Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on Hydrogels

Author(s): Hitesh Chopra, Inderbir Singh*, Sandeep Kumar, Tanima Bhattacharya, Md. Habibur Rahman*, Rokeya Akter and Md. Tanvir Kabir

Volume 19, Issue 6, 2022

Published on: 10 January, 2022

Page: [658 - 675] Pages: 18

DOI: 10.2174/1567201818666210601155558

Price: $65

conference banner
Abstract

The conventional drug delivery systems have a long list of repeated dosing and toxicity issues. The hydrogels solve these issues as they minimize such activities and optimize therapeutic benefits. The hydrogels possess tunable properties that can withstand degradation, metabolism, and control release moieties. Some areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue and bone engineering, etc. They comprise about 90% of the water that makes them suitable bio-mimic moiety. Here, we present an extensive review of various perspectives of hydrogels, along with their applications.

Keywords: Hydrogels, targeted drug delivery, cross-linking, wound healing, vaginal gels, scaffolds.

Graphical Abstract
[1]
Ren X, Wang N, Zhou Y, et al. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater 2021; 124: 179-90.
[http://dx.doi.org/10.1016/j.actbio.2021.01.041] [PMID: 33524560]
[2]
Zhang J, Wang N, Li Q, Zhou Y, Luan Y. A two-pronged photodynamic nanodrug to prevent metastasis of basal-like breast cancer. ChemComm 2021.
[http://dx.doi.org/10.1039/D0CC08162K]
[3]
Tian H, Zhang M, Jin G, Jiang Y, Luan Y. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J Colloid Interface Sci 2020.
[http://dx.doi.org/10.1016/j.jcis.2020.12.028] [PMID: 33360905]
[4]
Zhou Y, Ren X, Hou Z, Wang N, Jiang Y, Luan YJ. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz 2021.
[5]
Zhou S, Shang Q, Wang N, Li Q, Song A, Luan Y. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. J Control Release 2020; 328: 617-30.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.035] [PMID: 32976902]
[6]
Wichterle O, Lim DJ. Hydrophilic gels for biological use. Nature 1960; 185(4706): 117-8.
[http://dx.doi.org/10.1038/185117a0]
[7]
Lím D. Personal communication. 2001.
[8]
Dreifus M, Wichterle O, Lím D. [Intra-cameral lenses made of hydrocolloidal acrylates]. Cesk Oftalmol 1960; 16: 154-9. [in Czech].
[PMID: 13818034]
[9]
Wichterle O. Soft Contact Lenses. New York: Wiley 1978; pp. 3-5.
[10]
Kopeček J. Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci A Polym Chem 2009; 47(22): 5929-46.
[http://dx.doi.org/10.1002/pola.23607] [PMID: 19918374]
[11]
Ahmed EM, Aggor FS, Awad AM, El-Aref AT. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym 2013; 91(2): 693-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.056] [PMID: 23121966]
[12]
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 2010; 5(3): 469-84.
[http://dx.doi.org/10.2217/nnm.10.12] [PMID: 20394538]
[13]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[14]
Flory PJ. Rehner Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 1943; 11(11): 512-20.
[http://dx.doi.org/10.1063/1.1723791]
[15]
Bruck SD. Extension of the Flory-Rehner Theory of Swelling to an Anisotropic Polymer System. J Res Natl Bur Stand, A Phys Chem 1961; 65A(6): 485-7.
[http://dx.doi.org/10.6028/jres.065A.051] [PMID: 32196204]
[16]
Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009; 30(27): 4695-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.050] [PMID: 19539367]
[17]
Wang QM, Mohan AC, Oyen ML, Zhao XH. Separating viscoelasticity and poroelasticity of gels with different length and time scales. Lixue Xuebao 2014; 30: 20-7.
[http://dx.doi.org/10.1007/s10409-014-0015-z]
[18]
Khansari MM, Sorokina LV, Mukherjee P, et al. Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation. JOM 2017; 69(8): 1340-7.
[http://dx.doi.org/10.1007/s11837-017-2412-9]
[19]
Kishida A, Ikada Y. Hydrogels for biomedical and pharmaceutical applications. Polymeric Biomaterials 2001; 133-45.
[20]
Takashi L, Hatsumi T, Makoto M, Takashi I, Takehiko G, Shuji S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 2007; 104(2): 842.
[http://dx.doi.org/10.1002/app.25605]
[21]
Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 2002; 235(1-2): 1-15.
[http://dx.doi.org/10.1016/S0378-5173(02)00004-2] [PMID: 11879735]
[22]
Maolin Z, Jun L, Min Y, Hongfei H. The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 2000; 58: 397-400.
[http://dx.doi.org/10.1016/S0969-806X(99)00491-0]
[23]
Tronci G, Ajiro H, Russell SJ, Wood DJ, Akashi M. Tunable drug-loading capability of chitosan hydrogels with varied network architectures. Acta Biomater 2014; 10(2): 821-30.
[http://dx.doi.org/10.1016/j.actbio.2013.10.014] [PMID: 24157693]
[24]
Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002; 54(1): 135-47.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[25]
You JO, Almeda D, Ye GJ, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng 2010; 4(1): 15.
[http://dx.doi.org/10.1186/1754-1611-4-15] [PMID: 21114841]
[26]
Gua S, Qiao Y, Wang W, et al. Poly(ε-caprolactone)-graft-poly(2-N,N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. J Mater Chem 2010; 20: 6935-41.
[http://dx.doi.org/10.1039/c0jm00506a]
[27]
Dragan ES, Bucatariu F. Design and characterization of anionic hydrogels confined in Daisogel silica composites microspheres and their application in sustained release of proteins. Colloids Surf A Physicochem Eng Asp 2016; 489: 46-56.
[http://dx.doi.org/10.1016/j.colsurfa.2015.10.029]
[28]
Kim B, Lim SH, Ryoo W. Preparation and characterization of pH-sensitive anionic hydrogel microparticles for oral protein-delivery applications. J Biomater Sci Polym Ed 2009; 20(4): 427-36.
[http://dx.doi.org/10.1163/156856209X416458] [PMID: 19228445]
[29]
Zhao L, Zhu L, Liu F, et al. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 2011; 410(1-2): 83-91.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.034] [PMID: 21421032]
[30]
Mao H, Shan G, Bao Y, Wu ZL, Pan P. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Soft Matter 2016; 12(20): 4628-37.
[http://dx.doi.org/10.1039/C6SM00517A] [PMID: 27121732]
[31]
Wang S, Zhang Z, Zhang Q, Li L. Physical crosslinked poly (n-isopropylacrylamide)/nano-hydroxyapatite thermosensitive composite hydrogels. J Inorg Organomet Polym Mater 2018; 28(5): 2069-79.
[http://dx.doi.org/10.1007/s10904-018-0893-9]
[32]
Builders PF, Kunle OO, Adikwu MU. Preparation and characterization of mucinated agarose: a mucin-agarose physical crosslink. Int J Pharm 2008; 356(1-2): 174-80.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.006] [PMID: 18291605]
[33]
Zhang Y, Ye L, Cui M, et al. Physically crosslinked poly (vinyl alcohol)–carrageenan composite hydrogels: pore structure stability and cell adhesive ability. RSC Advances 2015; 5(95): 78180-91.
[http://dx.doi.org/10.1039/C5RA11331H]
[34]
Silvestro I, Francolini I, Di Lisio V, et al. Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. Materials (Basel) 2020; 13(16): 3577.
[http://dx.doi.org/10.3390/ma13163577] [PMID: 32823636]
[35]
Fischetti T, Celikkin N, Contessi Negrini N, Farè S, Swieszkowski W. Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3D printing of uniaxial scaffolds. Front Bioeng Biotechnol 2020; 8: 400.
[http://dx.doi.org/10.3389/fbioe.2020.00400] [PMID: 32426350]
[36]
Zhang Q, Hu XM, Wu MY, Wang MM, Zhao YY. LiTT.Synthesis and performance characterization of poly (vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 2019; 136: 34-43.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.002]
[37]
Argin-Soysal S, Kofinas P, Lo YM. Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocoll 2009; 23(1): 202-9.
[http://dx.doi.org/10.1016/j.foodhyd.2007.12.011]
[38]
Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol 2018; 106: 1218-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124] [PMID: 28851645]
[39]
Tian Z, Liu W, Li G. The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym Degrad Stabil 2016; 130: 264-70.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.06.015]
[40]
Hegewald J, Schmidt T, Gohs U, et al. Electron beam irradiation of poly(vinyl methyl ether) films: 1. Synthesis and film topography. Langmuir 2005; 21(13): 6073-80.
[http://dx.doi.org/10.1021/la0502589] [PMID: 15952862]
[41]
Li S. Bioresorbable hydrogels prepared through stereocomplexation between poly (l-lactide) and poly (d-lactide) blocks attached to poly (ethylene glycol). Macromol Biosci 2003; 3(11): 657-61.
[http://dx.doi.org/10.1002/mabi.200350032]
[42]
Garlotta D. A literature review of poly (lactic acid). J Polym Environ 2001; 9(2): 63-84.
[http://dx.doi.org/10.1023/A:1020200822435]
[43]
De Jong SJ, Van Nostrum CF, Kroon-Batenburg LM. Kettenes-van den, Bosch JJ, Hennink WE. Oligolactate-grafted dextran hydrogels: Detection of stereocomplex crosslinks by X-ray diffraction. J Appl Polym Sci 2002; 86(2): 289-93.
[http://dx.doi.org/10.1002/app.10954]
[44]
Guzmán E, Mateos-Maroto A, Ruano M, Ortega F, Rubio RG. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv Colloid Interface Sci 2017; 249: 290-307.
[http://dx.doi.org/10.1016/j.cis.2017.04.009] [PMID: 28455094]
[45]
Li S, Vert M. Synthesis, characterization, and stereocomplexation-induced gelation of block copolymers prepared by ring-opening polymerization of L(D)-lactide in the presence ofpoly(ethylene glycol). Macromolecules 2003; 36: 8008-14.
[http://dx.doi.org/10.1021/ma034734i]
[46]
Jiang Z, Bhaskaran A, Aitken HM, Shackleford ICG, Connal LA. Using synergistic multiple dynamic bonds to construct polymers with engineered properties. Macromol Rapid Commun 2019; 40(10): e1900038.
[http://dx.doi.org/10.1002/marc.201900038] [PMID: 30977952]
[47]
Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 2010; 16(4): 371-83.
[http://dx.doi.org/10.1089/ten.teb.2009.0639] [PMID: 20121414]
[48]
Martin I, Obradovic B, Treppo S, et al. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 2000; 37(1-2): 141-7.
[PMID: 10912186]
[49]
Kawaguchi H. Thermoresponsive microhydrogels: preparation, properties and applications. Polym Int 2014; 63(6): 925-32.
[http://dx.doi.org/10.1002/pi.4675]
[50]
Han L, Zhang Y, Lu X, Wang K, Wang Z, Zhang H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl Mater Interfaces 2016; 8(42): 29088-100.
[http://dx.doi.org/10.1021/acsami.6b11043] [PMID: 27709887]
[51]
Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels … A review. Saudi Pharm J 2016; 24(5): 554-9.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[52]
Zu Y, Zhang Y, Zhao X, et al. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 2012; 50(1): 82-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.10.006] [PMID: 22020189]
[53]
Yamamoto M, Tabata Y, Hong L, Miyamoto S, Hashimoto N, Ikada Y. Bone regeneration by transforming growth factor β1 released from a biodegradable hydrogel. J Control Release 2000; 64(1-3): 133-42.
[http://dx.doi.org/10.1016/S0168-3659(99)00129-7] [PMID: 10640652]
[54]
Willmott N. Adriamycin-loaded albumin microspheres: lung entrapment and fate in the rat.Microspheres and Drug Therapy Pharmaceutical, Immunological and Medical Aspects. Amsterdam: Elsevier 1984; pp. 189-205.
[55]
Jameela SR, Jayakrishnan A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 1995; 16(10): 769-75.
[http://dx.doi.org/10.1016/0142-9612(95)99639-4] [PMID: 7492707]
[56]
Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release 1995; 36(1-2): 159-66.
[http://dx.doi.org/10.1016/0168-3659(95)00049-E]
[57]
Ray D, Gils PS, Mohanta GP, Manavalan R, Sahoo PK. Comparative delivery of diltiazem hydrochloride through synthesized polymer: hydrogel and hydrogel microspheres. J Appl Polym Sci 2010; 116(2): 959-68.
[58]
Kuijpers AJ, van Wachem PB, van Luyn MJ, et al. in vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 2000; 67(2-3): 323-36.
[http://dx.doi.org/10.1016/S0168-3659(00)00221-2] [PMID: 10825564]
[59]
Karadağ E, Saraydın D, Güven O. Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromol Mater Eng 2001; 286(1): 34-42.
[http://dx.doi.org/10.1002/1439-2054(20010101)286:1<34::AID-MAME34>3.0.CO;2-J]
[60]
Abd El-Mohdy HL, Hegazy ES. Preparation of polyvinyl pyrrolidone-based hydrogels by radiation-induced crosslinking with potential application as wound dressing. J Macromol Sci Part A 2008; 45(12): 995-1002.
[http://dx.doi.org/10.1080/10601320802454128]
[61]
Wach RA, Mitomo H, Yoshii F, Kume T. Hydrogel of Radiation-Induced Cross-Linked Hydroxypropylcellulose. Macromol Mater Eng 2002; 287(4): 285-95.
[http://dx.doi.org/10.1002/1439-2054(20020401)287:4<285::AID-MAME285>3.0.CO;2-3]
[62]
MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release 2014; 190: 314-30.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.028] [PMID: 24979207]
[63]
Liu H, Wang C, Li C, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances 2018; 8(14): 7533-49.
[http://dx.doi.org/10.1039/C7RA13510F]
[64]
Kravanja G, Primožič M, Knez Ž, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules 2019; 24(10): 1960.
[http://dx.doi.org/10.3390/molecules24101960] [PMID: 31117310]
[65]
Liu W, Dreher MR, Furgeson DY, et al. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release 2006; 116(2): 170-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.026] [PMID: 16919353]
[66]
Wach RA, Adamus-Wlodarczyk A, Olejnik AK, Matusiak M, Tranquilan-Aranilla C, Ulanski P. Carboxymethylchitosan hydrogel manufactured by radiation-induced crosslinking as potential nerve regeneration guide scaffold. React Funct Polym 2020; 152: 104588.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104588]
[67]
Geresh S, Gilboa Y, Peisahov-Korol J, et al. Preparation and characterization of bioadhesive grafted starch copolymers as platforms for controlled drug delivery. J Appl Polym Sci 2002; 86(5): 1157-62.
[http://dx.doi.org/10.1002/app.11058]
[68]
Iwasaki Y, Nakagawa C, Ohtomi M, Ishihara K, Akiyoshi K. Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel. Biomacromolecules 2004; 5(3): 1110-5.
[http://dx.doi.org/10.1021/bm049961m] [PMID: 15132706]
[69]
Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules 1997; 30(18): 5255-64.
[http://dx.doi.org/10.1021/ma970345a]
[70]
Sanborn TJ, Messersmith PB, Barron AE. in situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials 2002; 23(13): 2703-10.
[http://dx.doi.org/10.1016/S0142-9612(02)00002-9] [PMID: 12059019]
[71]
McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 2005; 11(11-12): 1768-79.
[http://dx.doi.org/10.1089/ten.2005.11.1768] [PMID: 16411822]
[72]
Hernández-Ruiz J, Arnao MB, Hiner AN, García-Cánovas F, Acosta M. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochem J 2001; 354(Pt 1): 107-14.
[http://dx.doi.org/10.1042/bj3540107] [PMID: 11171085]
[73]
Partlow BP, Hanna CW, Rnjak-Kovacina J, et al. Highly tunable elastomeric silk biomaterials. Adv Funct Mater 2014; 24(29): 4615-24.
[http://dx.doi.org/10.1002/adfm.201400526] [PMID: 25395921]
[74]
Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid- tyramine conjugates for drug delivery and tissue engineering. Chem Commun (Camb) 2005; 34(34): 4312-4.
[http://dx.doi.org/10.1039/b506989k] [PMID: 16113732]
[75]
Trinh TA, Duy Le TM, Ho HGV, et al. A novel injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomater Sci 2020; 8(14): 3830-43.
[http://dx.doi.org/10.1039/D0BM00634C] [PMID: 32538381]
[76]
Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 2007; 28(18): 2791-800.
[http://dx.doi.org/10.1016/j.biomaterials.2007.02.032] [PMID: 17379300]
[77]
Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[78]
Azuma K, Izumi R, Osaki T, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 2015; 6(1): 104-42.
[http://dx.doi.org/10.3390/jfb6010104] [PMID: 25780874]
[79]
Kumar MN. A review of chitin and chitosan applications. React Funct Polym 2000; 46(1): 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[80]
Ding K, Yang Z, Zhang YL, Xu JZ. Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell Biol Int 2013; 37(9): 977-87.
[http://dx.doi.org/10.1002/cbin.10123] [PMID: 23620126]
[81]
Cho J, Heuzey MC, Bégin A, Carreau PJ. Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 2005; 6(6): 3267-75.
[http://dx.doi.org/10.1021/bm050313s] [PMID: 16283755]
[82]
Talaat WM, Haider M, Kawas SA, Kandil NG, Harding DR. Chitosan-based thermosensitive hydrogel for controlled drug delivery to the temporomandibular joint. J Craniofac Surg 2016; 27(3): 735-40.
[http://dx.doi.org/10.1097/SCS.0000000000002588] [PMID: 27100649]
[83]
Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 2009; 30(36): 6844-53.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.058] [PMID: 19783043]
[84]
Zhang Z, Chen L, Deng M, Bai Y, Chen X, Jing X. Biodegradable thermo and pH-responsive hydrogels for oral drug delivery. J Polym SciPart A-1 2011; 49(13): 2941-51.
[85]
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 2018; 7(3): 153-74.
[http://dx.doi.org/10.1007/s40204-018-0095-0] [PMID: 30182344]
[86]
Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH. Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng; BBE 2017; 22: 89-94.
[http://dx.doi.org/10.1007/s12257-016-0381-4]
[87]
Ding J, Li Q, Zhao L, Li X, Yue Q, Gao B. A wheat straw cellulose based semi-IPN hydrogel reactor for metal nanoparticles preparation and catalytic reduction of 4-nitrophenol. RSC Advances 2017; 7: 17599-611.
[http://dx.doi.org/10.1039/C7RA01077J]
[88]
Reddy KR, Rajgopal K, Maheswari CU, Kantam ML. Chitosan hydrogel: a green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J Chem 2006; 30: 1549-52.
[http://dx.doi.org/10.1039/b610355c]
[89]
Cheng W, Hu X, Xie J, Zhao Y. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel 2017; 210: 826-35.
[http://dx.doi.org/10.1016/j.fuel.2017.09.007]
[90]
Illeperuma WR, Rothemund P, Suo Z, Vlassak JJ. Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives. ACS Appl Mater Interfaces 2016; 8(3): 2071-7.
[http://dx.doi.org/10.1021/acsami.5b10538] [PMID: 26716351]
[91]
Hu X, Cheng W, Shao Z. Novel authigenic gas foaming hydrogels for preventing coal spontaneous combustion. e-Polymers 2015; 15: 361-8.
[92]
Esposito A, Sannino A, Cozzolino A, et al. Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 2005; 26(19): 4101-10.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.023] [PMID: 15664637]
[93]
Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L. Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer (Guildf) 2005; 46: 11206-12.
[http://dx.doi.org/10.1016/j.polymer.2005.10.048]
[94]
Sannino A, Madaghiele M, Lionetto M, Schettino T, Maffezzoli A. A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 2006; 102: 1524-30.
[http://dx.doi.org/10.1002/app.24468]
[95]
Sumner JP, Hardie RJ, Henningson JN, Drees R, Markel MD, Bjorling D. Evaluation of submucosally injected polyethylene glycol-based hydrogel and bovine cross-linked collagen in the canine urethra using cystoscopy, magnetic resonance imaging and histopathology. Vet Surg 2012; 41(6): 655-63.
[http://dx.doi.org/10.1111/j.1532-950X.2012.01005.x] [PMID: 22818023]
[96]
Mashkour M, Rahimnejad M, Mashkour M, Bakeri G, Luque R, Oh SE. Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells. ChemElectroChem 2017; 4: 648-54.
[http://dx.doi.org/10.1002/celc.201600868]
[97]
Mashkour M, Rahimnejad M, Mashkour M. Bacterial cellulose-polyaniline nano-biocomposite: a porous media hydrogel bioanode enhancing the performance of microbial fuel cell. J Power Sources 2016; 325: 322-8.
[http://dx.doi.org/10.1016/j.jpowsour.2016.06.063]
[98]
Kim SH, Won CY, Chu CC. Synthesis and characterization of dextran-maleic acid based hydrogel. J Biomed Mater Res 1999; 46(2): 160-70.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199908)46:2<160::AID-JBM4>3.0.CO;2-P] [PMID: 10379993]
[99]
Almeida JF, Ferreira P, Lopes A, Gil MH. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int J Biol Macromol 2011; 49(5): 948-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.08.010] [PMID: 21871915]
[100]
Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules 2005; 6(4): 2131-9.
[http://dx.doi.org/10.1021/bm050116t] [PMID: 16004455]
[101]
Kochumalayil J, Sehaqui H, Zhou Q, Berglund LA. Tamarind seed xyloglucan–a thermostable high-performance biopolymer from non-food feedstock. J Mater Chem A Mater Energy Sustain 2010; 20(21): 4321-7.
[102]
Nisbet DR, Crompton KE, Hamilton SD, et al. Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophys Chem 2006; 121(1): 14-20.
[http://dx.doi.org/10.1016/j.bpc.2005.12.005] [PMID: 16406645]
[103]
Borchard W. Properties of thermoreversible gels. Ber Bunsenges Phys Chem 1998; 102(11): 1580-8.
[http://dx.doi.org/10.1002/bbpc.19981021115]
[104]
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008; 68(1): 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[105]
Yang H, Kao WJ. Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D,L-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm Res 2006; 23(1): 205-14.
[http://dx.doi.org/10.1007/s11095-005-8417-z] [PMID: 16270162]
[106]
Ohya S, Matsuda T. Poly(N-isopropylacrylamide) (PNIPAM)- grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J Biomater Sci Polym Ed 2005; 16(7): 809-27.
[http://dx.doi.org/10.1163/1568562054255736] [PMID: 16128290]
[107]
Percot A, Lafleur M, Zhu XX. New hydrogels based on N-isopropylacrylamide copolymers crosslinked with polylysine: membrane immobilization systems. Polymer (Guildf) 2000; 41(19): 7231-9.
[http://dx.doi.org/10.1016/S0032-3861(00)00074-4]
[108]
Tang S, Floy M, Bhandari R, et al. Synthesis and Characterization of Thermoresponsive Hydrogels Based on N-Isopropylacrylamide Crosslinked with 4,4′-Dihydroxybiphenyl Diacrylate. ACS Omega 2017; 2(12): 8723-9.
[http://dx.doi.org/10.1021/acsomega.7b01247] [PMID: 29302630]
[109]
Klouda L, Perkins KR, Watson BM, et al. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater 2011; 7(4): 1460-7.
[http://dx.doi.org/10.1016/j.actbio.2010.12.027] [PMID: 21187170]
[110]
Mathews AS, Ha CS, Cho WJ, Kim I. Drug delivery system based on covalently bonded poly[N-isopropylacrylamide-co-2-hydroxyethylacrylate]-based nanoparticle networks. Drug Deliv 2006; 13(4): 245-51.
[http://dx.doi.org/10.1080/10717540500313067] [PMID: 16766465]
[111]
Poorgholy N, Massoumi B, Ghorbani M, Jaymand M, Hamishehkar H. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev Ind Pharm 2018; 44(8): 1254-61.
[http://dx.doi.org/10.1080/03639045.2018.1442845] [PMID: 29452515]
[112]
Qasim M, Udomluck N, Chang J, Park H, Kim K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomedicine 2018; 13: 235-49.
[http://dx.doi.org/10.2147/IJN.S153485] [PMID: 29379284]
[113]
Trongsatitkul T, Budhlall BM. Multicore-shell PNIPAm- co-PEGMa microcapsules for cell encapsulation. Langmuir 2011; 27(22): 13468-80.
[http://dx.doi.org/10.1021/la203030j] [PMID: 21962146]
[114]
Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A 1968; 2: 1441-55.
[http://dx.doi.org/10.1080/10601326808051910]
[115]
Werner P, Münzberg M, Hass R, Reich O. Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension. Anal Bioanal Chem 2017; 409(3): 807-19.
[http://dx.doi.org/10.1007/s00216-016-0050-7] [PMID: 27830315]
[116]
Coughlan DC, Quilty FP, Corrigan OI. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J Control Release 2004; 98(1): 97-114.
[http://dx.doi.org/10.1016/j.jconrel.2004.04.014] [PMID: 15245893]
[117]
Wu SW, Liu X, Miller AL II, Cheng YS, Yeh ML, Lu L. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr Polym 2018; 192: 308-16.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.047] [PMID: 29691026]
[118]
Cui Z, Lee BH, Pauken C, Vernon BL. Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels. J Biomed Mater Res A 2011; 98(2): 159-66.
[http://dx.doi.org/10.1002/jbm.a.33093] [PMID: 21548065]
[119]
Ahiabu A, Serpe MJ. Rapidly responding pH-and temperature-responsive poly (N-Isopropylacrylamide)-based microgels and assemblies. ACS Omega 2017; 2(5): 1769-77.
[http://dx.doi.org/10.1021/acsomega.7b00103] [PMID: 31457540]
[120]
Atta AM, Abdel-Bary EM, Rezk K, Abdel-Azim A. Fast responsive poly (acrylic acid-co-N-isopropyl acrylamide) hydrogels based on new crosslinker. J Appl Polym Sci 2009; 112(1): 114-22.
[http://dx.doi.org/10.1002/app.28950]
[121]
Chen JP, Cheng TH. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 2006; 6(12): 1026-39.
[http://dx.doi.org/10.1002/mabi.200600142] [PMID: 17128421]
[122]
Son KH, Lee JW. Synthesis and characterization of poly (Ethylene Glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials (Basel) 2016; 9(10): 854.
[http://dx.doi.org/10.3390/ma9100854] [PMID: 28773974]
[123]
Quynh TM, Yoneyamab M, Maki Y, Dobashi T. Poly (N-isopropylacrylamide-co-hydroxyethyl methacrylate) graft copolymers and their application as carriers for drug delivery system. J Appl Polym Sci 2012; 123(4): 2368-76.
[http://dx.doi.org/10.1002/app.34821]
[124]
Jalani G, Jung CW, Lee JS, Lim DW. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems. Int J Nanomedicine 2014; 9(Suppl. 1): 33-49.
[PMID: 24872702]
[125]
Yu Y, Liu Y, Kong Y, Zhang E, Jia F, Li S. Synthesis and Characterization of Temperature-Sensitive Poly(N-isopropylacryamide) Hydrogel with Comonomer and Semi-IPN material. Polym Plast Technol Eng 2012; 51(8): 854-60.
[http://dx.doi.org/10.1080/03602559.2012.671419]
[126]
Yin X, Hoffman AS, Stayton PS. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 2006; 7(5): 1381-5.
[http://dx.doi.org/10.1021/bm0507812] [PMID: 16677016]
[127]
Serra L, Doménech J, Peppas NA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006; 27(31): 5440-51.
[http://dx.doi.org/10.1016/j.biomaterials.2006.06.011] [PMID: 16828864]
[128]
Gong C, Qi T, Wei X, et al. Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem 2013; 20(1): 79-94.
[http://dx.doi.org/10.2174/0929867311302010009] [PMID: 23092130]
[129]
Loh XJ, Abdul Karim A, Owh C. Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. J Mater Chem B Mater Biol Med 2015; 3(39): 7641-52.
[http://dx.doi.org/10.1039/C5TB01048A] [PMID: 32264574]
[130]
Kashyap NK, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug 2005; 22(2)
[131]
Behl M, Zotzmann J, Lendlein A. Shape-Memory Polymers and Shape-Changing Polymers.Shape-Memory Polymers Advances in Polymer Science. Berlin, Heidelberg: Springer 2009; Vol. 226: pp. 1-40.
[http://dx.doi.org/10.1007/12_2009_26]
[132]
Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001; 53(3): 321-39.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[133]
Geever LM, Cooney CC, Lyons JG, et al. Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm 2008; 69(3): 1147-59.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.021] [PMID: 18502627]
[134]
Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: A review. Polym Plast Technol Eng 2011; 50(14): 1475-86.
[http://dx.doi.org/10.1080/03602559.2011.593082]
[135]
Fusco S, Borzacchiello A, Netti PA. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym 2006; 21(2): 149-64.
[http://dx.doi.org/10.1177/0883911506063207]
[136]
White JC, Saffer EM, Bhatia SR. Alginate/PEO-PPO-PEO composite hydrogels with thermally-active plasticity. Biomacromolecules 2013; 14(12): 4456-64.
[http://dx.doi.org/10.1021/bm401373j] [PMID: 24147595]
[137]
Zhou T, Wu W, Zhou S. Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications. Polymer (Guildf) 2010; 51: 3926-33.
[http://dx.doi.org/10.1016/j.polymer.2010.06.030]
[138]
Bakaic E, Smeets NMB, Badv M, et al. Injectable and Degradable Poly(Oligoethylene glycol methacrylate) Hydrogels with Tunable Charge Densities as Adhesive Peptide-Free Cell Scaffolds. ACS Biomater Sci Eng 2018; 4(11): 3713-25.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00397] [PMID: 33429602]
[139]
Lutz JF. Polymerization of oligo (ethylene glycol)(meth) acrylates: Toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 2008; 46(11): 3459-70.
[http://dx.doi.org/10.1002/pola.22706]
[140]
Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. in vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Plym. Mater 2006; 16: 365-85.
[141]
Teasdale I, Brüggemann O. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers (Basel) 2013; 5(1): 161-87.
[http://dx.doi.org/10.3390/polym5010161] [PMID: 24729871]
[142]
Al-Abd AM, Hong KY, Song SC, Kuh HJ. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release 2010; 142(1): 101-7.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.003] [PMID: 19819274]
[143]
Kang GD, Cheon SH, Khang G, Song SC. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur J Pharm Biopharm 2006; 63(3): 340-6.
[http://dx.doi.org/10.1016/j.ejpb.2006.01.001] [PMID: 16527468]
[144]
Donnelly RF, Mooney K, McCrudden MT, et al. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected. J Pharm Sci 2014; 103(5): 1478-86.
[http://dx.doi.org/10.1002/jps.23921] [PMID: 24633895]
[145]
Migdadi EM, Courtenay AJ, Tekko IA, et al. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release 2018; 285: 142-51.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.009] [PMID: 29990526]
[146]
Donnelly RF, McCrudden MT, Zaid Alkilani A, et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014; 9(10): e111547.
[http://dx.doi.org/10.1371/journal.pone.0111547] [PMID: 25360806]
[147]
Don TM, Huang ML, Chiu AC, Kuo KH, Chiu WY, Chiu LH. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 2008; 107(2-3): 266-73.
[http://dx.doi.org/10.1016/j.matchemphys.2007.07.009]
[148]
Chatterjee S, Hui PCL, Wat E, Kan CW, Leung PC, Wang W. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym 2020; 236: 116074.
[http://dx.doi.org/10.1016/j.carbpol.2020.116074] [PMID: 32172887]
[149]
Zhou F, Song Z, Wen Y, Xu H, Zhu L, Feng R. Transdermal delivery of curcumin-loaded supramolecular hydrogels for dermatitis treatment. J Mater Sci Mater Med 2019; 30(1): 11.
[http://dx.doi.org/10.1007/s10856-018-6215-5] [PMID: 30617652]
[150]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J Drug Deliv Sci Technol 2019; 52: 55-64.
[http://dx.doi.org/10.1016/j.jddst.2019.04.025]
[151]
Ozkahraman B, Emeriewen K, Saleh GM, Thanh NTK. Engineering hydrogel nanoparticles to enhance transdermal local anaesthetic delivery in human eyelid skin. RSC Advances 2020; 10(7): 3926-30.
[http://dx.doi.org/10.1039/C9RA06712D]
[152]
Jung H, Kim MK, Lee JY, Choi SW, Kim J. Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. Adv Funct Mater 2020; 30(42): 2004407.
[http://dx.doi.org/10.1002/adfm.202004407]
[153]
Chen TF, Chiang CM, Jona J, Joshi P, Ramdas A. Polyurethane hydrogel drug reservoirs for use in transdermal drug delivery systems, and associated methods of manufacture and use. U.S. Patent No. 5902603, 1999.
[154]
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2015; 103(2): 243-53.
[http://dx.doi.org/10.1002/jbm.b.33225] [PMID: 24909953]
[155]
Shen ZS, Cui X, Hou RX, Li Q, Deng HX, Fu J. Tough biodegradable chitosan–gelatin hydrogels viain situ precipitation for potential cartilage tissue engineering. RSC Advances 2015; 5(69): 55640-7.
[http://dx.doi.org/10.1039/C5RA06835E]
[156]
Naderi-Meshkin H, Andreas K, Matin MM, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 2014; 38(1): 72-84.
[http://dx.doi.org/10.1002/cbin.10181] [PMID: 24108671]
[157]
Yuan L, Li B, Yang J, et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016; 22(11-12): 899-906.
[http://dx.doi.org/10.1089/ten.tea.2015.0513] [PMID: 27221620]
[158]
Funayama A, Niki Y, Matsumoto H, et al. Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. J Orthop Sci 2008; 13(3): 225-32.
[http://dx.doi.org/10.1007/s00776-008-1220-z] [PMID: 18528656]
[159]
Zhang Y, Chen M, Tian J, et al. in situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7(8): 3266-76.
[http://dx.doi.org/10.1039/C9BM00561G] [PMID: 31180391]
[160]
Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 2019; 10(1): 3523.
[http://dx.doi.org/10.1038/s41467-019-11511-3] [PMID: 31388014]
[161]
Jones V, Grey JE, Harding KG. Wound dressings. BMJ 2006; 332(7544): 777-80.
[http://dx.doi.org/10.1136/bmj.332.7544.777] [PMID: 16575081]
[162]
Decarlo AA, Ellis A, Dooley TP, Belousova M. Composition, preparation, and use of dense chitosan membrane materials. US 8,735,571, 2014.
[163]
Li M, Liang Y, He J, Zhang H, Guo B. Two-Pronged Strategy of Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing To Accelerate Wound Closure and Wound Healing. Chem Mater 2020; 32(23): 9937-53.
[http://dx.doi.org/10.1021/acs.chemmater.0c02823]
[164]
Xue H, Hu L, Xiong Y, et al. Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydr Polym 2019; 226: 115302.
[http://dx.doi.org/10.1016/j.carbpol.2019.115302] [PMID: 31582049]
[165]
Yang J, Chen Y, Zhao L, et al. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos B Eng 2020; 197: 108139.
[http://dx.doi.org/10.1016/j.compositesb.2020.108139]
[166]
Tavakoli S, Mokhtari H, Kharaziha M, Kermanpur A, Talebi A, Moshtaghian J. A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds. Mater Sci Eng C 2020; 111: 110837.
[http://dx.doi.org/10.1016/j.msec.2020.110837] [PMID: 32279800]
[167]
Podual K, Doyle FJ III, Peppas NA. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J Control Release 2000; 67(1): 9-17.
[http://dx.doi.org/10.1016/S0168-3659(00)00195-4] [PMID: 10773324]
[168]
Podual K, Doyle F, Peppas N. Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer (Guildf) 2000; 41(11): 3975-83.
[http://dx.doi.org/10.1016/S0032-3861(99)00620-5]
[169]
Kang SI, Bae YH. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J Control Release 2003; 86(1): 115-21.
[http://dx.doi.org/10.1016/S0168-3659(02)00409-1] [PMID: 12490377]
[170]
Obaidat AA, Park K. Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system. Pharm Res 1996; 13(7): 989-95.
[http://dx.doi.org/10.1023/A:1016090103979] [PMID: 8842034]
[171]
Shiino D, Murata Y, Kubo A, et al. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J Control Release 1995; 37(3): 269-76.
[http://dx.doi.org/10.1016/0168-3659(95)00084-4]
[172]
Horbett TA, Rattner BD, Kost J, Singh MA. Bioresponsive membrane for insulin delivery.Recent Advances in Drug Delivery Systems. New York, NY: Plenum 1983; pp. 209-20.
[173]
Ito Y, Casolaro M, Kono K, Imanishi Y. An insulin-releasing system that is responsive to glucose. J Control Release 1989; 13: 195-203.
[http://dx.doi.org/10.1016/0168-3659(89)90063-1]
[174]
Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A 2003; 64(1): 70-9.
[http://dx.doi.org/10.1002/jbm.a.10319] [PMID: 12483698]
[175]
Hu J, Hou Y, Park H, et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 2012; 8(5): 1730-8.
[http://dx.doi.org/10.1016/j.actbio.2012.01.029] [PMID: 22330279]
[176]
Lee ALZ, Yang C, Gao S, Hedrick JL, Yang YY. Subcutaneous vaccination using injectable biodegradable hydrogels for long-term immune response. Nanomedicine (Lond) 2019; 21: 102056.
[http://dx.doi.org/10.1016/j.nano.2019.102056] [PMID: 31336176]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy