Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Strategies to Improve Insulin Delivery through Oral Route: A Review

Author(s): Rohini Bhattacharya, Asha P. Johnson, T. Shailesh, Mohamed Rahamathulla and Gangadharappa H.V.*

Volume 19, Issue 3, 2022

Published on: 05 January, 2022

Page: [317 - 336] Pages: 20

DOI: 10.2174/1567201818666210720145706

Price: $65

conference banner
Abstract

Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic) that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels). Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying Drug Delivery Systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.

Keywords: Insulin, gastrointestinal tract, drug delivery systems, bioavailability, diabetes mellitus, self-microemulsifying drug delivery system.

Graphical Abstract
[1]
Zhang, Q.; He, N.; Zhang, L.; Zhu, F.; Chen, Q.; Qin, Y.; Zhang, Z.; Zhang, Q.; Wang, S.; He, Q. The in vitro and in vivo study on self-nanoemulsifying drug delivery system (SNEDDS) based on insulin-phospholipid complex. J. Biomed. Nanotechnol., 2012, 8(1), 90-97.
[http://dx.doi.org/10.1166/jbn.2012.1371] [PMID: 22515097]
[2]
Graf, A.; Jack, K.S.; Whittaker, A.K.; Hook, S.M.; Rades, T. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur. J. Pharm. Sci., 2008, 33(4-5), 434-444.
[http://dx.doi.org/10.1016/j.ejps.2008.01.013] [PMID: 18329862]
[3]
Bakhru, S.H.; Furtado, S.; Morello, A.P.; Mathiowitz, E. Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev., 2013, 65(6), 811-821.
[http://dx.doi.org/10.1016/j.addr.2013.04.006] [PMID: 23608641]
[4]
Mandal, N.; Grambergs, R.; Mondal, K.; Basu, S.K.; Tahia, F.; Dagogo-Jack, S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J. Diabetes Complications, 2020, 35(2), 107734.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107734] [PMID: 33268241]
[5]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release, 2017, 264, 247-275.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.003] [PMID: 28887133]
[6]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[7]
Kabotso, D.E.K.; Smiley, D.; Mayer, J.P.; Gelfanov, V.M.; Perez-Tilve, D.; DiMarchi, R.D.; Pohl, N.L.B.; Liu, F. Addition of sialic acid to insulin confers superior physical properties and bioequivalence. J. Med. Chem., 2020, 63(11), 6134-6143.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00266] [PMID: 32406685]
[8]
Bedinger, D.H.; Adams, S.H. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators. Mol. Cell. Endocrinol., 2015, 415, 143-156.
[http://dx.doi.org/10.1016/j.mce.2015.08.013] [PMID: 26277398]
[9]
Ferri, G.; Bugliani, M.; Marchetti, P.; Cardarelli, F. Probing the light scattering properties of insulin secretory granules in single live cells. Biochem. Biophys. Res. Commun., 2018, 503(4), 2710-2714.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.029] [PMID: 30119894]
[10]
Biester, T.; Danne, T.; Bläsig, S.; Remus, K.; Aschemeier, B.; Kordonouri, O.; Bardtrum, L.; Haahr, H. Pharmacokinetic and prandial pharmacodynamic properties of insulin degludec/insulin aspart in children, adolescents, and adults with type 1 diabetes. Pediatr. Diabetes, 2016, 17(8), 642-649.
[http://dx.doi.org/10.1111/pedi.12358] [PMID: 26782928]
[11]
Heinemann, L.; Baughman, R.; Boss, A.; Hompesch, M. Pharmacokinetic and pharmacodynamic properties of a novel inhaled insulin. J. Diabetes Sci. Technol., 2017, 11(1), 148-156.
[http://dx.doi.org/10.1177/1932296816658055] [PMID: 27378794]
[12]
Abdulrahman, A.O.; Ismael, M.A.; Al-Hosaini, K.; Rame, C.; Al-Senaidy, A.M.; Dupont, J.; Ayoub, M.A. Differential effects of camel milk on insulin receptor signaling - Toward understanding the insulin-like properties of camel milk. Front. Endocrinol. (Lausanne), 2016, 7, 4.
[http://dx.doi.org/10.3389/fendo.2016.00004] [PMID: 26858689]
[13]
Macierzanka, A.; Mackie, A.R.; Krupa, L. Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment. Sci. Rep., 2019, 9(1), 17516.
[http://dx.doi.org/10.1038/s41598-019-53933-5] [PMID: 31772308]
[14]
Havelund, S.; Ribel, U.; Hubálek, F.; Hoeg-Jensen, T.; Wahlund, P.O.; Jonassen, I. Investigation of the physico-chemical properties that enable co-formulation of basal insulin degludec with fast-acting insulin aspart. Pharm. Res., 2015, 32(7), 2250-2258.
[http://dx.doi.org/10.1007/s11095-014-1614-x] [PMID: 25563978]
[15]
Vaidya, A.; Mitragotri, S. Ionic liquid-mediated delivery of insulin to buccal mucosa. J. Control. Release, 2020, 327, 26-34.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.037] [PMID: 32735879]
[16]
Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.042] [PMID: 30189223]
[17]
Wong, C.Y.; Martinez, J.; Dass, C.R. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. J. Pharm. Pharmacol., 2016, 68(9), 1093-1108.
[http://dx.doi.org/10.1111/jphp.12607] [PMID: 27364922]
[18]
Salunkhe, V.A.; Esguerra, J.L.S.; Ofori, J.K.; Mollet, I.G.; Braun, M.; Stoffel, M.; Wendt, A.; Eliasson, L. Modulation of microRNA-375 expression alters voltage-gated Na(+) channel properties and exocytosis in insulin-secreting cells. Acta Physiol. (Oxf.), 2015, 213(4), 882-892.
[http://dx.doi.org/10.1111/apha.12460] [PMID: 25627423]
[19]
Pandey, S.S.; Patel, M.A.; Desai, D.T.; Patel, H.P.; Gupta, A.R.; Joshi, S.V. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies. J. Drug Deliv. Sci. Technol., 2020, 57, 101731.
[http://dx.doi.org/10.1016/j.jddst.2020.101731]
[20]
Sadhasivam, L; Dey, N; Francis, AP; Devasena, T Transdermal patches of chitosan nanoparticles for insulin delivery innovare academic sciences. Intl. J. Pharm Pharmaceut. Sci., 2015, 7
[21]
Shah, D.; Agrawal, V.; Parikh, R. Noninvasive insulin delivery system: A review Intl. J. App. Pharm., 2016, 2(1), 35-40.
[22]
Sabu, C.; Mufeedha, P.; Pramod, K. Yeast-inspired drug delivery: Biotechnology meets bioengineering and synthetic biology. In: Expert opinion on drug delivery; Taylor & Francis., 2019; pp. 27-41.
[23]
Pandit, R.; Chen, L.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Deliv. Rev., 2020, 165-166, 1-14.
[http://dx.doi.org/10.1016/j.addr.2019.11.009] [PMID: 31790711]
[24]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[25]
Sharma, G.; Sharma, A.R.; Lee, S.S.; Bhattacharya, M.; Nam, J.S.; Chakraborty, C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm., 2019, 559(559), 360-372.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.056] [PMID: 30721725]
[26]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[27]
Sharma, R.; Gupta, U.; Garg, N.K.; Tyagi, R.K.; Jain, N.K. Surface engineered and ligand anchored nanobioconjugate: An effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf. B Biointerfaces, 2015, 127, 172-181.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.035] [PMID: 25679489]
[28]
Seyam, S.; Nordin, N.A.; Alfatama, M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: Pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel), 2020, 13(10), 1-29.
[http://dx.doi.org/10.3390/ph13100307] [PMID: 33066443]
[29]
Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol., 2018, 120(Pt A), 775-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[30]
Gedawy, A.; Martinez, J.; Al-Salami, H.; Dass, C.R. Oral insulin delivery: Existing barriers and current counter-strategies. J. Pharm. Pharmacol., 2018, 70(2), 197-213.
[http://dx.doi.org/10.1111/jphp.12852] [PMID: 29193053]
[31]
Vedadghavami, A.; Zhang, C.; Bajpayee, A.G. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today, 2020, 34, 100898.
[http://dx.doi.org/10.1016/j.nantod.2020.100898] [PMID: 32802145]
[32]
Xu, B.; Jiang, G.; Yu, W.; Liu, D.; Liu, Y.; Kong, X.; Yao, J. Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin. Mater. Sci. Eng. C, 2017, 78, 420-428.
[http://dx.doi.org/10.1016/j.msec.2017.04.113] [PMID: 28576004]
[33]
Ghosh, D.; Peng, X.; Leal, J.; Mohanty, R. Peptides as drug delivery vehicles across biological barriers. J. Pharm. Investig., 2018, 48(1), 89-111.
[http://dx.doi.org/10.1007/s40005-017-0374-0] [PMID: 29963321]
[34]
Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm., 2015, 95(Pt A), 117-127.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.014] [PMID: 25709061]
[35]
Eraga, S.O.; Ovu, E.O.; Iarhewoh, M. An investigation of the properties of mucin obtained from three sources. Pharm. Innovation J., 2016, 5(12), 08-12.
[36]
Banks, W.A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov., 2016, 15(4), 275-292.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[37]
Pathak, P.P. Oral insulin-delivery system for diabetes mellitus. Pharm. Pat. Anal., 2015, 4(1), 29-36.
[38]
Lee, J.H.; Sahu, A.; Choi, W.I.; Lee, J.Y.; Tae, G. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials, 2016, 103, 160-169.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.059] [PMID: 27380442]
[39]
Sudhakar, S.; Chandran, S.V.; Selvamurugan, N.; Nazeer, R.A. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int. J. Biol. Macromol., 2020, 150, 281-288.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.079] [PMID: 32057846]
[40]
Pardridge, W.M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv., 2016, 13(7), 963-975.
[http://dx.doi.org/10.1517/17425247.2016.1171315] [PMID: 27020469]
[41]
Xie, J.; Li, A.; Li, J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol. Rapid Commun., 2017, 38(23), 1-14.
[http://dx.doi.org/10.1002/marc.201700413] [PMID: 28976043]
[42]
Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv., 2018, 25(1), 1694-1705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[43]
Pridgen, E.M.; Alexis, F.; Farokhzad, O.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Deliv., 2015, 12(9), 1459-1473.
[http://dx.doi.org/10.1517/17425247.2015.1018175] [PMID: 25813361]
[44]
Maghrebi, S.; Prestidge, C.A.; Joyce, P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin. Drug Deliv., 2019, 16(5), 507-524.
[http://dx.doi.org/10.1080/17425247.2019.1605353] [PMID: 30957577]
[45]
Sgorla, D.; Lechanteur, A.; Almeida, A.; Sousa, F.; Melo, E.; Bunhak, É.; Mainardes, R.; Khalil, N.; Cavalcanti, O.; Sarmento, B. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin. Drug Deliv., 2018, 15(3), 213-222.
[http://dx.doi.org/10.1080/17425247.2018.1420050] [PMID: 29257904]
[46]
Lajevardi, A.; Hossaini Sadr, M.; Tavakkoli Yaraki, M.; Badiei, A.; Armaghan, M. A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: Loading and release study of cephalexin. New J. Chem., 2018, 42(12), 9690-9701.
[http://dx.doi.org/10.1039/C8NJ01375F]
[47]
Akbarzadeh, I.; Tavakkoli Yaraki, M.; Ahmadi, S.; Chiani, M.; Nourouzian, D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Adv. Powder Technol., 2020, 31(9), 4064-4071.
[http://dx.doi.org/10.1016/j.apt.2020.08.011]
[48]
Czuba, E.; Diop, M.; Mura, C.; Schaschkow, A.; Langlois, A.; Bietiger, W.; Neidl, R.; Virciglio, A.; Auberval, N.; Julien-David, D.; Maillard, E.; Frere, Y.; Marchioni, E.; Pinget, M.; Sigrist, S. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int. J. Pharm., 2018, 542(1-2), 47-55.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.045] [PMID: 29501738]
[49]
Rao, S.; Prestidge, C.A. Polymer-lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv., 2016, 13(5), 691-707.
[http://dx.doi.org/10.1517/17425247.2016.1151872] [PMID: 26866382]
[50]
Deveci, H.A.; Nazıroğlu, M.; Nur, G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol. Cell. Biochem., 2018, 439(1-2), 189-198.
[http://dx.doi.org/10.1007/s11010-017-3147-1] [PMID: 28795251]
[51]
Nur, G.; Nazıroğlu, M.; Deveci, H.A. Synergic prooxidant, apoptotic and TRPV1 channel activator effects of alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J. Recept. Signal Transduct. Res., 2017, 37(6), 569-577.
[http://dx.doi.org/10.1080/10799893.2017.1369121] [PMID: 28849985]
[52]
David, J.B. The Centenary of the discovery of insulin: An update on the quest for oral delivery. Front. Drug. Deliv., 2021, 1, 726675.
[http://dx.doi.org/10.3389/fddev.2021.726675]
[53]
Momoh, M.A.; Franklin, K.C.; Agbo, C.P.; Ugwu, C.E.; Adedokun, M.O.; Anthony, O.C.; Chidozie, O.E.; Okorie, A.N. Microemulsion-based approach for oral delivery of insulin: Formulation design and characterization. Heliyon, 2020, 6(3), e03650.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03650] [PMID: 32258491]
[54]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[55]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[56]
Kamari, Y.; Ghiaci, P.; Ghiaci, M. Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mater. Sci. Eng. C, 2017, 75, 822-828.
[http://dx.doi.org/10.1016/j.msec.2017.02.115] [PMID: 28415535]
[57]
Chen, T.; Li, S.; Zhu, W.; Liang, Z.; Zeng, Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J. Microencapsul., 2019, 36(1), 96-107.
[http://dx.doi.org/10.1080/02652048.2019.1604846] [PMID: 30958080]
[58]
Alibolandi, M.; Alabdollah, F.; Sadeghi, F.; Mohammadi, M.; Abnous, K.; Ramezani, M.; Hadizadeh, F. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J. Control. Release, 2016, 227, 58-70.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.031] [PMID: 26907831]
[59]
Li, L.; Jiang, G.; Yu, W.; Liu, D.; Chen, H.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C, 2017, 70(Pt 1), 278-286.
[http://dx.doi.org/10.1016/j.msec.2016.08.083] [PMID: 27770892]
[60]
Diop, M.; Auberval, N.; Viciglio, A.; Langlois, A.; Bietiger, W.; Mura, C.; Peronet, C.; Bekel, A.; Julien David, D.; Zhao, M.; Pinget, M.; Jeandidier, N.; Vauthier, C.; Marchioni, E.; Frere, Y.; Sigrist, S. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int. J. Pharm., 2015, 491(1-2), 402-408.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.065] [PMID: 26049075]
[61]
Yu, F.; Li, Y.; Liu, C.S.; Chen, Q.; Wang, G.H.; Guo, W.; Wu, X.E.; Li, D.H.; Wu, W.D.; Chen, X.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm., 2015, 484(1-2), 181-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.055] [PMID: 25724135]
[62]
Christa, S.; Birgit, T.;Markus, A.; Claudia, M;, Eleonore, F.; Gerd, L.; Andreas, Z.; Eva, R. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol Pharm., 2014, 11(3), 808-818. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L372521112%0Ahttp://dx.doi.org/10.1021/mp400507g
[63]
Antunes, F.; Andrade, F.; Araújo, F.; Ferreira, D.; Sarmento, B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm., 2013, 83(3), 427-435.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.003] [PMID: 23159710]
[64]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 256-276.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[65]
Zambaux, M.F.; Bonneaux, F.; Gref, R.; Dellacherie, E.; Vigneron, C. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release, 1999, 60(2-3), 179-188.
[http://dx.doi.org/10.1016/S0168-3659(99)00073-5] [PMID: 10425324]
[66]
Smith, J.; Wood, E.; Dornish, M. Effect of chitosan on epithelial cell tight junctions. Pharm. Res., 2004, 21(1), 43-49.
[http://dx.doi.org/10.1023/B:PHAM.0000012150.60180.e3] [PMID: 14984256]
[67]
Kawashima, Y.; Yamamoto, H.; Takeuchi, H.; Fujioka, S.; Hino, T. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J. Control. Release, 1999, 62(1-2), 279-287.
[http://dx.doi.org/10.1016/S0168-3659(99)00048-6] [PMID: 10518661]
[68]
Yang, C.; Gao, S.; Kjems, J. Folic acid conjugated chitosan for targeted delivery of siRNA to activated macrophages in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(48), 8608-8615.
[http://dx.doi.org/10.1039/C4TB01374C] [PMID: 32262219]
[69]
Massaro, M.; Cavallaro, G.; Colletti, C.G.; D’Azzo, G.; Guernelli, S.; Lazzara, G.; Pieraccini, S.; Riela, S. Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. J. Colloid Interface Sci., 2018, 524, 156-164.
[http://dx.doi.org/10.1016/j.jcis.2018.04.025] [PMID: 29649624]
[70]
Sarkar, S.; Das, D.; Dutta, P.; Kalita, J.; Wann, S.B.; Manna, P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr. Polym., 2020, 247(June), 116594.
[http://dx.doi.org/10.1016/j.carbpol.2020.116594] [PMID: 32829787]
[71]
Makhlof, A.; Tozuka, Y.; Takeuchi, H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci., 2011, 42(5), 445-451.
[http://dx.doi.org/10.1016/j.ejps.2010.12.007] [PMID: 21182939]
[72]
Mallawarachchi, S.; Mahadevan, A.; Gejji, V.; Fernando, S. Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res., 2019, 9(4), 783-794.
[http://dx.doi.org/10.1007/s13346-019-00620-7] [PMID: 30767123]
[73]
Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H.D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release, 2009, 133(2), 90-95.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.073] [PMID: 18848962]
[74]
Jain, S.; Rathi, V.V.; Jain, A.K.; Das, M.; Godugu, C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond.), 2012, 7(9), 1311-1337.
[http://dx.doi.org/10.2217/nnm.12.31] [PMID: 22583576]
[75]
Liu, X.Y.; Wang, Q.; Cui, S.W.; Liu, H.Z. A new isolation method of β-d-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocoll., 2008, 22(2), 239-247.
[http://dx.doi.org/10.1016/j.foodhyd.2006.11.008]
[76]
Ibrahim, A.B.; Zaki, H.F.; Wadie, W.; Omran, M.M.; Shouman, S.A. Simvastatin evokes an unpredicted antagonism for tamoxifen in MCF-7 breast cancer cells. Cancer Manag. Res., 2019, 11, 10011-10028.
[http://dx.doi.org/10.2147/CMAR.S218668] [PMID: 31819634]
[77]
Jørgensen, J.R.; Thamdrup, L.H.E.; Kamguyan, K.; Nielsen, L.H.; Nielsen, H.M.; Boisen, A. Design of a self-unfolding delivery concept for oral administration of macromolecules. J. Control. Release, 2020, 329, 948-954.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.024] [PMID: 33086101]
[78]
Appleton, S.L.; Tannous, M.; Argenziano, M.; Muntoni, E.; Rosa, A.C.; Rossi, D.; Caldera, F.; Scomparin, A.; Trotta, F.; Cavalli, R. Nanosponges as protein delivery systems: Insulin, a case study. Int. J. Pharm., 2020, 590, 119888.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119888] [PMID: 32950667]
[79]
Zhang, X.; Xu, X.; Chen, Y.; Dou, Y.; Zhou, X.; Li, L. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today, 2017, 20(6), 301-313.
[http://dx.doi.org/10.1016/j.mattod.2017.05.006]
[80]
Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; Natunen, T. Altered insulin signaling in Alzheimer’s disease brain-special emphasis on pi3k-akt pathway. Front. Neurosci., 2019, 13, 629.
[http://dx.doi.org/10.3389/fnins.2019.00629] [PMID: 31275108]
[81]
Kenngott, E.E.; Kiefer, R.; Schneider-Daum, N.; Hamann, A.; Schneider, M.; Schmitt, M.J.; Breinig, F. Surface-modified yeast cells: A novel eukaryotic carrier for oral application. J. Control. Release, 2016, 224, 1-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.054] [PMID: 26763373]
[82]
Hu, X.; Zhang, J. Yeast capsules for targeted delivery: The future of nanotherapy? Nanomedicine (Lond.), 2017, 12(9), 955-957.
[http://dx.doi.org/10.2217/nnm-2017-0059] [PMID: 28440701]
[83]
Kregiel, D.; Berlowska, J.; Szubzda, B. Novel permittivity test for determination of yeast surface charge and flocculation abilities. J. Ind. Microbiol. Biotechnol., 2012, 39(12), 1881-1886.
[http://dx.doi.org/10.1007/s10295-012-1193-y] [PMID: 22976039]
[84]
Qi, X.; Wang, L.; Zhu, J.; Hu, Z.; Zhang, J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm., 2011, 409(1-2), 245-251.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.047] [PMID: 21356300]
[85]
Salari, R; Sedigheh, B; Bazzaz, F; Rajabi, O; Khashyarmanesh, Z. New aspects of Saccharomyces cerevisiae as a novel carrier for berberine. Daru, 2013, 21(1), 73.
[http://dx.doi.org/10.1186/2008-2231-21-73]
[86]
Zhou, X.; Zhang, X.; Han, S.; Dou, Y.; Liu, M.; Zhang, L. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett., 2017, 17(2), 1056-1064.
[http://dx.doi.org/10.1021/acs.nanolett.6b04523]
[87]
Shi, L.; Li, Z.; Tachikawa, H.; Gao, X. Use of yeast spores for microencapsulation of enzymes. 2014, 80(15), 4502-4510.
[88]
Alai, M.S.; Lin, W.J.; Pingale, S.S. Application of polymeric nanoparticles and micelles in insulin oral delivery. Yao Wu Shi Pin Fen Xi, 2015, 23(3), 351-358.
[http://dx.doi.org/10.1016/j.jfda.2015.01.007] [PMID: 28911691]
[89]
Yang, H.; Sun, X.; Liu, G.; Ma, R.; Li, Z.; An, Y. Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter, 2013, 9(35), 8589-8599.
[http://dx.doi.org/10.1039/c3sm51538a]
[90]
Chen, M.C.; Sonaje, K.; Chen, K.J.; Sung, H.W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[91]
Sonaje, K.; Lin, Y.H.; Juang, J.H.; Wey, S.P.; Chen, C.T.; Sung, H.W. in vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials, 2009, 30(12), 2329-2339.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.066] [PMID: 19176244]
[92]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[93]
Florence, A.T. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discov. Today. Technol., 2005, 2(1), 75-81.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.019] [PMID: 24981758]
[94]
Florence, A.T. “Targeting” nanoparticles: The constraints of physical laws and physical barriers. J. Control. Release, 2012, 164(2), 115-124.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.022] [PMID: 22484196]
[95]
Erel, G.; Kotmakçı, M.; Akbaba, H.; Sözer Karadağlı, S.; Kantarcı, A.G. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: in vitro and in vivo evaluation of insulin loaded formulation. J. Drug Deliv. Sci. Technol., 2016, 36, 161-167.
[http://dx.doi.org/10.1016/j.jddst.2016.10.010]
[96]
Sharma, G.; Wilson, K.; van der Walle, C.F.; Sattar, N.; Petrie, J.R.; Ravi Kumar, M.N.V. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. Eur. J. Pharm. Biopharm., 2010, 76(2), 159-169.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.002] [PMID: 20655382]
[97]
Visetvichaporn, V.; Kim, K.H.; Jung, K.; Cho, Y.S.; Kim, D.D. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). Int. J. Pharm., 2020, 573, 118772.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118772] [PMID: 31765770]
[98]
Attama, A.A.; Nzekwe, I.T.; Nnamani, P.O.; Adikwu, M.U.; Onugu, C.O. The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm., 2003, 262(1-2), 23-28.
[http://dx.doi.org/10.1016/S0378-5173(03)00315-6] [PMID: 12927384]
[99]
Odeberg, J.M.; Kaufmann, P.; Kroon, K.G.; Höglund, P. Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur. J. Pharm. Sci., 2003, 20(4-5), 375-382.
[http://dx.doi.org/10.1016/j.ejps.2003.08.005] [PMID: 14659481]
[100]
Rajpoot, K; Tekade, M; Pandey, V; Nagaraja, S; Youngren-ortiz, SR; Tekade, RK system : Ongoing challenges and future ahead [Internet]. Drug delivery systems. Elsevier Inc., 2020, 393-454.
[101]
Choi, J-H.; Kim, J-Y.; Ku, Y-S. Self-emulsifying drug delivery system containing ibuprofen for oral use. J. Pharm. Investig., 1999, 29(2), 99-103.
[102]
Wei, L; Sun, P. Preparation and evaluation of sedds and smedds containing carvedilol. 2005, 785-794.
[http://dx.doi.org/10.1080/03639040500216428]
[103]
Eaimtrakarn, S.; Rama Prasad, Y.V.; Ohno, T.; Konishi, T.; Yoshikawa, Y.; Shibata, N.; Takada, K. Absorption enhancing effect of labrasol on the intestinal absorption of insulin in rats. J. Drug Target., 2002, 10(3), 255-260.
[http://dx.doi.org/10.1080/10611860290022688] [PMID: 12075827]
[104]
Friedl, H.; Dünnhaupt, S.; Hintzen, F.; Waldner, C.; Parikh, S.; Pearson, J.P.; Wilcox, M.D.; Bernkop-Schnürch, A. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J. Pharm. Sci., 2013, 102(12), 4406-4413.
[http://dx.doi.org/10.1002/jps.23757] [PMID: 24258284]
[105]
Mohsin, K.; Shahba, A.A.; Alanazi, F.K. Lipid based self emulsifying formulations for poorly water soluble drugs-An excellent opportunity. Indian J. Pharm. Educ. Res., 2012, 46(2), 88-96.
[106]
Ruan, J.; Liu, J.; Zhu, D.; Gong, T.; Yang, F.; Hao, X.; Zhang, Z. Preparation and evaluation of self-nanoemulsified drug delivery systems (SNEDDSs) of matrine based on drug-phospholipid complex technique. Int. J. Pharm., 2010, 386(1-2), 282-290.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.026] [PMID: 19961910]
[107]
Batool, A.; Arshad, R.; Razzaq, S.; Nousheen, K.; Kiani, M.H.; Shahnaz, G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int. J. Biol. Macromol., 2020, 152, 503-515.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.275] [PMID: 32112841]
[108]
Boyd, AP; Cornelis, GUYR Yersinia. 2001.
[109]
Martinez-Argudo, I.; Jepson, M.A. Salmonella translocates across an in vitro M cell model independently of SPI-1 and SPI-2. Microbiology, 2008, 154(Pt 12), 3887-3894.
[http://dx.doi.org/10.1099/mic.0.2008/021162-0] [PMID: 19047755]
[110]
Cossart, P.; Sansonetti, P.J. Bacterial invasion: The paradigms of enteroinvasive pathogens. Science., 2004, 242-248.
[111]
des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci., 2007, 30(5), 380-391.
[http://dx.doi.org/10.1016/j.ejps.2006.12.006] [PMID: 17291730]
[112]
Amstutz, B.; Gastaldelli, M.; Kälin, S.; Imelli, N.; Boucke, K.; Wandeler, E.; Mercer, J.; Hemmi, S.; Greber, U.F. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J., 2008, 27(7), 956-969.
[http://dx.doi.org/10.1038/emboj.2008.38] [PMID: 18323776]
[113]
Macia, E.; Ehrlich, M.; Massol, R.; Boucrot, E.; Brunner, C.; Kirchhausen, T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell, 2006, 10(6), 839-850.
[http://dx.doi.org/10.1016/j.devcel.2006.04.002] [PMID: 16740485]
[114]
Shi, Y.; Xue, J.; Jia, L.; Du, Q.; Niu, J.; Zhang, D. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surf. B Biointerfaces, 2018, 161, 67-72.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.037] [PMID: 29040836]
[115]
Khair, R.; Shende, P.; Kulkarni, Y.A. Nanostructured polymer-based cochleates for effective transportation of insulin. J. Mol. Liq., 2020, 311, 113352.
[http://dx.doi.org/10.1016/j.molliq.2020.113352]
[116]
Liu, M.; Zhong, X.; Yang, Z. Chitosan functionalized nano cochleates for enhanced oral absorption of cyclosporine A. Sci. Rep., 2017, 7, 41322.
[http://dx.doi.org/10.1038/srep41322] [PMID: 28112262]
[117]
Nagarsekar, K.; Ashtikar, M.; Steiniger, F.; Thamm, J.; Schacher, F.H.; Fahr, A. Micro-spherical cochleate composites: Method development for monodispersed cochleate system. J. Liposome Res., 2017, 27(1), 32-40.
[http://dx.doi.org/10.3109/08982104.2016.1149865] [PMID: 27173947]
[118]
Pawar, A.; Bothiraja, C.; Shaikh, K.; Mali, A. An insight into cochleates, a potential drug delivery system. RSC Advances, 2015, 5(99), 81188-81202.
[http://dx.doi.org/10.1039/C5RA08550K]
[119]
Samed, N.; Sharma, V.; Sundaramurthy, A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation. Appl. Surf. Sci., 2010, 2018(449), 567-573.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.055]
[120]
Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: the state of the art. Adv. Colloid Interface Sci., 2014, 205, 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[121]
Yanar, F.; Mosayyebi, A.; Nastruzzi, C.; Carugo, D.; Zhang, X. Continuous‐flow production of liposomes with a milli reactor under varying fluidic conditions. Pharmaceutics, 2020, 12(11), 1-21.
[http://dx.doi.org/10.3390/pharmaceutics12111001] [PMID: 33105650]
[122]
Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B, 2011, 1(4), 208-219.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[123]
Ghafelehbashi, R.; Akbarzadeh, I.; Tavakkoli, Y.M.; Lajevardi, A.; Fatemizadeh, M.; Heidarpoor, S.L. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm., 2019, 569(July), 118580.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118580] [PMID: 31374239]
[124]
Loona, S.; Gupta, N.B.; Khan, M.U. Preparation and characterization of metformin proniosomal gel for treatment of diabetes mellitus. Int. J. Pharm. Sci. Rev. Res., 2012, 15(2), 108-114.
[125]
Capozzi, A.; Mantuano, E.; Matarrese, P.; Saccomanni, G.; Manera, C.; Mattei, V.; Gambardella, L. A new 4-phenyl-1,8-naphthyridine derivative affects carcinoma cell proliferation by impairing cell cycle progression and inducing apoptosis. Anticancer Agents Med Chem, 2012, 12(6), 653-662.
[http://dx.doi.org/10.2174/187152012800617731] [PMID: 22263796]
[126]
Estupiñan, O.R.; Garcia-Manrique, P.; Blanco-Lopez, M.D.C.; Matos, M.; Gutiérrez, G. Vitamin d3 loaded niosomes and transfersomes produced by ethanol injection method: Identification of the critical preparation step for size control. Foods, 2020, 9(10), E1367.
[http://dx.doi.org/10.3390/foods9101367] [PMID: 32993064]
[127]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), E55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[128]
Fonte, P.; Araújo, F.; Silva, C.; Pereira, C.; Reis, S.; Santos, H.A.; Sarmento, B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv., 2015, 33(6 Pt 3), 1342-1354.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.010] [PMID: 25728065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy