Jiang, S.; Lu, L. Chemically modified human serum albumin potently blocks entry of ebola pseudoviruses and viruslike particles. Antimicrobial. Agents Chemother., 2017, 61(4), 02116-02168.
[http://dx.doi.org/10.1128/AAC.02168-16]
[138]
Rhein, B.A.; Maury, W.J. Ebola virus entry into host cells: Identifying therapeutic strategies. Curr. Clin. Microbiol. Rep., 2015, 2(3), 115-124.
[http://dx.doi.org/10.1007/s40588-015-0021-3] [PMID: 26509109]
[139]
Nelson, E.A.; Dyall, J.; Hoenen, T.; Barnes, A.B.; Zhou, H.; Liang, J.Y.; Michelotti, J.; Dewey, W.H.; DeWald, L.E.; Bennett, R.S.; Morris, P.J.; Guha, R.; Klumpp-Thomas, C.; McKnight, C.; Chen, Y.C.; Xu, X.; Wang, A.; Hughes, E.; Martin, S.; Thomas, C.; Jahrling, P.B.; Hensley, L.E.; Olinger, G.G., Jr; White, J.M. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Negl. Trop. Dis., 2017, 11(4), e0005540.
[http://dx.doi.org/10.1371/journal.pntd.0005540] [PMID: 28403145]
[140]
Melnick, J.L. The discovery of the enteroviruses and the classification of poliovirus among them. Biologicals, 1993, 21(4), 305-309.
[http://dx.doi.org/10.1006/biol.1993.1088] [PMID: 8024744]
[141]
Viktorova, E. G.; Khattar, S.; Samal, S.; Belov, G. A. Poliovirus replicon rna generation, transfection, packaging, and quantitation of replication. Curr Protoc Microbiol, 2018, 48, 15H.4.1-15H.4.15.
[142]
Mehndiratta, M.M.; Mehndiratta, P.; Pande, R. Poliomyelitis: Historical facts, epidemiology, and current challenges in eradication. Neurohospitalist, 2014, 4(4), 223-229.
[http://dx.doi.org/10.1177/1941874414533352] [PMID: 25360208]
[143]
Sutter, R.W.; Modlin, J.F.; Zaffran, M. Completing polio eradication: The case for antiviral drugs. J. Infect. Dis., 2017, 215(3), 333-334.
[PMID: 27932609]
[144]
Weston, W.M.; Klein, N.P. Kinrix: A new combination DTaP-IPV vaccine for children aged 4-6 years. Expert Rev. Vaccines, 2008, 7(9), 1309-1320.
[http://dx.doi.org/10.1586/14760584.7.9.1309] [PMID: 18980534]
[145]
Mosley, J.F., II; Smith, L.L.; Parke, C.K.; Brown, J.A.; LaFrance, J.M.; Clark, P.K. Quadracel: Vaccination against diphtheria, tetanus, pertussis, and poliomyelitis in children. P&T, 2016, 41(4), 238-253.
[PMID: 27069343]
[146]
Kim, Y.; Lovell, S.; Tiew, K.C.; Mandadapu, S.R.; Alliston, K.R.; Battaile, K.P.; Groutas, W.C.; Chang, K.O. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J. Virol., 2012, 86(21), 11754-11762.
[http://dx.doi.org/10.1128/JVI.01348-12] [PMID: 22915796]
[147]
Pickles, R.J.; DeVincenzo, J.P. Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis. J. Pathol., 2015, 235(2), 266-276.
[http://dx.doi.org/10.1002/path.4462] [PMID: 25302625]
[148]
Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; Chandran, A.; Theodoratou, E.; Sutanto, A.; Sedyaningsih, E.R.; Ngama, M.; Munywoki, P.K.; Kartasasmita, C.; Simões, E.A.; Rudan, I.; Weber, M.W.; Campbell, H. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet, 2010, 375(9725), 1545-1555.
[http://dx.doi.org/10.1016/S0140-6736(10)60206-1] [PMID: 20399493]
[149]
Empey, K.M.; Peebles, R.S., Jr; Kolls, J.K. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus. Clin. Infect. Dis., 2010, 50(9), 1258-1267.
[http://dx.doi.org/10.1086/651603] [PMID: 20235830]
[150]
Wu, H.; Pfarr, D.S.; Johnson, S.; Brewah, Y.A.; Woods, R.M.; Patel, N.K.; White, W.I.; Young, J.F.; Kiener, P.A. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol., 2007, 368(3), 652-665.
[http://dx.doi.org/10.1016/j.jmb.2007.02.024] [PMID: 17362988]
[151]
Wang, D.; Bayliss, S.; Meads, C. Palivizumab for immunoprophylaxis of respiratory syncytial virus (RSV) bronchiolitis in high-risk infants and young children: A systematic review and additional economic modelling of subgroup analyses. Health Technol. Assess., 2011, 15(5), iii-iv, 1-124.
[http://dx.doi.org/10.3310/hta15050] [PMID: 21281564]
[152]
Wright, M.; Piedimonte, G. Respiratory syncytial virus prevention and therapy: Past, present, and future. Pediatr. Pulmonol., 2011, 46(4), 324-347.
[http://dx.doi.org/10.1002/ppul.21377] [PMID: 21438168]
[153]
Tang, A.; Chen, Z.; Cox, K.S.; Su, H.P.; Callahan, C.; Fridman, A.; Zhang, L.; Patel, S.B.; Cejas, P.J.; Swoyer, R.; Touch, S.; Citron, M.P.; Govindarajan, D.; Luo, B.; Eddins, M.; Reid, J.C.; Soisson, S.M.; Galli, J.; Wang, D.; Wen, Z.; Heidecker, G.J.; Casimiro, D.R.; DiStefano, D.J.; Vora, K.A. A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein. Nat. Commun., 2019, 10(1), 4153.
[http://dx.doi.org/10.1038/s41467-019-12137-1] [PMID: 31515478]
[154]
Tawar, R.G.; Duquerroy, S.; Vonrhein, C.; Varela, P.F.; Damier- Piolle, L.; Castagné, N.; MacLellan, K.; Bedouelle, H.; Bricogne, G.; Bhella, D.; Eléouët, J.F.; Rey, F.A. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science, 2009, 326(5957), 1279-1283.
[http://dx.doi.org/10.1126/science.1177634] [PMID: 19965480]
[155]
Gilman, M.S.A.; Liu, C.; Fung, A.; Behera, I.; Jordan, P.; Rigaux, P.; Ysebaert, N.; Tcherniuk, S.; Sourimant, J.; Eléouët, J.F.; Sutto-Ortiz, P.; Decroly, E.; Roymans, D.; Jin, Z.; McLellan, J.S. Structure of the respiratory syncytial virus polymerase complex. Cell, 2019, 179(1), 193-204.e14.
[http://dx.doi.org/10.1016/j.cell.2019.08.014] [PMID: 31495574]
[156]
Barrows, N.J.; Campos, R.K.; Liao, K-C.; Prasanth, K.R.; Soto-Acosta, R.; Yeh, S-C.; Schott-Lerner, G.; Pompon, J.; Sessions, O.M.; Bradrick, S.S.; Garcia-Blanco, M.A. Biochemistry and molecular biology of flaviviruses. Chem. Rev., 2018, 118(8), 4448-4482.
[http://dx.doi.org/10.1021/acs.chemrev.7b00719] [PMID: 29652486]
[157]
Marovich, M.; Grouard-Vogel, G.; Louder, M.; Eller, M.; Sun, W.; Wu, S.J.; Putvatana, R.; Murphy, G.; Tassaneetrithep, B.; Burgess, T.; Birx, D.; Hayes, C.; Schlesinger-Frankel, S.; Mascola, J. Human dendritic cells as targets of dengue virus infection. J. Investig. Dermatol. Symp. Proc., 2001, 6(3), 219-224.
[http://dx.doi.org/10.1046/j.0022-202x.2001.00037.x] [PMID: 11924831]
[158]
Tassaneetrithep, B.; Burgess, T.H.; Granelli-Piperno, A.; Trumpfheller, C.; Finke, J.; Sun, W.; Eller, M.A.; Pattanapanyasat, K.; Sarasombath, S.; Birx, D.L.; Steinman, R.M.; Schlesinger, S.; Marovich, M.A. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med., 2003, 197(7), 823-829.
[http://dx.doi.org/10.1084/jem.20021840] [PMID: 12682107]
[159]
Kok, W.M. New developments in flavivirus drug discovery. Expert Opin. Drug Discov., 2016, 11(5), 433-445.
[http://dx.doi.org/10.1517/17460441.2016.1160887] [PMID: 26966889]
[160]
Singh, J.; Kumar, M.; Mansuri, R.; Sahoo, G.C.; Deep, A. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus. J. Pharm. Bioallied Sci., 2016, 8(3), 188-194.
[http://dx.doi.org/10.4103/0975-7406.171682] [PMID: 27413346]
[161]
Zhang, C.; Feng, T.; Cheng, J.; Li, Y.; Yin, X.; Zeng, W.; Jin, X.; Li, Y.; Guo, F.; Jin, T. Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design. Biochem. Biophys. Res. Commun., 2017, 492(4), 624-630.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.098] [PMID: 27866982]
[162]
Dubankova, A.; Boura, E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antiviral Res., 2019, 169, 104536.
[http://dx.doi.org/10.1016/j.antiviral.2019.104536] [PMID: 31202975]
[163]
Šebera, J.; Dubankova, A.; Sychrovský, V.; Ruzek, D.; Boura, E.; Nencka, R. The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Sci. Rep., 2018, 8(1), 11132.
[http://dx.doi.org/10.1038/s41598-018-29459-7] [PMID: 30042483]
[164]
Zmurko, J.; Marques, R.E.; Schols, D.; Verbeken, E.; Kaptein, S.J.; Neyts, J. The viral polymerase inhibitor 7-deaza-2′-c-methyladenosine is a potent inhibitor of in vitro zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis., 2016, 10(5), e0004695.
[http://dx.doi.org/10.1371/journal.pntd.0004695] [PMID: 27163257]
[165]
Lee, J-C.; Tseng, C-K.; Wu, Y-H.; Kaushik-Basu, N.; Lin, C-K.; Chen, W-C.; Wu, H-N. Characterization of the activity of 2′-C-methylcytidine against dengue virus replication. Antiviral Res., 2015, 116, 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.002] [PMID: 25614455]
[166]
Hercík, K.; Kozak, J.; Šála, M.; Dejmek, M.; Hřebabecký, H.; Zborníková, E.; Smola, M.; Ruzek, D.; Nencka, R.; Boura, E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Res., 2017, 137, 131-133.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.020] [PMID: 27902932]
[167]
Noble, C.G.; Li, S.H.; Dong, H.; Chew, S.H.; Shi, P.Y. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Antiviral Res., 2014, 111, 78-81.
[http://dx.doi.org/10.1016/j.antiviral.2014.09.003] [PMID: 25241250]
[168]
Shang, Z.; Song, H.; Shi, Y.; Qi, J.; Gao, G.F. Crystal structure of the capsid protein from zika virus. J. Mol. Biol., 2018, 430(7), 948-962.
[http://dx.doi.org/10.1016/j.jmb.2018.02.006] [PMID: 29454707]
[169]
Zhang, Z.; Li, Y.; Loh, Y.R.; Phoo, W.W.; Hung, A.W.; Kang, C.; Luo, D. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science, 2016, 354(6319), 1597-1600.
[http://dx.doi.org/10.1126/science.aai9309] [PMID: 27940580]
[170]
Lu, X.; Xiao, H.; Li, S.; Pang, X.; Song, J.; Liu, S.; Cheng, H.; Li, Y.; Wang, X.; Huang, C.; Guo, T.; Ter Meulen, J.; Daffis, S.; Yan, J.; Dai, L.; Rao, Z.; Klenk, H.D.; Qi, J.; Shi, Y.; Gao, G.F. Double lock of a human neutralizing and protective monoclonal antibody targeting the yellow fever virus envelope. Cell Rep., 2019, 26(2), 438-446.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.065] [PMID: 30625326]
[171]
Galán-Huerta, K. A.; Rivas-Estilla, A. M.; Fernández-Salas, I.; Farfan-Ale, J. A.; Ramos-Jiménez, J. Chikungunya virus: A general overview. Medicina Universitaria, 2015, 17(68), 175-183.
[http://dx.doi.org/10.1016/j.rmu.2015.06.001]
[172]
Hua, C.; Combe, B. Chikungunya virus-associated disease. Curr. Rheumatol. Rep., 2017, 19(11), 69.
[http://dx.doi.org/10.1007/s11926-017-0694-0] [PMID: 28983760]
[173]
Silva, V.P.; Costa, D.S.; Carvalho, V.C.C.V.; Garcês, T.C.C.S.; Barros, E.L.T.; Oliveira, J.S.; Pereira, A.C.T.C.; Ferreira, G.P. Peripheral polyneuropathy associated with Chikungunya virus infection. J. Neurovirol., 2020, 26(1), 122-126.
[PMID: 31428990]
[174]
Dey, D.; Siddiqui, S.I.; Mamidi, P.; Ghosh, S.; Kumar, C.S.; Chattopadhyay, S.; Ghosh, S.; Banerjee, M. The effect of amantadine on an ion channel protein from Chikungunya virus. PLoS Negl. Trop. Dis., 2019, 13(7), e0007548.
[http://dx.doi.org/10.1371/journal.pntd.0007548] [PMID: 31339886]
[175]
Agback, P.; Dominguez, F.; Pustovalova, Y.; Lukash, T.; Shiliaev, N.; Orekhov, V.Y.; Frolov, I.; Agback, T.; Frolova, E.I. Structural characterization and biological function of bivalent binding of CD2AP to intrinsically disordered domain of chikungunya virus nsP3 protein. Virology, 2019, 537, 130-142.
[http://dx.doi.org/10.1016/j.virol.2019.08.022] [PMID: 31493651]
[176]
Gao, Y.; Goonawardane, N.; Ward, J.; Tuplin, A.; Harris, M. Multiple roles of the non-structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus genome replication and transcription. PLoS Pathog., 2019, 15(1), e1007239.
[http://dx.doi.org/10.1371/journal.ppat.1007239] [PMID: 30668592]
[177]
Singh, R.K.; Dhama, K.; Chakraborty, S.; Tiwari, R.; Natesan, S.; Khandia, R.; Munjal, A.; Vora, K.S.; Latheef, S.K.; Karthik, K.; Singh Malik, Y.; Singh, R.; Chaicumpa, W.; Mourya, D.T. Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet. Q., 2019, 39(1), 26-55.
[http://dx.doi.org/10.1080/01652176.2019.1580827] [PMID: 31006350]
[178]
Hoffmann, M.; Nehlmeier, I.; Brinkmann, C.; Krähling, V.; Behner, L.; Moldenhauer, A.S.; Krüger, N.; Nehls, J.; Schindler, M.; Hoenen, T.; Maisner, A.; Becker, S.; Pöhlmann, S. Tetherin inhibits nipah virus but not ebola virus replication in fruit bat cells. J. Virol., 2019, 93(3), e01821-18.
[http://dx.doi.org/10.1128/JVI.01821-18] [PMID: 30429347]
[179]
Bruhn, J.F.; Barnett, K.C.; Bibby, J.; Thomas, J.M.; Keegan, R.M.; Rigden, D.J.; Bornholdt, Z.A.; Saphire, E.O. Crystal structure of the nipah virus phosphoprotein tetramerization domain. J. Virol., 2014, 88(1), 758-762.
[http://dx.doi.org/10.1128/JVI.02294-13] [PMID: 24155387]
[180]
Grant, C.; Barmak, K.; Alefantis, T.; Yao, J.; Jacobson, S.; Wigdahl, B. Human T cell leukemia virus type I and neurologic disease: Events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J. Cell. Physiol., 2002, 190(2), 133-159.
[http://dx.doi.org/10.1002/jcp.10053] [PMID: 11807819]
[181]
Gessain, A. Human retrovirus HTLV-1: Descriptive and molecular epidemiology, origin, evolution, diagnosis and associated diseases. Bull. Soc. Pathol. Exot., 2011, 104(3), 167-180.
[http://dx.doi.org/10.1007/s13149-011-0174-4] [PMID: 21796326]
[182]
Irish, molecular mechanisms of neurodegenerative diseases induced by human retroviruses: A review. Am. J. Infect. Dis., 2009, 5(3), 231-258.
[http://dx.doi.org/10.3844/ajidsp.2009.231.258] [PMID: 20352020]
[183]
Khan, M.Y.; Khan, I.N.; Farman, M.; Al Karim, S.; Qadri, I.; Kamal, M.A.; Al Ghamdi, K.; Harakeh, S. HTLV-1 associated neurological disorders. Curr. Top. Med. Chem., 2017, 17(12), 1320-1330.
[http://dx.doi.org/10.2174/1568026616666161222141318] [PMID: 28017149]
[184]
Kuhnert, M.; Blum, A.; Steuber, H.; Diederich, W.E. Privileged structures meet human t-cell leukemia virus-1 (HTLV-1): C2-symmetric 3,4-disubstituted pyrrolidines as nonpeptidic htlv-1 protease inhibitors. J. Med. Chem., 2015, 58(11), 4845-4850.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00346] [PMID: 26000468]
[185]
Chen, B. HIV capsid assembly, mechanism, and structure. Biochemistry, 2016, 55(18), 2539-2552.
[http://dx.doi.org/10.1021/acs.biochem.6b00159] [PMID: 27074418]
[186]
Malik, T.; Chauhan, G.; Rath, G.; Murthy, R.S.; Goyal, A.K. “Fusion and binding inhibition” key target for HIV-1 treatment and pre-exposure prophylaxis: Targets, drug delivery and nanotechnology approaches. Drug Deliv., 2017, 24(1), 608-621.
[http://dx.doi.org/10.1080/10717544.2016.1228717] [PMID: 28240046]
[187]
Rizza, S.A.; Bhatia, R.; Zeuli, J.; Temesgen, Z. Ibalizumab for the treatment of multidrug-resistant HIV-1 infection. Drugs Today (Barc), 2019, 55(1), 25-34.
[http://dx.doi.org/10.1358/dot.2019.55.1.2895651] [PMID: 30740610]
[188]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[189]
Tuske, S.; Sarafianos, S.G.; Clark, A.D., Jr; Ding, J.; Naeger, L.K.; White, K.L.; Miller, M.D.; Gibbs, C.S.; Boyer, P.L.; Clark, P.; Wang, G.; Gaffney, B.L.; Jones, R.A.; Jerina, D.M.; Hughes, S.H.; Arnold, E. Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat. Struct. Mol. Biol., 2004, 11(5), 469-474.
[http://dx.doi.org/10.1038/nsmb760] [PMID: 15107837]
[190]
Henes, M.; Lockbaum, G.J.; Kosovrasti, K.; Leidner, F.; Nachum, G.S.; Nalivaika, E.A.; Lee, S.K.; Spielvogel, E.; Zhou, S.; Swanstrom, R.; Bolon, D.N.A.; Kurt Yilmaz, N.; Schiffer, C.A. Picomolar to micromolar: Elucidating the role of distal mutations in hiv-1 protease in conferring drug resistance. ACS Chem. Biol., 2019, 14(11), 2441-2452.
[http://dx.doi.org/10.1021/acschembio.9b00370] [PMID: 31361460]
[191]
Blundell, T.L. Protein crystallography and drug discovery: Recollections of knowledge exchange between academia and industry. IUCrJ, 2017, 4(Pt 4), 308-321.
[http://dx.doi.org/10.1107/S2052252517009241] [PMID: 28875019]
[192]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[193]
Takizawa, N.; Yamasaki, M. Current landscape and future prospects of antiviral drugs derived from microbial products. J. Antibiot. (Tokyo), 2017, 71(1), 45-52.
[PMID: 29018267]
[194]
Zheng, H.; Hou, J.; Zimmerman, M.D.; Wlodawer, A.; Minor, W. The future of crystallography in drug discovery. Expert Opin. Drug Discov., 2014, 9(2), 125-137.
[http://dx.doi.org/10.1517/17460441.2014.872623] [PMID: 24372145]
[195]
Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol., 2009, 4(7), 837-856.
[http://dx.doi.org/10.2217/fmb.09.59] [PMID: 19722838]
[196]
Figueiredo, L.T.M. Large outbreaks of Chikungunya virus in Brazil reveal uncommon clinical features and fatalities. Rev. Soc. Bras. Med. Trop., 2017, 50(5), 583-584.
[http://dx.doi.org/10.1590/0037-8682-0397-2017] [PMID: 29160502]
[197]
Kovacikova, K.; van Hemert, M.J. Small-molecule inhibitors of chikungunya virus: Mechanisms of action and antiviral drug resistance. Antimicrob. Agents Chemother., 2020, 64(12), e01788-20.
[http://dx.doi.org/10.1128/AAC.01788-20] [PMID: 32928738]
[198]
Powers, A.M. Vaccine and therapeutic options to control chikungunya virus. Clin. Microbiol. Rev., 2017, 31(1), e00104-16.
[http://dx.doi.org/10.1128/CMR.00104-16] [PMID: 29237708]
[199]
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 11-21.
[http://dx.doi.org/10.1038/35036035] [PMID: 11413485]
[200]
Díaz, Y.; Peña, F.; Aristimuño, O.C.; Matteo, L.; De Agrela, M.; Chemello, M.E.; Michelangeli, F.; Ruiz, M.C. Dissecting the Ca²⁺ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res., 2012, 167(2), 285-296.
[http://dx.doi.org/10.1016/j.virusres.2012.05.012] [PMID: 22634036]
[201]
Moore, C.; Gupta, R.; Jordt, S.E.; Chen, Y.; Liedtke, W.B. Regulation of pain and itch by trp channels. Neurosci. Bull., 2018, 34(1), 120-142.
[http://dx.doi.org/10.1007/s12264-017-0200-8] [PMID: 29282613]
[202]
Monath, T.P. 17D yellow fever virus vaccine. Am. J. Trop. Med. Hyg., 2013, 89(6), 1225.
[http://dx.doi.org/10.4269/ajtmh.13-0443a] [PMID: 24306031]
[203]
Soranzo, T.; Cortès, S.; Gilde, F.; Kreir, M.; Picart, C.; Lenormand, J-L. Functional characterization of p7 viroporin from hepatitis C virus produced in a cell-free expression system. Protein Expr. Purif., 2016, 118, 83-91.
[http://dx.doi.org/10.1016/j.pep.2015.10.004] [PMID: 26477501]
[204]
Kole, R.; Krainer, A.R.; Altman, S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov., 2012, 11(2), 125-140.
[http://dx.doi.org/10.1038/nrd3625] [PMID: 22262036]
[205]
Flasche, S.; Wilder-Smith, A.; Hombach, J.; Smith, P.G. Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res., 2019, 4, 165-165.
[http://dx.doi.org/10.12688/wellcomeopenres.15507.1] [PMID: 31815190]
[206]
Fatima, K.; Syed, N.I. Dengvaxia controversy: Impact on vaccine hesitancy. J. Glob. Health, 2018, 8(2), 010312-010312.
[http://dx.doi.org/10.7189/jogh.08.020312] [PMID: 30410732]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy