Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm that Implicates for Therapeutic Strategies

Author(s): Zhao-Zhong Chong* and Nizar Souayah*

Volume 29, Issue 12, 2022

Published on: 29 July, 2021

Page: [2051 - 2074] Pages: 24

DOI: 10.2174/0929867328666210506161543

Price: $65

conference banner
Abstract

The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can present neurological symptoms and induce neurological complications. The involvement in both the central and peripheral nervous systems in COVID-19 patients has been associated with direct invasion of the virus and the induction of cytokine storm. This review discussed the pathways for the virus invasion into the nervous system and characterized the SARS-CoV-2 induced cytokine storm. In addition, the mechanisms underlying the immune responses and cytokine storm induction after SARS-CoV-2 infection were also discussed. Although some neurological symptoms are mild and disappear after recovery from infection, some severe neurological complications contribute to the mortality of COVID-19 patients. Therefore, the insight into the cause of SARS-CoV-2 induced cytokine storm in context with neurological complications will formulate the novel management of the disease and also further identify new therapeutic targets for COVID-19.

Keywords: Cytokine, COVID-19, neurological complications, Toll-like receptors, interferon, Janus kinase.

[1]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[2]
Carignan, A.; Valiquette, L.; Grenier, C.; Musonera, J.B.; Nkengurutse, D.; Marcil-Heguy, A.; Vettese, K.; Marcoux, D.; Valiquette, C.; Xiong, W.T.; Fortier, P.H.; Genereux, M.; Pepin, J. Anosmia and dysgeusia associated with SARS-CoV-2 infection: An age-matched case-control study. CMAJ, 2020, 192(26), E702-E707.
[http://dx.doi.org/10.1503/cmaj.200869] [PMID: 32461325]
[3]
Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; Anheim, M.; Meziani, F. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med., 2020, 382(23), 2268-2270.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[4]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[5]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[6]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; Chekkoury-Idrissi, Y.; Hans, S.; Delgado, I.L.; Calvo-Henriquez, C.; Lavigne, P.; Falanga, C.; Barillari, M.R.; Cammaroto, G.; Khalife, M.; Leich, P.; Souchay, C.; Rossi, C.; Journe, F.; Hsieh, J.; Edjlali, M.; Carlier, R.; Ris, L.; Lovato, A.; De Filippis, C.; Coppee, F.; Fakhry, N.; Ayad, T.; Saussez, S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol., 2020, 277(8), 2251-2261.
[http://dx.doi.org/10.1007/s00405-020-05965-1] [PMID: 32253535]
[8]
Giacomelli, A.; Pezzati, L.; Conti, F.; Bernacchia, D.; Siano, M.; Oreni, L.; Rusconi, S.; Gervasoni, C.; Ridolfo, A.L.; Rizzardini, G.; Antinori, S.; Galli, M. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin. Infect. Dis., 2020, 71(15), 889-890.
[http://dx.doi.org/10.1093/cid/ciaa330] [PMID: 32215618]
[9]
Goh, Y.; Beh, D.L.L.; Makmur, A.; Somani, J.; Chan, A.C.Y. Pearls & Oy-sters: Facial nerve palsy in COVID-19 infection. Neurology, 2020, 95(8), 364-367.
[http://dx.doi.org/10.1212/WNL.0000000000009863] [PMID: 32439822]
[10]
Shors, A.R. Herpes zoster and severe acute herpetic neuralgia as a complication of COVID-19 infection. JAAD Case Rep., 2020, 6(7), 656-657.
[http://dx.doi.org/10.1016/j.jdcr.2020.05.012] [PMID: 32572380]
[11]
Wan, Y.; Cao, S.; Fang, Q.; Wang, M.; Huang, Y. Coronavirus disease 2019 complicated with Bell’s palsy: A case report; Research Square, 2020.
[12]
Ottaviani, D.; Boso, F.; Tranquillini, E.; Gapeni, I.; Pedrotti, G.; Cozzio, S.; Guarrera, G.M.; Giometto, B. Early Guillain-Barre syndrome in coronavirus disease 2019 (COVID-19): A case report from an Italian COVID-hospital. Neurol. Sci., 2020, 41(6), 1351-1354.
[http://dx.doi.org/10.1007/s10072-020-04449-8] [PMID: 32399950]
[13]
Camdessanche, J.P.; Morel, J.; Pozzetto, B.; Paul, S.; Tholance, Y.; Botelho-Nevers, E. COVID-19 may induce Guillain-Barre syndrome. Rev. Neurol. (Paris), 2020, 176(6), 516-518.
[http://dx.doi.org/10.1016/j.neurol.2020.04.003] [PMID: 32334841]
[14]
Sancho-Saldaña, A.; Lambea-Gil, Á.; Liesa, J.L.C.; Caballo, M.R.B.; Garay, M.H.; Celada, D.R.; Serrano-Ponz, M. Guillain-Barre syndrome associated with leptomeningeal enhancement following SARS-CoV-2 infection. Clin. Med. (Lond.), 2020, 20(4), e93-e94.
[http://dx.doi.org/10.7861/clinmed.2020-0213] [PMID: 32518103]
[15]
Webb, S.; Wallace, V.C.; Martin-Lopez, D.; Yogarajah, M. Guillain-Barre syndrome following COVID-19: A newly emerging post-infectious complication. BMJ Case Rep., 2020, 13(6), e236182.
[http://dx.doi.org/10.1136/bcr-2020-236182] [PMID: 32540883]
[16]
Toscano, G.; Palmerini, F.; Ravaglia, S.; Ruiz, L.; Invernizzi, P.; Cuzzoni, M.G.; Franciotta, D.; Baldanti, F.; Daturi, R.; Postorino, P.; Cavallini, A.; Micieli, G. Guillain-barre syndrome associated with SARS-CoV-2. N. Engl. J. Med., 2020, 382(26), 2574-2576.
[http://dx.doi.org/10.1056/NEJMc2009191] [PMID: 32302082]
[17]
Dinkin, M.; Gao, V.; Kahan, J.; Bobker, S.; Simonetto, M.; Wechsler, P.; Harpe, J.; Greer, C.; Mints, G.; Salama, G.; Tsiouris, A.J.; Leifer, D. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology, 2020, 95(5), 221-223.
[http://dx.doi.org/10.1212/WNL.0000000000009700] [PMID: 32358218]
[18]
Gutierrez-Ortiz, C.; Mendez-Guerrero, A.; Rodrigo-Rey, S.; San Pedro-Murillo, E.; Bermejo-Guerrero, L.; Gordo- Mañas, R.; de Aragon-Gomez, F.; Benito-Leon, J. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology, 2020, 95(5), e601-e605.
[http://dx.doi.org/10.1212/WNL.0000000000009619] [PMID: 32303650]
[19]
Delly, F.; Syed, M.J.; Lisak, R.P.; Zutshi, D. Myasthenic crisis in COVID-19. J. Neurol. Sci., 2020, 414, 116888.
[http://dx.doi.org/10.1016/j.jns.2020.116888] [PMID: 32413767]
[20]
Jin, M.; Tong, Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg. Infect. Dis., 2020, 26(7), 1618-1620.
[http://dx.doi.org/10.3201/eid2607.200445] [PMID: 32197060]
[21]
Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; Nakao, A.; Takeda, M.; Haro, H.; Inoue, O.; Suzuki-Inoue, K.; Kubokawa, K.; Ogihara, S.; Sasaki, T.; Kinouchi, H.; Kojin, H.; Ito, M.; Onishi, H.; Shimizu, T.; Sasaki, Y.; Enomoto, N.; Ishihara, H.; Furuya, S.; Yamamoto, T.; Shimada, S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis., 2020, 94, 55-58.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[22]
Galanopoulou, A.S.; Ferastraoaru, V.; Correa, D.J.; Cherian, K.; Duberstein, S.; Gursky, J.; Hanumanthu, R.; Hung, C.; Molinero, I.; Khodakivska, O.; Legatt, A.D.; Patel, P.; Rosengard, J.; Rubens, E.; Sugrue, W.; Yozawitz, E.; Mehler, M.F.; Ballaban-Gil, K.; Haut, S.R.; Moshe, S.L.; Boro, A. EEG findings in acutely ill patients investigated for SARS-CoV-2/COVID-19: A small case series preliminary report. Epilepsia Open, 2020, 5(2), 314-324.
[http://dx.doi.org/10.1002/epi4.12399] [PMID: 32537529]
[23]
Vollono, C.; Rollo, E.; Romozzi, M.; Frisullo, G.; Servidei, S.; Borghetti, A.; Calabresi, P. Focal status epilepticus as unique clinical feature of COVID-19: A case report. Seizure, 2020, 78, 109-112.
[http://dx.doi.org/10.1016/j.seizure.2020.04.009] [PMID: 32344366]
[24]
Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Yang, M.; Wang, F.; Li, G.; Li, Y.; Xing, L.; Peng, L.; Wei, J.; Cao, M.; Zheng, H.; Wu, W.; Zou, R.; Li, D.; Xu, Z.; Wang, H.; Zhang, M.; Zhang, Z.; Liu, L.; Liu, Y. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv, 2020.
[25]
Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; Skliut, M.; Weinberger, J.; Dangayach, N.S.; Bederson, J.B.; Tuhrim, S.; Fifi, J.T. Large-vessel stroke as a presenting feature of covid-19 in the young. N. Engl. J. Med., 2020, 382(20), e60.
[http://dx.doi.org/10.1056/NEJMc2009787] [PMID: 32343504]
[26]
Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; Endeman, H. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res., 2020, 191, 148-150.
[http://dx.doi.org/10.1016/j.thromres.2020.04.041] [PMID: 32381264]
[27]
Sharifi-Razavi, A.; Karimi, N.; Rouhani, N. COVID-19 and intracerebral haemorrhage: Causative or coincidental? New Microbes New Infect., 2020, 35, 100669.
[http://dx.doi.org/10.1016/j.nmni.2020.100669] [PMID: 32322398]
[28]
Dogan, L.; Kaya, D.; Sarikaya, T.; Zengin, R.; Dincer, A.; Akinci, I.O.; Afsar, N. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: Case series. Brain Behav. Immun., 2020, 87, 155-158.
[http://dx.doi.org/10.1016/j.bbi.2020.05.022] [PMID: 32389697]
[29]
Agarwal, A.; Pinho, M.; Raj, K.; Yu, F.F.; Bathla, G.; Achilleos, M.; ONeill, T.; Still, M.; Maldjian, J. Neurological emergencies associated with COVID-19: Stroke and beyond. Emerg. Radiol., 2020, 27(6), 747-754.
[http://dx.doi.org/10.1007/s10140-020-01837-7] [PMID: 32778985]
[30]
Al-Olama, M.; Rashid, A.; Garozzo, D. COVID-19-associated meningoencephalitis complicated with intracranial hemorrhage: A case report. Acta Neurochir. (Wien), 2020, 162(7), 1495-1499.
[http://dx.doi.org/10.1007/s00701-020-04402-w] [PMID: 32430637]
[31]
Duong, L.; Xu, P.; Liu, A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav. Immun., 2020, 87, 33.
[http://dx.doi.org/10.1016/j.bbi.2020.04.024] [PMID: 32305574]
[32]
McAbee, G.N.; Brosgol, Y.; Pavlakis, S.; Agha, R.; Gaffoor, M. Encephalitis associated with COVID-19 infection in an 11-year-old child. Pediatr. Neurol., 2020, 109, 94.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.04.013] [PMID: 32586676]
[33]
Pilotto, A.; Odolini, S.; Masciocchi, S.; Comelli, A.; Volonghi, I.; Gazzina, S.; Nocivelli, S.; Pezzini, A.; Focà, E.; Caruso, A.; Leonardi, M.; Pasolini, M.P.; Gasparotti, R.; Castelli, F.; Ashton, N.J.; Blennow, K.; Zetterberg, H.; Padovani, A. Steroid-responsive encephalitis in coronavirus disease 2019. Ann. Neurol., 2020, 88(2), 423-427.
[http://dx.doi.org/10.1002/ana.25783] [PMID: 32418288]
[34]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[35]
Moghimi, M.; Ghodrati, S.; Abbaspourrad, Z.; Mojhdehi, A. M.; Jafari, S.; Mansouri, R.; Khodadadi, K.; Muhammmadi, M. J. Case Report of 78 –year-old man with meningitis, Pulmonary Thromboembolism & SARS-Coronavirus-2 infection. Res. Square, 2020.
[36]
Garakani, A. Commentary on 2 cases of neuropsychiatric symptoms occurring in association with COVID-19. J. Psychiatr. Pract., 2021, 27(2), 145-146.
[http://dx.doi.org/10.1097/PRA.0000000000000527] [PMID: 33656822]
[37]
Parker, C.; Slan, A.; Shalev, D.; Critchfield, A. Abrupt late-onset psychosis as a presentation of coronavirus 2019 disease (COVID-19): A longitudinal case report. J. Psychiatr. Pract., 2021, 27(2), 131-136.
[http://dx.doi.org/10.1097/PRA.0000000000000533] [PMID: 33656820]
[38]
Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), 611-627.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[39]
Hou, Y. J.; Okuda, K.; Edwards, C. E.; Martinez, D. R.; Asakura, T.; Dinnon, K. H., 3rd; Kato, T.; Lee, R. E.; Yount, B. L.; Mascenik, T. M.; Chen, G.; Olivier, K. N.; Ghio, A.; Tse, L. V.; Leist, S. R.; Gralinski, L. E.; Schafer, A.; Dang, H.; Gilmore, R.; Nakano, S.; Sun, L.; Fulcher, M. L.; Livraghi-Butrico, A.; Nicely, N. I.; Cameron, M.; Cameron, C.; Kelvin, D. J.; de Silva, A.; Margolis, D. M.; Markmann, A.; Bartelt, L.; Zumwalt, R.; Martinez, F. J.; Salvatore, S. P.; Borczuk, A.; Tata, P. R.; Sontake, V.; Kimple, A.; Jaspers, I.; O'Neal, W. K.; Randell, S. H.; Boucher, R. C.; Baric, R. S. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 2020, 182(2), 429-446 e414.
[40]
Mori, I.; Nishiyama, Y.; Yokochi, T.; Kimura, Y. Olfactory transmission of neurotropic viruses. J. Neurovirol., 2005, 11(2), 129-137.
[http://dx.doi.org/10.1080/13550280590922793] [PMID: 16036791]
[41]
Baig, A.M.; Sanders, E.C. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J. Med. Virol., 2020, 92(10), 1845-1857.
[http://dx.doi.org/10.1002/jmv.26105] [PMID: 32492193]
[42]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A.; Muller, M. A.; Drosten, C.; Pohlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280 e278.
[43]
Mossel, E.C.; Huang, C.; Narayanan, K.; Makino, S.; Tesh, R.B.; Peters, C.J. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J. Virol., 2005, 79(6), 3846-3850.
[http://dx.doi.org/10.1128/JVI.79.6.3846-3850.2005] [PMID: 15731278]
[44]
Harmer, D.; Gilbert, M.; Borman, R.; Clark, K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett., 2002, 532(1-2), 107-110.
[http://dx.doi.org/10.1016/S0014-5793(02)03640-2] [PMID: 12459472]
[45]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[46]
Lely, A.T.; Hamming, I.; van Goor, H.; Navis, G.J. Renal ACE2 expression in human kidney disease. J. Pathol., 2004, 204(5), 587-593.
[http://dx.doi.org/10.1002/path.1670] [PMID: 15538735]
[47]
Wu, H.T.; Chuang, Y.W.; Huang, C.P.; Chang, M.H. Loss of angiotensin converting enzyme II (ACE2) accelerates the development of liver injury induced by thioacetamide. Exp. Anim., 2018, 67(1), 41-49.
[http://dx.doi.org/10.1538/expanim.17-0053] [PMID: 28845018]
[48]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[49]
Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.; Chance, R.; Macaulay, I.C.; Chou, H.J.; Fletcher, R.B.; Das, D.; Street, K.; de Bezieux, H.R.; Choi, Y.G.; Risso, D.; Dudoit, S.; Purdom, E.; Mill, J.; Hachem, R.A.; Matsunami, H.; Logan, D.W.; Goldstein, B.J.; Grubb, M.S.; Ngai, J.; Datta, S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv., 2020, 6(31), eabc5801.
[http://dx.doi.org/10.1126/sciadv.abc5801] [PMID: 32937591]
[50]
Kabbani, N.; Olds, J.L. Does COVID19 Infect the Brain? If So, Smokers mightbBe at a higher risk. Mol. Pharmacol., 2020, 97(5), 351-353.
[http://dx.doi.org/10.1124/molpharm.120.000014] [PMID: 32238438]
[51]
Alenina, N.; Bader, M. ACE2 in brain physiology and pathophysiology: Evidence from transgenic animal models. Neurochem. Res., 2019, 44(6), 1323-1329.
[http://dx.doi.org/10.1007/s11064-018-2679-4] [PMID: 30443713]
[52]
Chen, J.; Zhao, Y.; Chen, S.; Wang, J.; Xiao, X.; Ma, X.; Penchikala, M.; Xia, H.; Lazartigues, E.; Zhao, B.; Chen, Y. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology, 2014, 79, 550-558.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.004] [PMID: 24440367]
[53]
Qiao, J.; Li, W.; Bao, J.; Peng, Q.; Wen, D.; Wang, J.; Sun, B. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem. Biophys. Res. Commun., 2020, 533(4), 867-871.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.042] [PMID: 33008593]
[54]
Dang, Z.; Su, S.; Jin, G.; Nan, X.; Ma, L.; Li, Z.; Lu, D.; Ge, R. Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7- Mas axis in rat. J. Ethnopharmacol., 2020, 250, 112470.
[http://dx.doi.org/10.1016/j.jep.2019.112470] [PMID: 31862407]
[55]
Chen, R.; Yu, J.; Wang, K.; Howard, D.; French, L.; Chen, Z.; Wen, C. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. BioRxiv, 2020, 2020(2004.2007.), 030650.
[56]
Qi, J.; Zhou, Y.; Hua, J.; Zhang, L.; Bian, J.; Liu, B.; Zhao, Z. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to COVID-19 infection. BioRxiv , 2020, 2020(2004.2016.), 045690.
[57]
Nath, A. Neurologic complications of coronavirus infections. Neurology, 2020, 94(19), 809-810.
[http://dx.doi.org/10.1212/WNL.0000000000009455] [PMID: 32229625]
[58]
Li, Y.; Fu, L.; Gonzales, D.M.; Lavi, E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J. Virol., 2004, 78(7), 3398-3406.
[http://dx.doi.org/10.1128/JVI.78.7.3398-3406.2004] [PMID: 15016862]
[59]
Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol., 2020, 92(6), 552-555.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[60]
Buzhdygan, T.P.; DeOre, B.J.; Baldwin-Leclair, A.; Bullock, T.A.; McGary, H.M.; Khan, J.A.; Razmpour, R.; Hale, J.F.; Galie, P.A.; Potula, R.; Andrews, A.M.; Ramirez, S.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis., 2020, 146, 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[61]
Koyuncu, O.O.; Hogue, I.B.; Enquist, L.W. Virus infections in the nervous system. Cell Host Microbe, 2013, 13(4), 379-393.
[http://dx.doi.org/10.1016/j.chom.2013.03.010] [PMID: 23601101]
[62]
Wu, Y.; Xu, X.; Chen, Z.; Duan, J.; Hashimoto, K.; Yang, L.; Liu, C.; Yang, C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun., 2020, 87, 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[63]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[64]
Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front. Immunol., 2020, 11, 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[65]
Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; Qiang, M.; Xiang, J.; Zhang, B.; Chen, Y.; Gao, C. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br. J. Haematol., 2020, 189(3), 428-437.
[http://dx.doi.org/10.1111/bjh.16659] [PMID: 32297671]
[66]
Tan, C.W.; Low, J.G.H.; Wong, W.H.; Chua, Y.Y.; Goh, S.L.; Ng, H.J. Critically ill COVID-19 infected patients exhibit increased clot waveform analysis parameters consistent with hypercoagulability. Am. J. Hematol., 2020, 95(7), E156-E158.
[http://dx.doi.org/10.1002/ajh.25822] [PMID: 32267008]
[67]
Levi, M.; van der Poll, T.; ten Cate, H.; van Deventer, S.J. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur. J. Clin. Invest., 1997, 27(1), 3-9.
[http://dx.doi.org/10.1046/j.1365-2362.1997.570614.x] [PMID: 9041370]
[68]
Conway, E.M.; Rosenberg, R.D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol. Cell. Biol., 1988, 8(12), 5588-5592.
[http://dx.doi.org/10.1128/MCB.8.12.5588] [PMID: 2854203]
[69]
Stouthard, J.M.; Levi, M.; Hack, C.E.; Veenhof, C.H.; Romijn, H.A.; Sauerwein, H.P.; van der Poll, T. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb. Haemost., 1996, 76(5), 738-742.
[http://dx.doi.org/10.1055/s-0038-1650653] [PMID: 8950783]
[70]
Al-Samkari, H.; Song, F.; Van Cott, E.M.; Kuter, D.J.; Rosovsky, R. Evaluation of the prothrombin fragment 1.2 in patients with coronavirus disease 2019 (COVID-19). Am. J. Hematol., 2020, 95(12), 1479-1485.
[http://dx.doi.org/10.1002/ajh.25962] [PMID: 32780525]
[71]
Sheng, L.; Wang, X.; Tang, N.; Meng, F.; Huang, L.; Li, D. Clinical characteristics of moderate and severe cases with COVID-19 in Wuhan, China: a retrospective study. Clin. Exp. Med., 2021, 21(1), 35-39.
[http://dx.doi.org/10.1007/s10238-020-00662-z] [PMID: 32949308]
[72]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[73]
Tang, N.; Bai, H.; Xiong, D.; Sun, Z. Specific coagulation markers may provide more therapeutic targets in COVID-19 patients receiving prophylactic anticoagulant. J. Thromb. Haemost., 2020, 18(9), 2428-2430.
[http://dx.doi.org/10.1111/jth.14988] [PMID: 32619329]
[74]
Bonaventura, A.; Vecchie, A.; Wang, T.S.; Lee, E.; Cremer, P.C.; Carey, B.; Rajendram, P.; Hudock, K.M.; Korbee, L.; Van Tassell, B.W.; Dagna, L.; Abbate, A. Targeting GM-CSF in COVID-19 Pneumonia: Rationale and strategies. Front. Immunol., 2020, 11, 1625.
[http://dx.doi.org/10.3389/fimmu.2020.01625] [PMID: 32719685]
[75]
Wong, C.K.; Lam, C.W.; Wu, A.K.; Ip, W.K.; Lee, N.L.; Chan, I.H.; Lit, L.C.; Hui, D.S.; Chan, M.H.; Chung, S.S.; Sung, J.J. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol., 2004, 136(1), 95-103.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02415.x] [PMID: 15030519]
[76]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[77]
Ng, K.W.; Attig, J.; Bolland, W.; Young, G.R.; Major, J.; Wrobel, A.G.; Gamblin, S.; Wack, A.; Kassiotis, G. Tissue-specific and interferon-inducible expression of nonfunctional ACE2 through endogenous retroelement co-option. Nat. Genet., 2020, 52(12), 1294-1302.
[http://dx.doi.org/10.1038/s41588-020-00732-8] [PMID: 33077915]
[78]
Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; Anheim, M.; Meziani, F. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med., 2020.
[http://dx.doi.org/10.1056/NEJMc2008597]
[79]
Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Pere, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; Breillat, P.; Carlier, N.; Gauzit, R.; Morbieu, C.; Pène, F.; Marin, N.; Roche, N.; Szwebel, T.A.; Merkling, S.H.; Treluyer, J.M.; Veyer, D.; Mouthon, L.; Blanc, C.; Tharaux, P.L.; Rozenberg, F.; Fischer, A.; Duffy, D.; Rieux-Laucat, F.; Kerneis, S.; Terrier, B. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020, 369(6504), 718-724.
[http://dx.doi.org/10.1126/science.abc6027] [PMID: 32661059]
[80]
Wang, Z.; Pan, H.; Jiang, B. Type I IFN deficiency: An immunological characteristic of severe COVID-19 patients. Signal Transduct. Target. Ther., 2020, 5(1), 198.
[http://dx.doi.org/10.1038/s41392-020-00306-4] [PMID: 32929061]
[81]
Lei, X.; Dong, X.; Ma, R.; Wang, W.; Xiao, X.; Tian, Z.; Wang, C.; Wang, Y.; Li, L.; Ren, L.; Guo, F.; Zhao, Z.; Zhou, Z.; Xiang, Z.; Wang, J. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun., 2020, 11(1), 3810.
[http://dx.doi.org/10.1038/s41467-020-17665-9] [PMID: 32733001]
[82]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.; Chan, J.F.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[83]
Chen, D.Y.; Khan, N.; Close, B.J.; Goel, R.K.; Blum, B.; Tavares, A.H.; Kenney, D.; Conway, H.L.; Ewoldt, J.K.; Kapell, S.; Chitalia, V.C.; Crossland, N.A.; Chen, C.S.; Kotton, D.N.; Baker, S.C.; Connor, J.H.; Douam, F.; Emili, A.; Saeed, M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. bioRxiv, 2020, 2020.10.27.358259.
[PMID: 33140044]
[84]
Combs, C.K.; Karlo, J.C.; Kao, S.C.; Landreth, G.E. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci., 2001, 21(4), 1179-1188.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01179.2001] [PMID: 11160388]
[85]
Chong, Z.Z.; Kang, J.; Li, F.; Maiese, K. mGluRI targets microglial activation and selectively prevents neuronal cell engulfment through Akt and caspase dependent pathways. Curr. Neurovasc. Res., 2005, 2(3), 197-211.
[http://dx.doi.org/10.2174/1567202054368317] [PMID: 16181114]
[86]
Chong, Z.Z.; Li, F.; Maiese, K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol., 2005, 75(3), 207-246.
[http://dx.doi.org/10.1016/j.pneurobio.2005.02.004] [PMID: 15882775]
[87]
Lavi, E.; Cong, L. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp. Mol. Pathol., 2020, 115, 104474.
[http://dx.doi.org/10.1016/j.yexmp.2020.104474] [PMID: 32454103]
[88]
Swanson, P.A., II; McGavern, D.B. Viral diseases of the central nervous system. Curr. Opin. Virol., 2015, 11, 44-54.
[http://dx.doi.org/10.1016/j.coviro.2014.12.009] [PMID: 25681709]
[89]
Tjalkens, R.B.; Popichak, K.A.; Kirkley, K.A. Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv. Neurobiol., 2017, 18, 159-181.
[http://dx.doi.org/10.1007/978-3-319-60189-2_8] [PMID: 28889267]
[90]
Shang, Y.C.; Chong, Z.Z.; Wang, S.; Maiese, K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr. Neurovasc. Res., 2012, 9(4), 239-249.
[http://dx.doi.org/10.2174/156720212803530618] [PMID: 22873724]
[91]
Cui, C.; Xu, P.; Li, G.; Qiao, Y.; Han, W.; Geng, C.; Liao, D.; Yang, M.; Chen, D.; Jiang, P. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol., 2019, 26, 101295.
[http://dx.doi.org/10.1016/j.redox.2019.101295] [PMID: 31421410]
[92]
Chatterjee, D.; Biswas, K.; Nag, S.; Ramachandra, S.G.; Das Sarma, J. Microglia play a major role in direct viral-induced demyelination. Clin. Dev. Immunol., 2013, 2013, 510396.
[http://dx.doi.org/10.1155/2013/510396] [PMID: 23864878]
[93]
Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[94]
Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-like receptors in the vascular system: Sensing the dangers within. Pharmacol. Rev., 2016, 68(1), 142-167.
[http://dx.doi.org/10.1124/pr.114.010090] [PMID: 26721702]
[95]
Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol., 2001, 2(8), 675-680.
[http://dx.doi.org/10.1038/90609] [PMID: 11477402]
[96]
Costa, A.G.; Ramasawmy, R.; Val, F.F.A.; Ibiapina, H.N.S.; Oliveira, A.C.; Tarragô, A.M.; Garcia, N.P.; Heckmann, M.I.O.; Monteiro, W.M.; Malheiro, A.; Lacerda, M.V.G. Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria: TLR polymorphisms influence cytokine productions in malaria-vivax. Cytokine, 2018, 110, 374-380.
[http://dx.doi.org/10.1016/j.cyto.2018.04.008] [PMID: 29656958]
[97]
Vogelpoel, L.T.; Hansen, I.S.; Visser, M.W.; Nagelkerke, S.Q.; Kuijpers, T.W.; Kapsenberg, M.L.; de Jong, E.C.; den Dunnen, J. FcγRIIa cross-talk with TLRs, IL-1R, and IFNγR selectively modulates cytokine production in human myeloid cells. Immunobiology, 2015, 220(2), 193-199.
[http://dx.doi.org/10.1016/j.imbio.2014.07.016] [PMID: 25108563]
[98]
Sohn, K.M.; Lee, S.G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; Chung, C.; Park, C.; Kim, Y.S.; Jo, E.K. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci., 2020, 35(38), e343.
[http://dx.doi.org/10.3346/jkms.2020.35.e343] [PMID: 32989935]
[99]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[100]
Eguchi, S.; Kawai, T.; Scalia, R.; Rizzo, V. Understanding angiotensin II type 1 receptor signaling in vascular pathophysiology. Hypertension, 2018, 71(5), 804-810.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10266] [PMID: 29581215]
[101]
Nataraj, C.; Oliverio, M.I.; Mannon, R.B.; Mannon, P.J.; Audoly, L.P.; Amuchastegui, C.S.; Ruiz, P.; Smithies, O.; Coffman, T.M. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Invest., 1999, 104(12), 1693-1701.
[http://dx.doi.org/10.1172/JCI7451] [PMID: 10606623]
[102]
Ji, Y.; Liu, J.; Wang, Z.; Liu, N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell. Physiol. Biochem., 2009, 23(4-6), 265-276.
[http://dx.doi.org/10.1159/000218173] [PMID: 19471094]
[103]
Wu, J.; Yang, X.; Zhang, Y.F.; Zhou, S.F.; Zhang, R.; Dong, X.Q.; Fan, J.J.; Liu, M.; Yu, X.Q. Angiotensin II upregulates Toll-like receptor 4 and enhances lipopolysaccharide-induced CD40 expression in rat peritoneal mesothelial cells. Inflamm. Res., 2009, 58(8), 473-482.
[http://dx.doi.org/10.1007/s00011-009-0012-z] [PMID: 19271152]
[104]
Youm, Y.H.; Adijiang, A.; Vandanmagsar, B.; Burk, D.; Ravussin, A.; Dixit, V.D. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology, 2011, 152(11), 4039-4045.
[http://dx.doi.org/10.1210/en.2011-1326] [PMID: 21862613]
[105]
He, Y.; Hara, H.; Núñez, G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 2016, 41(12), 1012-1021.
[http://dx.doi.org/10.1016/j.tibs.2016.09.002] [PMID: 27669650]
[106]
Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol., 2015, 4, 296-307.
[http://dx.doi.org/10.1016/j.redox.2015.01.008] [PMID: 25625584]
[107]
Tomani, J.C.D.; Kagisha, V.; Tchinda, A.T.; Jansen, O.; Ledoux, A.; Vanhamme, L.; Frederich, M.; Muganga, R.; Souopgui, J. The inhibition of nlrp3 inflammasome and IL-6 production by Hibiscus noldeae Baker f. derived constituents provides a link to its anti-inflammatory therapeutic potentials. Molecules, in press
[PMID: 33066442]
[108]
Zhu, F.; Willette-Brown, J.; Zhang, J.; Ferre, E.M.N.; Sun, Z.; Wu, X.; Lionakis, M.S.; Hu, Y. NLRP3 inhibition ameliorates severe cutaneous autoimmune manifestations in a mouse model of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like disease. J. Invest. Dermatol., in press
[PMID: 33188780]
[109]
Ahmed, S.; Kwatra, M.; Ranjan Panda, S.; Murty, U.S.N.; Naidu, V.G.M. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav. Immun., 2021, 91, 142-158.
[http://dx.doi.org/10.1016/j.bbi.2020.09.017] [PMID: 32971182]
[110]
van den Berg, D.F.; Te Velde, A.A. Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol., 2020, 11, 1580.
[http://dx.doi.org/10.3389/fimmu.2020.01580] [PMID: 32670297]
[111]
Borges, L.; Pithon-Curi, T.C.; Curi, R.; Hatanaka, E. COVID-19 and neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps. Mediators Inflamm., 2020, 2020, 8829674.
[http://dx.doi.org/10.1155/2020/8829674] [PMID: 33343232]
[112]
Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci., 2020, 11(11), 1555-1562.
[http://dx.doi.org/10.1021/acschemneuro.0c00210] [PMID: 32379417]
[113]
Butowt, R.; Bilinska, K.; Von Bartheld, C.S. Chemosensory dysfunction in COVID-19: Integration of genetic and epidemiological data points to D614G spike protein variant as a contributing factor. ACS Chem. Neurosci., 2020, 11(20), 3180-3184.
[http://dx.doi.org/10.1021/acschemneuro.0c00596] [PMID: 32997488]
[114]
Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; Lehmann, M.; Hassan, O.; Aschman, T.; Schumann, E.; Chua, R.L.; Conrad, C.; Eils, R.; Stenzel, W.; Windgassen, M.; Rößler, L.; Goebel, H.H.; Gelderblom, H.R.; Martin, H.; Nitsche, A.; Schulz-Schaeffer, W.J.; Hakroush, S.; Winkler, M.S.; Tampe, B.; Scheibe, F.; Körtvelyessy, P.; Reinhold, D.; Siegmund, B.; Kühl, A.A.; Elezkurtaj, S.; Horst, D.; Oesterhelweg, L.; Tsokos, M.; Ingold-Heppner, B.; Stadelmann, C.; Drosten, C.; Corman, V.M.; Radbruch, H.; Heppner, F.L. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci., 2021, 24(2), 168-175.
[http://dx.doi.org/10.1038/s41593-020-00758-5] [PMID: 33257876]
[115]
Torabi, A.; Mohammadbagheri, E.; Akbari Dilmaghani, N.; Bayat, A.H.; Fathi, M.; Vakili, K.; Alizadeh, R.; Rezaeimirghaed, O.; Hajiesmaeili, M.; Ramezani, M.; Simani, L.; Aliaghaei, A. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia. ACS Chem. Neurosci., 2020, 11(13), 1909-1913.
[http://dx.doi.org/10.1021/acschemneuro.0c00249] [PMID: 32525657]
[116]
Shigemura, N.; Takai, S.; Hirose, F.; Yoshida, R.; Sanematsu, K.; Ninomiya, Y. Expression of renin-angiotensin system components in the taste organ of mice. Nutrients, 2019, 11(9), 2251.
[http://dx.doi.org/10.3390/nu11092251] [PMID: 31546789]
[117]
Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 2020, 12(1), 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[118]
Bigiani, A. Gustatory dysfunctions in COVID-19 patients: Possible involvement of taste renin-angiotensin system (RAS). Eur. Arch. Otorhinolaryngol., 2020, 277(8), 2395.
[http://dx.doi.org/10.1007/s00405-020-06054-z] [PMID: 32435852]
[119]
Wang, H.; Zhou, M.; Brand, J.; Huang, L. Inflammation and taste disorders: Mechanisms in taste buds. Ann. N. Y. Acad. Sci., 2009, 1170, 596-603.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04480.x] [PMID: 19686199]
[120]
Lechien, J.R.; Hsieh, J.W.; Ayad, T.; Fakhry, N.; Hans, S.; Chiesa-Estomba, C.M.; Saussez, S. Gustatory dysfunctions in COVID-19. Eur. Arch. Otorhinolaryngol., 2020, 277(8), 2397-2398.
[http://dx.doi.org/10.1007/s00405-020-06154-w] [PMID: 32577904]
[121]
Abdelnour, L.; Eltahir Abdalla, M.; Babiker, S. COVID 19 infection presenting as motor peripheral neuropathy. J. Formos. Med. Assoc., 2020, 119(6), 1119-1120.
[http://dx.doi.org/10.1016/j.jfma.2020.04.024] [PMID: 32354690]
[122]
Bureau, B.L.; Obeidat, A.; Dhariwal, M.S.; Jha, P. Peripheral neuropathy as a complication of SARS-Cov-2. Cureus, 2020, 12(11), e11452.
[PMID: 33214969]
[123]
Lima, M.A.; Silva, M.T.T.; Soares, C.N.; Coutinho, R.; Oliveira, H.S.; Afonso, L.; Espíndola, O.; Leite, A.C.; Araujo, A. Peripheral facial nerve palsy associated with COVID-19. J. Neurovirol., 2020, 26(6), 941-944.
[http://dx.doi.org/10.1007/s13365-020-00912-6] [PMID: 33006717]
[124]
Zhang, W.; Xu, L.; Luo, T.; Wu, F.; Zhao, B.; Li, X. The etiology of Bell’s palsy: A review. J. Neurol., 2020, 267(7), 1896-1905.
[http://dx.doi.org/10.1007/s00415-019-09282-4] [PMID: 30923934]
[125]
Ribeiro, B.N.F.; Marchiori, E. Facial palsy as a neurological complication of SARS-CoV-2. Arq. Neuropsiquiatr., 2020, 78(10), 667.
[http://dx.doi.org/10.1590/0004-282x20200127] [PMID: 33111851]
[126]
Koc, G.; Odabasi, Z.; Tan, E. Myasthenic syndrome caused by hydroxychloroquine used for COVID-19 prophylaxis. J. Clin. Neuromuscul. Dis., 2020, 22(1), 60-62.
[http://dx.doi.org/10.1097/CND.0000000000000316] [PMID: 32833728]
[127]
Zhao, H.; Shen, D.; Zhou, H.; Liu, J.; Chen, S. Guillain-Barre syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol., 2020, 19(5), 383-384.
[http://dx.doi.org/10.1016/S1474-4422(20)30109-5] [PMID: 32246917]
[128]
Reyes-Bueno, J.A.; García-Trujillo, L.; Urbaneja, P.; Ciano-Petersen, N.L.; Postigo-Pozo, M.J.; Martínez-Tomás, C.; Serrano-Castro, P.J. Miller-Fisher syndrome after SARS-CoV-2 infection. Eur. J. Neurol., 2020, 27(9), 1759-1761.
[http://dx.doi.org/10.1111/ene.14383] [PMID: 32503084]
[129]
Zoghi, A.; Ramezani, M.; Roozbeh, M.; Darazam, I.A.; Sahraian, M.A. A case of possible atypical demyelinating event of the central nervous system following COVID-19. Mult. Scler. Relat. Disord., 2020, 44, 102324.
[http://dx.doi.org/10.1016/j.msard.2020.102324] [PMID: 32615528]
[130]
Sedaghat, Z.; Karimi, N. Guillain Barre syndrome associated with COVID-19 infection: A case report. J. Clin. Neurosci., 2020, 76, 233-235.
[http://dx.doi.org/10.1016/j.jocn.2020.04.062] [PMID: 32312628]
[131]
Lucchese, G.; Flöel, A. SARS-CoV-2 and Guillain-Barre syndrome: Molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell stress chaperones, 2020, 25(5), 731-735.
[http://dx.doi.org/10.1007/s12192-020-01145-6] [PMID: 32729001]
[132]
Palao, M.; Fernández-Díaz, E.; Gracia-Gil, J.; Romero-Sánchez, C.M.; Díaz-Maroto, I.; Segura, T. Multiple sclerosis following SARS-CoV-2 infection. Mult. Scler. Relat. Disord., 2020, 45, 102377.
[http://dx.doi.org/10.1016/j.msard.2020.102377] [PMID: 32698095]
[133]
Moore, L.; Ghannam, M.; Manousakis, G. A first presentation of multiple sclerosis with concurrent COVID-19 infection. eNeurologicalSci, 2021, 22, 100299.
[http://dx.doi.org/10.1016/j.ensci.2020.100299] [PMID: 33313429]
[134]
Domingues, R.B.; Mendes-Correa, M.C.; de Moura Leite, F.B.V.; Sabino, E.C.; Salarini, D.Z.; Claro, I.; Santos, D.W.; de Jesus, J.G.; Ferreira, N.E.; Romano, C.M.; Soares, C.A.S. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J. Neurol., 2020, 267(11), 3154-3156.
[http://dx.doi.org/10.1007/s00415-020-09996-w] [PMID: 32564153]
[135]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[136]
Zanin, L.; Saraceno, G.; Panciani, P.P.; Renisi, G.; Signorini, L.; Migliorati, K.; Fontanella, M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. (Wien), 2020, 162(7), 1491-1494.
[http://dx.doi.org/10.1007/s00701-020-04374-x] [PMID: 32367205]
[137]
Mohammadi, S.; Moosaie, F.; Aarabi, M.H. Understanding the immunologic characteristics of neurologic manifestations of SARS-CoV-2 and potential immunological mechanisms. Mol. Neurobiol., 2020, 57(12), 5263-5275.
[http://dx.doi.org/10.1007/s12035-020-02094-y] [PMID: 32869183]
[138]
Pouga, L. Encephalitic syndrome and anosmia in COVID-19: Do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases. J. Med. Virol., 2021, 93(1), 550-558.
[http://dx.doi.org/10.1002/jmv.26309] [PMID: 32672843]
[139]
Guilmot, A.; Maldonado Slootjes, S.; Sellimi, A.; Bronchain, M.; Hanseeuw, B.; Belkhir, L.; Yombi, J.C.; De Greef, J.; Pothen, L.; Yildiz, H.; Duprez, T.; Fillee, C.; Anantharajah, A.; Capes, A.; Hantson, P.; Jacquerye, P.; Raymackers, J.M.; London, F.; El Sankari, S.; Ivanoiu, A.; Maggi, P.; van Pesch, V. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. J. Neurol., 2021, 268(3), 751-757.
[http://dx.doi.org/10.1007/s00415-020-10108-x] [PMID: 32734353]
[140]
Barrios-Lopez, J.M.; Rego-García, I.; Muñoz Martínez, C.; Romero-Fábrega, J.C.; Rivero Rodríguez, M.; Ruiz Gimenez, J.A.; Escamilla-Sevilla, F.; Mínguez-Castellanos, A.; Fernández Perez, M.D. Ischaemic stroke and SARS-CoV-2 infection: A causal or incidental association? Neurologia, 2020, 35(5), 295-302.
[http://dx.doi.org/10.1016/j.nrleng.2020.05.008] [PMID: 32448674]
[141]
Patel, S.D.; Kollar, R.; Troy, P.; Song, X.; Khaled, M.; Parra, A.; Pervez, M. Malignant cerebral ischemia in A COVID-19 infected patient: Case review and histopathological findings. J. Stroke Cerebrovasc. Dis., 2020, 29(11), 105231.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105231] [PMID: 33066910]
[142]
Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of coronavirus disease 2019. Crit. Care Med., 2020, 48(9), 1358-1364.
[PMID: 32467443]
[143]
Dogra, S.; Jain, R.; Cao, M.; Bilaloglu, S.; Zagzag, D.; Hochman, S.; Lewis, A.; Melmed, K.; Hochman, K.; Horwitz, L.; Galetta, S.; Berger, J. Hemorrhagic stroke and anticoagulation in COVID-19. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104984.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104984] [PMID: 32689588]
[144]
Wang, H.; Tang, X.; Fan, H.; Luo, Y.; Song, Y.; Xu, Y.; Chen, Y. Potential mechanisms of hemorrhagic stroke in elderly COVID-19 patients. Aging (Albany NY), 2020, 12(11), 10022-10034.
[http://dx.doi.org/10.18632/aging.103335] [PMID: 32527987]
[145]
Ciulla, M.M. SARS-CoV-2 downregulation of ACE2 and pleiotropic effects of ACEIs/ARBs. Hypertens. Res., 2020, 43(9), 985-986.
[http://dx.doi.org/10.1038/s41440-020-0488-z] [PMID: 32523133]
[146]
Ciria Villar, S.; Día Sahún, J.L. COVID-19 quarantine-related psychotic symptoms. Rev. Colomb. Psiquiatr., 2021, 50(1), 39-42.
[http://dx.doi.org/10.1016/j.rcp.2020.10.009] [PMID: 33648695]
[147]
Haddad, P.M.; Al Abdulla, M.; Latoo, J.; Iqbal, Y. Brief psychotic disorder associated with quarantine and mild COVID-19. BMJ Case Rep., 2020, 13(12), e240088.
[http://dx.doi.org/10.1136/bcr-2020-240088] [PMID: 33328211]
[148]
D’Agostino, A.; Lombardo, G.; Favero, V.; Signoriello, A.; Bressan, A.; Lonardi, F.; Nocini, R.; Trevisiol, L. Complications related to zygomatic implants placement: A retrospective evaluation with 5 years follow-up. J. Craniomaxillofac. Surg., 2021, S1010-5182(21)00033-0.
[PMID: 33581959]
[149]
Achar, A.; Ghosh, C. COVID-19-associated neurological disorders: The potential route of CNS invasion and blood-brain relevance. Cells, 2020, 9(11), E2360.
[http://dx.doi.org/10.3390/cells9112360] [PMID: 33120941]
[150]
Liu, X.; Zhang, M.; He, L.; Li, Y.P.; Kang, Y.K. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst. Rev., 2006, (1), CD004882.
[http://dx.doi.org/10.1002/14651858.CD004882.pub2] [PMID: 16437501]
[151]
Finney, L. J.; Glanville, N.; Farne, H.; Aniscenko, J.; Fenwick, P.; Kemp, S. V.; Trujillo-Torralbo, M. B.; Loo, S. L.; Calderazzo, M. A.; Wedzicha, J. A.; Mallia, P.; Bartlett, N. W.; Johnston, S. L.; Singanayagam, A. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. J Allergy Clin Immunol, 2021, 147(2), 510-519e515.
[152]
Kitayama, T.; Kitamura, H.; Hagiwara, E.; Higa, K.; Okabayashi, H.; Oda, T.; Baba, T.; Komatsu, S.; Iwasawa, T.; Ogura, T. COVID-19 pneumonia resembling an acute exacerbation of interstitial pneumonia. Intern. Med., 2020, 59(24), 3207-3211.
[http://dx.doi.org/10.2169/internalmedicine.5630-20] [PMID: 33087668]
[153]
Urano, A.; Kasai, H.; Murai, Y.; Ikeda, H.; Urushibara, T. Short-term corticosteroid therapy for early exacerbation of COVID-19 pneumonia: A case report. Am. J. Case Rep., 2020, 21, e924476.
[http://dx.doi.org/10.12659/AJCR.924476] [PMID: 32796809]
[154]
Narain, S.; Stefanov, D.G.; Chau, A.S.; Weber, A.G.; Marder, G.; Kaplan, B.; Malhotra, P.; Bloom, O.; Liu, A.; Lesser, M.L.; Hajizadeh, N.; Northwell, C-R.C. Comparative survival analysis of immunomodulatory therapy for coronavirus disease 2019 cytokine storm. Chest, 2021, 159(3), 933-948.
[http://dx.doi.org/10.1016/j.chest.2020.09.275] [PMID: 33075378]
[155]
Arabi, Y.M.; Shalhoub, S.; Mandourah, Y.; Al-Hameed, F.; Al-Omari, A.; Al Qasim, E.; Jose, J.; Alraddadi, B.; Almotairi, A.; Al Khatib, K.; Abdulmomen, A.; Qushmaq, I.; Sindi, A.A.; Mady, A.; Solaiman, O.; Al-Raddadi, R.; Maghrabi, K.; Ragab, A.; Al Mekhlafi, G.A.; Balkhy, H.H.; Al Harthy, A.; Kharaba, A.; Gramish, J.A.; Al-Aithan, A.M.; Al-Dawood, A.; Merson, L.; Hayden, F.G.; Fowler, R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin. Infect. Dis., 2020, 70(9), 1837-1844.
[http://dx.doi.org/10.1093/cid/ciz544] [PMID: 31925415]
[156]
Arabi, Y.M.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Almekhlafi, G.A.; Hussein, M.A.; Jose, J.; Pinto, R.; Al-Omari, A.; Kharaba, A.; Almotairi, A.; Al Khatib, K.; Alraddadi, B.; Shalhoub, S.; Abdulmomen, A.; Qushmaq, I.; Mady, A.; Solaiman, O.; Al-Aithan, A.M.; Al-Raddadi, R.; Ragab, A.; Balkhy, H.H.; Al Harthy, A.; Deeb, A.M.; Al Mutairi, H.; Al-Dawood, A.; Merson, L.; Hayden, F.G.; Fowler, R.A. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am. J. Respir. Crit. Care Med., 2018, 197(6), 757-767.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[157]
Singanayagam, A.; Glanville, N.; Girkin, J.L.; Ching, Y.M.; Marcellini, A.; Porter, J.D.; Toussaint, M.; Walton, R.P.; Finney, L.J.; Aniscenko, J.; Zhu, J.; Trujillo-Torralbo, M.B.; Calderazzo, M.A.; Grainge, C.; Loo, S.L.; Veerati, P.C.; Pathinayake, P.S.; Nichol, K.S.; Reid, A.T.; James, P.L.; Solari, R.; Wark, P.A.B.; Knight, D.A.; Moffatt, M.F.; Cookson, W.O.; Edwards, M.R.; Mallia, P.; Bartlett, N.W.; Johnston, S.L. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat. Commun., 2018, 9(1), 2229.
[http://dx.doi.org/10.1038/s41467-018-04574-1] [PMID: 29884817]
[158]
Bartoletti, M.; Marconi, L.; Scudeller, L.; Pancaldi, L.; Tedeschi, S.; Giannella, M.; Rinaldi, M.; Bussini, L.; Valentini, I.; Ferravante, A.F.; Potalivo, A.; Marchionni, E.; Fornaro, G.; Pascale, R.; Pasquini, Z.; Puoti, M.; Merli, M.; Barchiesi, F.; Volpato, F.; Rubin, A.; Saracino, A.; Tonetti, T.; Gaibani, P.; Ranieri, V.M.; Viale, P.; Cristini, F.; Group, P.S. Efficacy of corticosteroid treatment for hospitalized patients with severe COVID-19: A multicentre study. Clin. Microbiol. Infect., 2021, 27(1), 105-111.
[http://dx.doi.org/10.1016/j.cmi.2020.09.014] [PMID: 32971254]
[159]
Liu, J.; Zhang, S.; Dong, X.; Li, Z.; Xu, Q.; Feng, H.; Cai, J.; Huang, S.; Guo, J.; Zhang, L.; Chen, Y.; Zhu, W.; Du, H.; Liu, Y.; Wang, T.; Chen, L.; Wen, Z.; Annane, D.; Qu, J.; Chen, D. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J. Clin. Invest., 2020, 130(12), 6417-6428.
[http://dx.doi.org/10.1172/JCI140617] [PMID: 33141117]
[160]
Liu, Y.; Yan, L.M.; Wan, L.; Xiang, T.X.; Le, A.; Liu, J.M.; Peiris, M.; Poon, L.L.M.; Zhang, W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis., 2020, 20(6), 656-657.
[http://dx.doi.org/10.1016/S1473-3099(20)30232-2] [PMID: 32199493]
[161]
Goursaud, S.; Descamps, R.; Daubin, C.; du Cheyron, D.; Valette, X. Corticosteroid use in selected patients with severe acute respiratory distress syndrome related to COVID-19. J. Infect., 2020, 81(2), e89-e90.
[http://dx.doi.org/10.1016/j.jinf.2020.05.023] [PMID: 32417314]
[162]
Mantlo, E.; Bukreyeva, N.; Maruyama, J.; Paessler, S.; Huang, C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res., 2020, 179, 104811.
[http://dx.doi.org/10.1016/j.antiviral.2020.104811] [PMID: 32360182]
[163]
Lokugamage, K.G.; Hage, A.; de Vries, M.; Valero-Jimenez, A.M.; Schindewolf, C.; Dittmann, M.; Rajsbaum, R.; Menachery, V.D. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv, 2020, 2020.03.07.982264.
[PMID: 32511335]
[164]
Dastan, F.; Nadji, S.A.; Saffaei, A.; Marjani, M.; Moniri, A.; Jamaati, H.; Hashemian, S.M.; Baghaei, P.; Abedini, A.; Varahram, M.; Yousefian, S.; Tabarsi, P. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int. Immunopharmacol., 2020, 85, 106688.
[http://dx.doi.org/10.1016/j.intimp.2020.106688] [PMID: 32544867]
[165]
Jalkanen, J.; Hollmen, M.; Jalkanen, S. Interferon beta-1a for COVID-19: Critical importance of the administration route. Crit. Care, 2020, 24(1), 335.
[http://dx.doi.org/10.1186/s13054-020-03048-5] [PMID: 32532353]
[166]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[167]
Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.S.; Xiang, X.; Wang, X.; Wang, Z.H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferon-α2b Treatment for COVID-19. Front. Immunol., 2020, 11, 1061.
[http://dx.doi.org/10.3389/fimmu.2020.01061] [PMID: 32574262]
[168]
Xu, P.; Huang, J.; Fan, Z.; Huang, W.; Qi, M.; Lin, X.; Song, W.; Yi, L. Arbidol/IFN-α2b therapy for patients with corona virus disease 2019: A retrospective multicenter cohort study. Microbes Infect., 2020, 22(4-5), 200-205.
[http://dx.doi.org/10.1016/j.micinf.2020.05.012] [PMID: 32445881]
[169]
Monk, P.D.; Marsden, R.J.; Tear, V.J.; Brookes, J.; Batten, T.N.; Mankowski, M.; Gabbay, F.J.; Davies, D.E.; Holgate, S.T.; Ho, L.P.; Clark, T.; Djukanovic, R.; Wilkinson, T.M.A.; Inhaled Interferon Beta, C-S.G. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med., 2021, 9(2), 196-206.
[http://dx.doi.org/10.1016/S2213-2600(20)30511-7] [PMID: 33189161]
[170]
Khamis, F.; Al Naabi, H.; Al Lawati, A.; Ambusaidi, Z.; Al Sharji, M.; Al Barwani, U.; Pandak, N.; Al Balushi, Z.; Al Bahrani, M.; Al Salmi, I.; Al-Zakwani, I. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int. J. Infect. Dis., 2021, 102, 538-543.
[http://dx.doi.org/10.1016/j.ijid.2020.11.008] [PMID: 33181328]
[171]
Prokunina-Olsson, L.; Alphonse, N.; Dickenson, R.E.; Durbin, J.E.; Glenn, J.S.; Hartmann, R.; Kotenko, S.V.; Lazear, H.M.; O’Brien, T.R.; Odendall, C.; Onabajo, O.O.; Piontkivska, H.; Santer, D.M.; Reich, N.C.; Wack, A.; Zanoni, I. COVID-19 and emerging viral infections: The case for interferon lambda. J. Exp. Med., 2020, 217(5), e20200653.
[http://dx.doi.org/10.1084/jem.20200653] [PMID: 32289152]
[172]
Ye, L.; Schnepf, D.; Becker, J.; Ebert, K.; Tanriver, Y.; Bernasconi, V.; Gad, H.H.; Hartmann, R.; Lycke, N.; Staeheli, P. Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nat. Immunol., 2019, 20(5), 593-601.
[http://dx.doi.org/10.1038/s41590-019-0345-x] [PMID: 30886417]
[173]
Sommereyns, C.; Paul, S.; Staeheli, P.; Michiels, T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog., 2008, 4(3), e1000017.
[http://dx.doi.org/10.1371/journal.ppat.1000017] [PMID: 18369468]
[174]
Roohi, A.; Soroosh, P. May interferon λ be a novel therapeutic approach against COVID-19? Med. Hypotheses, 2021, 146, 110351.
[http://dx.doi.org/10.1016/j.mehy.2020.110351] [PMID: 33129578]
[175]
D’Alessandro, A.; Thomas, T.; Dzieciatkowska, M.; Hill, R.C.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hod, E.A.; Spitalnik, S.L.; Hansen, K.C. Serum proteomics in COVID-19 patients: Altered coagulation and complement status as a function of IL-6 level. J. Proteome Res., 2020, 19(11), 4417-4427.
[http://dx.doi.org/10.1021/acs.jproteome.0c00365] [PMID: 32786691]
[176]
Mutlu, G.M.; Green, D.; Bellmeyer, A.; Baker, C.M.; Burgess, Z.; Rajamannan, N.; Christman, J.W.; Foiles, N.; Kamp, D.W.; Ghio, A.J.; Chandel, N.S.; Dean, D.A.; Sznajder, J.I.; Budinger, G.R. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J. Clin. Invest., 2007, 117(10), 2952-2961.
[http://dx.doi.org/10.1172/JCI30639] [PMID: 17885684]
[177]
Zhang, J.; Hao, Y.; Ou, W.; Ming, F.; Liang, G.; Qian, Y.; Cai, Q.; Dong, S.; Hu, S.; Wang, W.; Wei, S. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: A cohort study. J. Transl. Med., 2020, 18(1), 406.
[http://dx.doi.org/10.1186/s12967-020-02571-x] [PMID: 33121497]
[178]
Nasa, P.; Singh, A.; Upadhyay, S.; Bagadia, S.; Polumuru, S.; Shrivastava, P.K.; Sankar, R.; Vijayan, L.; Soliman, M.A.; Ali, A.; Patidar, S. Tocilizumab use in COVID-19 cytokine-release syndrome: Retrospective study of two centers. Indian J. Crit. Care Med., 2020, 24(9), 771-776.
[http://dx.doi.org/10.5005/jp-journals-10071-23566] [PMID: 33132558]
[179]
Boregowda, U.; Perisetti, A.; Nanjappa, A.; Gajendran, M.; Kutti Sridharan, G.; Goyal, H. Addition of Tocilizumab to the standard of care reduces mortality in severe COVID-19: A Systematic review and meta-analysis. Front. Med. (Lausanne), 2020, 7, 586221.
[http://dx.doi.org/10.3389/fmed.2020.586221] [PMID: 33123544]
[180]
Moiseev, S.; Avdeev, S.; Tao, E.; Brovko, M.; Bulanov, N.; Zykova, A.; Akulkina, L.; Smirnova, I.; Fomin, V. Neither earlier nor late tocilizumab improved outcomes in the intensive care unit patients with COVID-19 in a retrospective cohort study. Ann. Rheum. Dis., 2020, 2020, 219265.
[http://dx.doi.org/10.1136/annrheumdis-2020-219265] [PMID: 33127662]
[181]
Ramiro, S.; Landewe, R.B.M.; Mostard, R. Response to ‘Neither earlier not late tocilizumab improved outcomes in the intensive care unit patients with COVID-19 in a retrospective cohort study’ by Moiseev et al. Ann. Rheum. Dis., In press
[182]
Gorgolas Hernandez-Mora, M.; Cabello , U.A.; Prieto-Perez, L.; Villar, A.F.; Alvarez, A.B.; Rodriguez, N.M.J.; Carrillo, A.I.; Fernandez, O.I.; Al-Hayani, A.W.M.; Carballosa, P.; Calpena, M.S.; Ezzine, F.; Castellanos, G.M.; Naya, A.; Lopez De Las, H.M.; Rodriguez, G.M.J.; Cordero, G.A.; Broncano, L.A.; Macias, V.A.; Martin, G.M.; Becares, M.J.; Fernandez, R.R.; Piris, P.M.A.; Fortes, A.J.; Sanchez, P.O.; Romero, B.F.; Heili-Frades, S.; Peces-Barba, R.G. Compassionate use of tocilizumab in severe SARS-CoV2 pneumonia. Int. J. Infect. Dis., 2021, 02, 303-309.
[183]
Conrozier, T.; Lohse, A.; Balblanc, J.C.; Dussert, P.; Royer, P.Y.; Bossert, M.; Bozgan, A.M.; Gendrin, V.; Charpentier, A.; Toko, L.; Badie, J.; Mezher, C.; Roux, M.F.; Kadiane-Oussou, N.J.; Contreras, R.; Kessler, J.; Mazurier, I.; Klopfenstein, T.; Zayet, S. Biomarker variation in patients successfully treated with tocilizumab for severe coronavirus disease 2019 (COVID-19): Results of a multidisciplinary collaboration. Clin. Exp. Rheumatol., 2020, 38(4), 742-747.
[PMID: 32573419]
[184]
Toniati, P.; Piva, S.; Cattalini, M.; Garrafa, E.; Regola, F.; Castelli, F.; Franceschini, F.; Airò, P.; Bazzani, C.; Beindorf, E.A.; Berlendis, M.; Bezzi, M.; Bossini, N.; Castellano, M.; Cattaneo, S.; Cavazzana, I.; Contessi, G.B.; Crippa, M.; Delbarba, A.; De Peri, E.; Faletti, A.; Filippini, M.; Filippini, M.; Frassi, M.; Gaggiotti, M.; Gorla, R.; Lanspa, M.; Lorenzotti, S.; Marino, R.; Maroldi, R.; Metra, M.; Matteelli, A.; Modina, D.; Moioli, G.; Montani, G.; Muiesan, M.L.; Odolini, S.; Peli, E.; Pesenti, S.; Pezzoli, M.C.; Pirola, I.; Pozzi, A.; Proto, A.; Rasulo, F.A.; Renisi, G.; Ricci, C.; Rizzoni, D.; Romanelli, G.; Rossi, M.; Salvetti, M.; Scolari, F.; Signorini, L.; Taglietti, M.; Tomasoni, G.; Tomasoni, L.R.; Turla, F.; Valsecchi, A.; Zani, D.; Zuccalà, F.; Zunica, F.; Focà, E.; Andreoli, L.; Latronico, N. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun. Rev., 2020, 19(7), 102568.
[http://dx.doi.org/10.1016/j.autrev.2020.102568] [PMID: 32376398]
[185]
Nishimoto, N.; Terao, K.; Mima, T.; Nakahara, H.; Takagi, N.; Kakehi, T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood, 2008, 112(10), 3959-3964.
[http://dx.doi.org/10.1182/blood-2008-05-155846] [PMID: 18784373]
[186]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[187]
Ucciferri, C.; Auricchio, A.; Di Nicola, M.; Potere, N.; Abbate, A.; Cipollone, F.; Vecchiet, J.; Falasca, K. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol, 2020, 2(8), e457-ee458.
[http://dx.doi.org/10.1016/S2665-9913(20)30167-3] [PMID: 32835251]
[188]
Sheng, C.C.; Sahoo, D.; Dugar, S.; Prada, R.A.; Wang, T.K.M.; Abou Hassan, O.K.; Brennan, D.; Culver, D.A.; Rajendram, P.; Duggal, A.; Lincoff, A.M.; Nissen, S.E.; Menon, V.; Cremer, P.C. Canakinumab to reduce deterioration of cardiac and respiratory function in SARS-CoV-2 associated myocardial injury with heightened inflammation (canakinumab in Covid-19 cardiac injury: The three C study). Clin. Cardiol., 2020, 43(10), 1055-1063.
[http://dx.doi.org/10.1002/clc.23451] [PMID: 32830894]
[189]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. Lancet Rheumatol, 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[190]
Aouba, A.; Baldolli, A.; Geffray, L.; Verdon, R.; Bergot, E.; Martin-Silva, N.; Justet, A. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: Case series. Ann. Rheum. Dis., 2020, 79(10), 1381-1382.
[http://dx.doi.org/10.1136/annrheumdis-2020-217706] [PMID: 32376597]
[191]
Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; Bezie, Y.; Laplanche, S.; Le Berre, A.; Le Pavec, J.; Salmeron, S.; Emmerich, J.; Mourad, J.J.; Chatellier, G.; Hayem, G. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol, 2020, 2(7), e393-e400.
[http://dx.doi.org/10.1016/S2665-9913(20)30164-8] [PMID: 32835245]
[192]
Cauchois, R.; Koubi, M.; Delarbre, D.; Manet, C.; Carvelli, J.; Blasco, V.B.; Jean, R.; Fouche, L.; Bornet, C.; Pauly, V.; Mazodier, K.; Pestre, V.; Jarrot, P.A.; Dinarello, C.A.; Kaplanski, G. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl. Acad. Sci. USA, 2020, 117(32), 18951-18953.
[http://dx.doi.org/10.1073/pnas.2009017117] [PMID: 32699149]
[193]
Trpkov, C.; MacMullan, P.; Feuchter, P.; Kachra, R.; Heydari, B.; Merchant, N.; Bristow, M.S.; White, J.A. Rapid response to cytokine storm inhibition using anakinra in a patient with COVID-19 myocarditis. CJC Open, 2021, 3(2), 210-213.
[http://dx.doi.org/10.1016/j.cjco.2020.10.003] [PMID: 33073222]
[194]
Dimopoulos, G.; de Mast, Q.; Markou, N.; Theodorakopoulou, M.; Komnos, A.; Mouktaroudi, M.; Netea, M. G.; Spyridopoulos, T.; Verheggen, R. J.; Hoogerwerf, J.; Lachana, A.; van de Veerdonk, F. L.; Giamarellos-Bourboulis, E. J. Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell host microbe, 2020, 28(1), 117-123 e111.
[http://dx.doi.org/10.1016/j.chom.2020.05.007]
[195]
El Jammal, T.; Gerfaud-Valentin, M.; Sève, P.; Jamilloux, Y. Inhibition of JAK/STAT signaling in rheumatologic disorders: The expanding spectrum. Joint Bone Spine, 2020, 87(2), 119-129.
[http://dx.doi.org/10.1016/j.jbspin.2019.09.005] [PMID: 31521793]
[196]
Jamilloux, Y.; El Jammal, T.; Vuitton, L.; Gerfaud-Valentin, M.; Kerever, S.; Sève, P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun. Rev., 2019, 18(11), 102390.
[http://dx.doi.org/10.1016/j.autrev.2019.102390] [PMID: 31520803]
[197]
Seif, F.; Aazami, H.; Khoshmirsafa, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK inhibition as a new treatment strategy for patients with COVID-19. Int. Arch. Allergy Immunol., 2020, 181(6), 467-475.
[http://dx.doi.org/10.1159/000508247] [PMID: 32392562]
[198]
Stebbing, J.; Sánchez, N.G.; Falcone, M.; Youhanna, S.; Richardson, P.; Ottaviani, S.; Shen, J.X.; Sommerauer, C.; Tiseo, G.; Ghiadoni, L.; Virdis, A.; Monzani, F.; Rizos, L.R.; Forfori, F.; Avendaño Cespedes, A.; De Marco, S.; Carrozzi, L.; Lena, F.; Sánchez-Jurado, P.M.; Lacerenza, L.G.; Cesira, N.; Caldevilla, B.D.; Perrella, A.; Niccoli, L.; Mendez, L.S.; Matarrese, D.; Goletti, D.; Tan, Y.J.; Monteil, V.; Dranitsaris, G.; Cantini, F.; Farcomeni, A.; Dutta, S.; Burley, S.K.; Zhang, H.; Pistello, M.; Li, W.; Romero, M.M.; Andres Pretel, F.; Simon-Talero, R.S.; García-Molina, R.; Kutter, C.; Felce, J.H.; Nizami, Z.F.; Miklosi, A.G.; Penninger, J.M.; Menichetti, F.; Mirazimi, A.; Abizanda, P.; Lauschke, V.M. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci. Adv., 2021, 7(1), eabe4724.
[http://dx.doi.org/10.1126/sciadv.abe4724] [PMID: 33187978]
[199]
Richardson, P.J.; Ottaviani, S.; Prelle, A.; Stebbing, J.; Casalini, G.; Corbellino, M. CNS penetration of potential anti-COVID-19 drugs. J. Neurol., 2020, 267(7), 1880-1882.
[http://dx.doi.org/10.1007/s00415-020-09866-5] [PMID: 32361836]
[200]
La Rosee, F.; La Rosee, P. Ruxolitinib in COVID-19 Hyperinflammation and Haematologic Malignancies. Acta Haematol., 2020, 1-3.
[http://dx.doi.org/10.1159/000510770] [PMID: 32818929]
[201]
Capochiani, E.; Frediani, B.; Iervasi, G.; Paolicchi, A.; Sani, S.; Roncucci, P.; Cuccaro, A.; Franchi, F.; Simonetti, F.; Carrara, D.; Bertaggia, I.; Nasso, D.; Riccioni, R.; Scolletta, S.; Valente, S.; Conticini, E.; Gozzetti, A.; Bocchia, M. Ruxolitinib rapidly reduces acute respiratory distress syndrome in COVID-19 disease. Analysis of data collection from RESPIRE protocol. Front. Med. (Lausanne), 2020, 7, 466.
[http://dx.doi.org/10.3389/fmed.2020.00466] [PMID: 32850921]
[202]
Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol, 2020, 146(1), 137-146 e133.
[203]
Rao, P.; Falk, L.A.; Dougherty, S.F.; Sawada, T.; Pluznik, D.H. Colchicine down-regulates lipopolysaccharide-induced granulocyte-macrophage colony-stimulating factor production in murine macrophages. J. Immunol., 1997, 159(7), 3531-3539.
[PMID: 9317152]
[204]
Liang, Y.; Zhou, H.F.; Tong, M.; Chen, L.; Ren, K.; Zhao, G.J. Colchicine inhibits endothelial inflammation via NLRP3/CRP pathway. Int. J. Cardiol., 2019, 294, 55.
[http://dx.doi.org/10.1016/j.ijcard.2019.06.070] [PMID: 31522718]
[205]
Demidowich, A.P.; Davis, A.I.; Dedhia, N.; Yanovski, J.A. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation. Med. Hypotheses, 2016, 92, 67-73.
[http://dx.doi.org/10.1016/j.mehy.2016.04.039] [PMID: 27241260]
[206]
Deftereos, S.; Giannopoulos, G.; Vrachatis, D.A.; Siasos, G.; Giotaki, S.G.; Cleman, M.; Dangas, G.; Stefanadis, C. Colchicine as a potent anti-inflammatory treatment in COVID-19: Can we teach an old dog new tricks? Eur. Heart J. Cardiovasc. Pharmacother., 2020, 6(4), 255.
[http://dx.doi.org/10.1093/ehjcvp/pvaa033] [PMID: 32337546]
[207]
Gandolfini, I.; Delsante, M.; Fiaccadori, E.; Zaza, G.; Manenti, L.; Degli Antoni, A.; Peruzzi, L.; Riella, L.V.; Cravedi, P.; Maggiore, U. COVID-19 in kidney transplant recipients. Am. J. Transplant., 2020, 20(7), 1941-1943.
[http://dx.doi.org/10.1111/ajt.15891] [PMID: 32233067]
[208]
Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[209]
Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; Yamamoto, M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7, 11624.
[http://dx.doi.org/10.1038/ncomms11624] [PMID: 27211851]
[210]
Zinovkin, R.A.; Grebenchikov, O.A. Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients. Biochemistry (Mosc.), 2020, 85(7), 833-837.
[http://dx.doi.org/10.1134/S0006297920070111] [PMID: 33040727]
[211]
Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; Schilling, M.; Jørgensen, S.E.; Thomsen, M.; Reinert, L.S.; Lappe, M.; Hoang, H.D.; Gilchrist, V.H.; Hansen, A.L.; Ottosen, R.; Nielsen, C.G.; Møller, C.; van der Horst, D.; Peri, S.; Balachandran, S.; Huang, J.; Jakobsen, M.; Svenningsen, E.B.; Poulsen, T.B.; Bartsch, L.; Thielke, A.L.; Luo, Y.; Alain, T.; Rehwinkel, J.; Alcamí, A.; Hiscott, J.; Mogensen, T.H.; Paludan, S.R.; Holm, C.K. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun., 2020, 11(1), 4938.
[http://dx.doi.org/10.1038/s41467-020-18764-3] [PMID: 33009401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy