Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models?

Author(s): Mark Yorek*

Volume 18, Issue 5, 2022

Published on: 04 May, 2021

Article ID: e040521193121 Pages: 17

DOI: 10.2174/1573399817666210504101609

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article.

Methods: A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review.

Results: Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia.

Conclusion: This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.

Keywords: Diabetes, diabetic neuropathy, hyperglycemia, hyperlipidemia, insulin resistance, and animal models.

[1]
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36(8): 439-49.
[http://dx.doi.org/10.1016/j.tins.2013.04.008] [PMID: 23725712]
[2]
Vinik AI. Clinical practice. diabetic sensory and motor neuropathy. N Engl J Med 2016; 374(15): 1455-64.
[http://dx.doi.org/10.1056/NEJMcp1503948] [PMID: 27074068]
[3]
Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[4]
Perkins B, Bril V. Electrophysiologic testing in diabetic neuropathy. Handb Clin Neurol 2014; 126: 235-48.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00018-7] [PMID: 25410226]
[5]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[6]
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54.
[http://dx.doi.org/10.1111/jdi.12833] [PMID: 29533535]
[7]
Wilson NM, Wright DE. Experimental motor neuropathy in diabetes. Handb Clin Neurol 2014; 126: 461-7.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00030-8] [PMID: 25410239]
[8]
Zochodne DW, Ramji N, Toth C. Neuronal targeting in diabetes mellitus: a story of sensory neurons and motor neurons. Neuroscientist 2008; 14(4): 311-8.
[http://dx.doi.org/10.1177/1073858408316175] [PMID: 18660461]
[9]
Tavakoli M, Mojaddidi M, Fadavi H, Malik RA. Pathophysiology and treatment of painful diabetic neuropathy. Curr Pain Headache Rep 2008; 12(3): 192-7.
[http://dx.doi.org/10.1007/s11916-008-0034-1] [PMID: 18796269]
[10]
Smith AG, Singleton JR. Impaired glucose tolerance and neuropathy. Neurologist 2008; 14(1): 23-9.
[http://dx.doi.org/10.1097/NRL.0b013e31815a3956] [PMID: 18195653]
[11]
Zochodne DW. Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve 2007; 36(2): 144-66.
[http://dx.doi.org/10.1002/mus.20785] [PMID: 17469109]
[12]
Malik RA. Wherefore art thou, O treatment for diabetic neuropathy? Int Rev Neurobiol 2016; 127: 287-317.
[http://dx.doi.org/10.1016/bs.irn.2016.03.008] [PMID: 27133154]
[13]
Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep 2014; 14(8): 473-83.
[http://dx.doi.org/10.1007/s11910-014-0473-5] [PMID: 24954624]
[14]
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012; 11(6): 521-34.
[http://dx.doi.org/10.1016/S1474-4422(12)70065-0] [PMID: 22608666]
[15]
Izenberg A, Perkins BA, Bril V. Diabetic Neuropathies. Semin Neurol 2015; 35(4): 424-30.
[http://dx.doi.org/10.1055/s-0035-1558972] [PMID: 26502765]
[16]
Javed S, Alam U, Malik RA. Treating diabetic neuropathy: present strategies and emerging solutions. Rev Diabet Stud 2015; 12(1-2): 63-83.
[http://dx.doi.org/10.1900/RDS.2015.12.63] [PMID: 26676662]
[17]
Liu X, Xu Y, An M, Zeng Q. The risk factors for diabetic peripheral neuropathy: A meta-analysis. PLoS One 2019; 14(2): e0212574.
[http://dx.doi.org/10.1371/journal.pone.0212574] [PMID: 30785930]
[18]
Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat Rev Drug Discov 2009; 8(5): 417-29.
[http://dx.doi.org/10.1038/nrd2476] [PMID: 19404313]
[19]
Jolivalt CG, Frizzi KE, Guernsey L, et al. Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 2016; 6(3): 223-55.
[http://dx.doi.org/10.1002/cpmo.11] [PMID: 27584552]
[20]
O’Brien PD, Sakowski SA, Feldman EL. Mouse models of diabetic neuropathy. ILAR J 2014; 54(3): 259-72.
[http://dx.doi.org/10.1093/ilar/ilt052] [PMID: 24615439]
[21]
Islam MS. Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res 2013; 2013: 149452.
[http://dx.doi.org/10.1155/2013/149452] [PMID: 23984428]
[22]
Yorek MA. Alternatives to the streptozotocin-diabetic rodent. Int Rev Neurobiol 2016; 127: 89-112.
[http://dx.doi.org/10.1016/bs.irn.2016.03.002] [PMID: 27133146]
[23]
Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987; 316(10): 599-606.
[http://dx.doi.org/10.1056/NEJM198703053161007] [PMID: 3027558]
[24]
Dvornik E, Simard-Duquesne N, Krami M, et al. Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. Science 1973; 182(4117): 1146-8.
[http://dx.doi.org/10.1126/science.182.4117.1146] [PMID: 4270794]
[25]
Asano S, Himeno T, Hayami T, et al. Ranirestat improved nerve conduction velocities, sensory perception, and intraepidermal nerve fiber density in rats with overt diabetic polyneuropathy. J Diabetes Res 2019; 2019: 2756020.
[http://dx.doi.org/10.1155/2019/2756020] [PMID: 31828158]
[26]
Li QR, Wang Z, Zhou W, et al. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway. Neural Regen Res 2016; 11(2): 345-51.
[http://dx.doi.org/10.4103/1673-5374.177745] [PMID: 27073391]
[27]
Matsumoto T, Ono Y, Kurono M, Kuromiya A, Nakamura K, Bril V. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J Pharmacol Sci 2008; 107(3): 231-7.
[http://dx.doi.org/10.1254/jphs.08061FP] [PMID: 18635918]
[28]
Kuzumoto Y, Kusunoki S, Kato N, Kihara M, Low PA. Effect of the aldose reductase inhibitor fidarestat on experimental diabetic neuropathy in the rat. Diabetologia 2006; 49(12): 3085-93.
[http://dx.doi.org/10.1007/s00125-006-0400-7] [PMID: 17063327]
[29]
Raccah D, Coste T, Cameron NE, Dufayet D, Vague P, Hohman TC. Effect of the aldose reductase inhibitor tolrestat on nerve conduction velocity, Na/K ATPase activity, and polyols in red blood cells, sciatic nerve, kidney cortex, and kidney medulla of diabetic rats. J Diabetes Complications 1998; 12(3): 154-62.
[http://dx.doi.org/10.1016/S1056-8727(97)00093-7] [PMID: 9618071]
[30]
Cameron NE, Leonard MB, Ross IS, Whiting PH. The effects of sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 1986; 29(3): 168-74.
[http://dx.doi.org/10.1007/BF02427088] [PMID: 3084324]
[31]
Low PA, Schmelzer JD. Peripheral nerve conduction studies in galactose-poisoned rats. Demonstration of increased resistance to ischemic conduction associated with endoneurial edema due to sugar alcohol accumulation. J Neurol Sci 1983; 59(3): 415-21.
[http://dx.doi.org/10.1016/0022-510X(83)90026-6] [PMID: 6308175]
[32]
Sharma AK, Thomas PK, Baker RW. Peripheral nerve abnormalities related to galactose administration in rats. J Neurol Neurosurg Psychiatry 1976; 39(8): 794-802.
[http://dx.doi.org/10.1136/jnnp.39.8.794] [PMID: 182926]
[33]
Kamijo M, Basso M, Cherian PV, Hohman TC, Sima AA. Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy. Diabetes Res Clin Pract 1994; 25(2): 117-29.
[http://dx.doi.org/10.1016/0168-8227(94)90037-X] [PMID: 7821191]
[34]
Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 2001; 17(5): 330-46.
[http://dx.doi.org/10.1002/dmrr.229] [PMID: 11747139]
[35]
Carrington AL, Calcutt NA, Ettlinger CB, Gustafsson T, Tomlinson DR. Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol 1993; 237(2-3): 257-63.
[http://dx.doi.org/10.1016/0014-2999(93)90277-O] [PMID: 8365454]
[36]
Stevens M, Lattimer S, Kamijo M, Van Huysen C, Sima A, Greene D. Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat. Diabetologia 1993; 36: 608-14.
[http://dx.doi.org/10.1007/BF00404069]
[37]
Schmidt R, Plurad S, Coleman B, Williamsons . Effects of sorbinil, dietary myo-inositol supplementation, and insulin on resolution of neuro axonal dystrophy in mesenteric nerves of streptozocin-induced diabetic rats. 1991; 40: 574-82.
[38]
Tomlinson DR. Polyols and myo-inositol in diabetic neuropathy of mice and men. Mayo Clin Proc 1989; 64(8): 1030-3.
[http://dx.doi.org/10.1016/S0025-6196(12)61233-6] [PMID: 2796398]
[39]
Yorek MA, Wiese TJ, Davidson EP, Dunlap JA, Conner CE. Reduced Na+/K+ adenosine triphosphatase activity and motor nerve conduction velocity in L-fucose-fed rats is reversible after dietary normalization. Metabolism 1996; 45(2): 229-34.
[http://dx.doi.org/10.1016/S0026-0495(96)90059-1] [PMID: 8596495]
[40]
Sima AA, Dunlap JA, Davidson EP, et al. Supplemental myo-inositol prevents L-fucose-induced diabetic neuropathy. Diabetes 1997; 46(2): 301-6.
[http://dx.doi.org/10.2337/diab.46.2.301] [PMID: 9000708]
[41]
Pfeifer MA. Clinical trials of sorbinil on nerve function. Metabolism 1986; 35(4)(Suppl. 1): 78-82.
[http://dx.doi.org/10.1016/0026-0495(86)90192-7] [PMID: 3083211]
[42]
Boulton AJ, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care 2004; 27(6): 1458-86.
[http://dx.doi.org/10.2337/diacare.27.6.1458] [PMID: 15161806]
[43]
Boulton AJ, Kempler P, Ametov A, Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev 2013; 29(5): 327-33.
[http://dx.doi.org/10.1002/dmrr.2397] [PMID: 23381942]
[44]
Hotta N, Akanuma Y, Kawamori R, et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 2006; 29(7): 1538-44.
[http://dx.doi.org/10.2337/dc05-2370] [PMID: 16801576]
[45]
Matsuoka K, Sakamoto N, Akanuma Y, et al. ADCT Study Group. A long-term effect of epalrestat on motor conduction velocity of diabetic patients: ARI-Diabetes Complications Trial (ADCT). Diabetes Res Clin Pract 2007; 77(Suppl. 1): S263-8.
[http://dx.doi.org/10.1016/j.diabres.2007.01.069] [PMID: 17599629]
[46]
Kawai T, Takei I, Tokui M, et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(ɛ)-carboxymethyl lysine. J Diabetes Complications 2010; 24(6): 424-32.
[http://dx.doi.org/10.1016/j.jdiacomp.2008.10.005] [PMID: 19716319]
[47]
Bril V, Buchanan RA. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care 2006; 29(1): 68-72.
[http://dx.doi.org/10.2337/diacare.29.01.06.dc05-1447] [PMID: 16373898]
[48]
Bril V, Hirose T, Tomioka S, Buchanan R. Ranirestat Study Group. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 2009; 32(7): 1256-60.
[http://dx.doi.org/10.2337/dc08-2110] [PMID: 19366965]
[49]
Sekiguchi K, Kohara N, Baba M, et al. Ranirestat Group. Aldose reductase inhibitor ranirestat significantly improves nerve conduction velocity in diabetic polyneuropathy: A randomized double-blind placebo-controlled study in Japan. J Diabetes Investig 2019; 10(2): 466-74.
[http://dx.doi.org/10.1111/jdi.12890] [PMID: 29975462]
[50]
Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318(20): 1315-21.
[http://dx.doi.org/10.1056/NEJM198805193182007] [PMID: 3283558]
[51]
Zochodne DW. Mechanisms of diabetic neuron damage: Molecular pathways. Handb Clin Neurol 2014; 126: 379-99.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00028-X] [PMID: 25410235]
[52]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[53]
Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 2012; 159(5): 355-65.
[http://dx.doi.org/10.1016/j.trsl.2011.12.004] [PMID: 22500508]
[54]
Stracke H, Hammes HP, Werkmann D, et al. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes 2001; 109(6): 330-6.
[http://dx.doi.org/10.1055/s-2001-17399] [PMID: 11571671]
[55]
Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 2008; 14(10): 953-61.
[http://dx.doi.org/10.2174/138161208784139774] [PMID: 18473845]
[56]
Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 2005; 1043: 784-92.
[http://dx.doi.org/10.1196/annals.1333.091] [PMID: 16037306]
[57]
Chen AS, Taguchi T, Sugiura M, et al. Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in preventing neuropathy and cataract in diabetic rats. Horm Metab Res 2004; 36(3): 183-7.
[http://dx.doi.org/10.1055/s-2004-814344] [PMID: 15057673]
[58]
Yagihashi S, Kamijo M, Baba M, Yagihashi N, Nagai K. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 1992; 41(1): 47-52.
[http://dx.doi.org/10.2337/diab.41.1.47] [PMID: 1727739]
[59]
Lukic IK, Humpert PM, Nawroth PP, Bierhaus A. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 2008; 1126: 76-80.
[http://dx.doi.org/10.1196/annals.1433.059] [PMID: 18448798]
[60]
Toth C, Martinez J, Zochodne DW. RAGE, diabetes, and the nervous system. Curr Mol Med 2007; 7(8): 766-76.
[http://dx.doi.org/10.2174/156652407783220705] [PMID: 18331235]
[61]
Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003; 9(3): 294-9.
[http://dx.doi.org/10.1038/nm834] [PMID: 12592403]
[62]
Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes 2008; 116(10): 600-5.
[http://dx.doi.org/10.1055/s-2008-1065351] [PMID: 18473286]
[63]
Alkhalaf A, Klooster A, van Oeveren W, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care 2010; 33(7): 1598-601.
[http://dx.doi.org/10.2337/dc09-2241] [PMID: 20413516]
[64]
Rabbani N, Alam SS, Riaz S, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia 2009; 52(2): 208-12.
[http://dx.doi.org/10.1007/s00125-008-1224-4] [PMID: 19057893]
[65]
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014; 2014: 674987.
[http://dx.doi.org/10.1155/2014/674987] [PMID: 24883061]
[66]
Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. Free Radic Res 2003; 37(5): 471-80.
[http://dx.doi.org/10.1080/1071576031000083161] [PMID: 12797466]
[67]
van Dam PS. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 2002; 18(3): 176-84.
[http://dx.doi.org/10.1002/dmrr.287] [PMID: 12112935]
[68]
Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol 2002; 282(2): R335-42.
[http://dx.doi.org/10.1152/ajpregu.00605.2001] [PMID: 11792641]
[69]
Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001; 30(5): 463-88.
[http://dx.doi.org/10.1016/S0891-5849(00)00373-7] [PMID: 11182518]
[70]
Bayraktutan U. Free radicals, diabetes and endothelial dysfunction. Diabetes Obes Metab 2002; 4(4): 224-38.
[http://dx.doi.org/10.1046/j.1463-1326.2002.00184.x] [PMID: 12099971]
[71]
Fredstrom S. Nitric oxide, oxidative stress, and dietary antioxidants. Nutrition 2002; 18(6): 537-9.
[http://dx.doi.org/10.1016/S0899-9007(02)00758-X] [PMID: 12044833]
[72]
Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001; 17(3): 189-212.
[http://dx.doi.org/10.1002/dmrr.196] [PMID: 11424232]
[73]
Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416(1): 15-8.
[http://dx.doi.org/10.1016/S0014-5793(97)01159-9] [PMID: 9369223]
[74]
Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001; 108(9): 1341-8.
[http://dx.doi.org/10.1172/JCI11235] [PMID: 11696579]
[75]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[76]
Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-90.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[77]
Coppey LJ, Gellett JS, Davidson EP, Yorek MA. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic Res 2003; 37(1): 33-40.
[http://dx.doi.org/10.1080/1071576021000028442] [PMID: 12653215]
[78]
Coppey LJ, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. Int J Exp Diabetes Res 2000; 1(2): 131-43.
[http://dx.doi.org/10.1155/EDR.2000.131] [PMID: 11469397]
[79]
Yorek MA, Dunlap JA. Effect of increased concentration of D-glucose or L-fucose on monocyte adhesion to endothelial cell monolayers and activation of nuclear factor-kappaB. Metabolism 2002; 51(2): 225-34.
[http://dx.doi.org/10.1053/meta.2002.29958] [PMID: 11833053]
[80]
Morigi M, Angioletti S, Imberti B, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest 1998; 101(9): 1905-15.
[http://dx.doi.org/10.1172/JCI656] [PMID: 9576755]
[81]
Pieper G, Riaz-ul-Haq. . Activation of nuclear factor -κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Card Pharm 1997; 30: 528-32.
[82]
Du X, Stocklauser-Färber K, Rösen P. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic Biol Med 1999; 27(7-8): 752-63.
[http://dx.doi.org/10.1016/S0891-5849(99)00079-9] [PMID: 10515579]
[83]
Hattori Y, Hattori S, Sato N, Kasai K. High-glucose-induced nuclear factor kappaB activation in vascular smooth muscle cells. Cardiovasc Res 2000; 46(1): 188-97.
[http://dx.doi.org/10.1016/S0008-6363(99)00425-3] [PMID: 10727667]
[84]
Takami S, Yamashita S, Kihara S, Kameda-Takemura K, Matsuzawa Y. High concentration of glucose induces the expression of intercellular adhesion molecule-1 in human umbilical vein endothelial cells. Atherosclerosis 1998; 138(1): 35-41.
[http://dx.doi.org/10.1016/S0021-9150(97)00286-4] [PMID: 9678769]
[85]
Kim JA, Berliner JA, Natarajan RD, Nadler JL. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 1994; 43(9): 1103-7.
[http://dx.doi.org/10.2337/diab.43.9.1103] [PMID: 7520876]
[86]
Yorek MA, Coppey LJ, Gellett JS, Davidson EP, Lund DD. Effect of fidarestat and alpha-lipoic acid on diabetes-induced epineurial arteriole vascular dysfunction. Exp Diabesity Res 2004; 5(2): 123-35.
[http://dx.doi.org/10.1080/15438600490277824] [PMID: 15203883]
[87]
Oltman CL, Davidson EP, Coppey LJ, et al. Vascular and neural dysfunction in Zucker diabetic fatty rats: a difficult condition to reverse. Diabetes Obes Metab 2008; 10(1): 64-74.
[PMID: 17970755]
[88]
Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 1997; 46(Suppl. 2): S31-7.
[http://dx.doi.org/10.2337/diab.46.2.S31] [PMID: 9285496]
[89]
Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001; 50(8): 1927-37.
[http://dx.doi.org/10.2337/diabetes.50.8.1927] [PMID: 11473057]
[90]
Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Int J Exp Diabetes Res 2002; 3(1): 21-36.
[http://dx.doi.org/10.1080/15604280212525] [PMID: 11900277]
[91]
Coppey LJ, Gellett JS, Davidson EP, et al. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol 2001; 134(1): 21-9.
[http://dx.doi.org/10.1038/sj.bjp.0704216] [PMID: 11522593]
[92]
Yorek MA, Coppey LJ, Gellett JS, et al. Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. Am J Physiol Endocrinol Metab 2002; 283(5): E1067-75.
[http://dx.doi.org/10.1152/ajpendo.00173.2002] [PMID: 12376336]
[93]
Cameron NE, Cotter MA, Maxfield EK. Anti-oxidant treatment prevents the development of peripheral nerve dysfunction in streptozotocin-diabetic rats. Diabetologia 1993; 36(4): 299-304.
[http://dx.doi.org/10.1007/BF00400231] [PMID: 8477873]
[94]
Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest 1995; 96(2): 1159-63.
[http://dx.doi.org/10.1172/JCI118104] [PMID: 7635953]
[95]
Cameron NE, Cotter MA. Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Res Clin Pract 1999; 45(2-3): 137-46.
[http://dx.doi.org/10.1016/S0168-8227(99)00043-1] [PMID: 10588366]
[96]
Keegan A, Cotter MA, Cameron NE. Effects of diabetes and treatment with the antioxidant α-lipoic acid on endothelial and neurogenic responses of corpus cavernosum in rats. Diabetologia 1999; 42(3): 343-50.
[http://dx.doi.org/10.1007/s001250051161] [PMID: 10096788]
[97]
Karasu C, Dewhurst M, Stevens EJ, Tomlinson DR. Effects of anti-oxidant treatment on sciatic nerve dysfunction in streptozotocin- diabetic rats; comparison with essential fatty acids. Diabetologia 1995; 38(2): 129-34.
[http://dx.doi.org/10.1007/BF00400086] [PMID: 7713308]
[98]
Pieper GM, Siebeneich W. Diabetes-induced endothelial dysfunction is prevented by long-term treatment with the modified iron chelator, hydroxyethyl starch conjugated-deferoxamine. J Cardiovasc Pharmacol 1997; 30(6): 734-8.
[http://dx.doi.org/10.1097/00005344-199712000-00006] [PMID: 9436811]
[99]
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130(5): 963-74.
[http://dx.doi.org/10.1038/sj.bjp.0703393] [PMID: 10882379]
[100]
Cameron NE, Jack AM, Cotter MA. Effect of alpha-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 2001; 31(1): 125-35.
[http://dx.doi.org/10.1016/S0891-5849(01)00564-0] [PMID: 11425498]
[101]
Cameron NE, Cotter MA. Effects of an extracellular metal chelator on neurovascular function in diabetic rats. Diabetologia 2001; 44(5): 621-8.
[http://dx.doi.org/10.1007/s001250051669] [PMID: 11380081]
[102]
Inkster ME, Cotter MA, Cameron NE. Effects of trientine, a metal chelator, on defective endothelium-dependent relaxation in the mesenteric vasculature of diabetic rats. Free Radic Res 2002; 36(10): 1091-9.
[http://dx.doi.org/10.1080/1071576021000028325] [PMID: 12516881]
[103]
Ma J, Shi M, Zhang X, et al. GLP-1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF-κB signaling pathways in streptozotocin-induced diabetic rats. Sci Rep 2016; 6: 31656.
[104]
Chen L, Li B, Chen B, et al. Thymoquinone alleviates the experimental diabetic peripheral neuropathy by modulation of inflammation. Mol Neurobiol 2014; 49: 536-46.
[105]
Naruse K. Schwann Cells as Crucial Players in Diabetic Neuropathy. Myelin Advances in Experimental Medicine and Biology. Singapore: Springer 2019; Vol. 1190.
[http://dx.doi.org/10.1007/978-981-32-9636-7_22]
[106]
Zan Y, Kuai CX, Qiu ZX, Huang F. Kuai C, Qiu Z, Huang F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am J Chin Med 2017; 45(8): 1709-23.
[http://dx.doi.org/10.1142/S0192415X17500926] [PMID: 29121795]
[107]
Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 2012; 1(7): 557-65.
[http://dx.doi.org/10.5966/sctm.2012-0025] [PMID: 23197860]
[108]
Kuhad A, Chopra K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009; 57(4): 456-62.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.013] [PMID: 19555701]
[109]
Li MY, Wang YY, Cao R, et al. Dietary fish oil inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by blocking nuclear factor-κB-mediated inflammatory pathways. J Nutr Biochem 2015; 26(11): 1147-55.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.005] [PMID: 26118694]
[110]
Obrosova IG, Drel VR, Pacher P, et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 2005; 54(12): 3435-41.
[http://dx.doi.org/10.2337/diabetes.54.12.3435] [PMID: 16306359]
[111]
Obrosova IG, Drel VR, Oltman CL, et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007; 293(6): E1645-55.
[http://dx.doi.org/10.1152/ajpendo.00479.2007] [PMID: 17911342]
[112]
Ilnytska O, Lyzogubov VV, Stevens MJ, et al. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006; 55(6): 1686-94.
[http://dx.doi.org/10.2337/db06-0067] [PMID: 16731831]
[113]
Stavniichuk R, Shevalye H, Lupachyk S, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2014; 30(8): 669-78.
[http://dx.doi.org/10.1002/dmrr.2549] [PMID: 24687457]
[114]
Elzinga S, Murdock BJ, Guo K, et al. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol 2019; 320: 112967.
[http://dx.doi.org/10.1016/j.expneurol.2019.112967] [PMID: 31145897]
[115]
Ziegler D, Sohr CGH, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004; 27(9): 2178-83.
[http://dx.doi.org/10.2337/diacare.27.9.2178] [PMID: 15333481]
[116]
Herder C, Lankisch M, Ziegler D, et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 2009; 32(4): 680-2.
[http://dx.doi.org/10.2337/dc08-2011] [PMID: 19131463]
[117]
Schamarek I, Herder C, Nowotny B, et al. German Diabetes Study Group. Adiponectin, markers of subclinical inflammation and nerve conduction in individuals with recently diagnosed type 1 and type 2 diabetes. Eur J Endocrinol 2016; 174(4): 433-43.
[http://dx.doi.org/10.1530/EJE-15-1010] [PMID: 26733478]
[118]
Herder C, Kannenberg JM, Huth C, et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Care 2017; 40(4): 569-76.
[http://dx.doi.org/10.2337/dc16-2259] [PMID: 28174259]
[119]
Zochodne DW. The challenges of diabetic polyneuropathy: a brief update. Curr Opin Neurol 2019; 32(5): 666-75.
[http://dx.doi.org/10.1097/WCO.0000000000000723] [PMID: 31306212]
[120]
Ziegler D, Low PA, Litchy WJ, et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care 2011; 34(9): 2054-60.
[http://dx.doi.org/10.2337/dc11-0503] [PMID: 21775755]
[121]
Papanas N, Ziegler D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother 2014; 15(18): 2721-31.
[http://dx.doi.org/10.1517/14656566.2014.972935] [PMID: 25381809]
[122]
Ametov AS, Barinov A, Dyck PJ, et al. SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care 2003; 26(3): 770-6.
[http://dx.doi.org/10.2337/diacare.26.3.770] [PMID: 12610036]
[123]
Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 2004; 21(2): 114-21.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01109.x] [PMID: 14984445]
[124]
Ziegler D, Ametov A, Barinov A, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 2006; 29(11): 2365-70.
[http://dx.doi.org/10.2337/dc06-1216] [PMID: 17065669]
[125]
Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol 2015; 93(12): 1021-7.
[http://dx.doi.org/10.1139/cjpp-2014-0353] [PMID: 26406389]
[126]
Zhao M, Chen JY, Chu YD, Zhu YB, Luo L, Bu SZ. Efficacy of epalrestat plus α-lipoic acid combination therapy versus monotherapy in patients with diabetic peripheral neuropathy: a meta-analysis of 20 randomized controlled trials. Neural Regen Res 2018; 13(6): 1087-95.
[http://dx.doi.org/10.4103/1673-5374.233453] [PMID: 29926837]
[127]
Brussee V, Cunningham FA, Zochodne DW. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 2004; 53(7): 1824-30.
[http://dx.doi.org/10.2337/diabetes.53.7.1824] [PMID: 15220207]
[128]
de la Hoz CL, Cheng C, Fernyhough P, Zochodne DW. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion. Am J Physiol Endocrinol Metab 2017; 312(5): E407-19.
[http://dx.doi.org/10.1152/ajpendo.00444.2016] [PMID: 28223295]
[129]
Fernyhough P, McGavock J. Mechanisms of disease: Mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol 2014; 126: 353-77.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00027-8] [PMID: 25410234]
[130]
Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep 2015; 15(11): 89.
[http://dx.doi.org/10.1007/s11892-015-0671-9] [PMID: 26370700]
[131]
Pittenger G, Vinik A. Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 2003; 4(4): 271-85.
[http://dx.doi.org/10.1155/EDR.2003.271] [PMID: 14668049]
[132]
Tomlinson DR, Fernyhough P, Diemel LT. Neurotrophins and peripheral neuropathy. Philos Trans R Soc Lond B Biol Sci 1996; 351(1338): 455-62.
[http://dx.doi.org/10.1098/rstb.1996.0042] [PMID: 8730785]
[133]
Yorek MA, Coppey LJ, Gellett JS, Davidson EP. Sensory nerve innervation of epineurial arterioles of the sciatic nerve containing calcitonin gene-related peptide: effect of streptozotocin-induced diabetes. Exp Diabesity Res 2004; 5(3): 187-93.
[http://dx.doi.org/10.1080/15438600490486732] [PMID: 15512786]
[134]
Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 2008; 57(1): 181-9.
[http://dx.doi.org/10.2337/db07-0895] [PMID: 17909094]
[135]
Huang T-J, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol 2005; 194(1): 279-83.
[http://dx.doi.org/10.1016/j.expneurol.2005.03.001] [PMID: 15899264]
[136]
Cheng HT, Dauch JR, Hayes JM, Yanik BM, Feldman EL. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol Dis 2012; 45(1): 280-7.
[http://dx.doi.org/10.1016/j.nbd.2011.08.011] [PMID: 21872660]
[137]
Calcutt NA, Jolivalt CG, Fernyhough P. Growth factors as therapeutics for diabetic neuropathy. Curr Drug Targets 2008; 9(1): 47-59.
[http://dx.doi.org/10.2174/138945008783431727] [PMID: 18220712]
[138]
Zochodne DW. Neurotrophins and other growth factors in diabetic neuropathy. Semin Neurol 1996; 16(2): 153-61.
[http://dx.doi.org/10.1055/s-2008-1040971] [PMID: 8987129]
[139]
Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 2013; 27(5): 436-42.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.04.003] [PMID: 23731827]
[140]
Miscio G, Guastamacchia G, Brunani A, Priano L, Baudo S, Mauro A. Obesity and peripheral neuropathy risk: a dangerous liaison. J Peripher Nerv Syst 2005; 10(4): 354-8.
[http://dx.doi.org/10.1111/j.1085-9489.2005.00047.x] [PMID: 16279984]
[141]
Callaghan B, Feldman E. The metabolic syndrome and neuropathy: therapeutic challenges and opportunities. Ann Neurol 2013; 74(3): 397-403.
[http://dx.doi.org/10.1002/ana.23986] [PMID: 23929529]
[142]
Davidson EP, Coppey LJ, Calcutt NA, Oltman CL, Yorek MA. Diet-induced obesity in Sprague-Dawley rats causes microvascular and neural dysfunction. Diabetes Metab Res Rev 2010; 26(4): 306-18.
[http://dx.doi.org/10.1002/dmrr.1088] [PMID: 20503263]
[143]
Coppey L, Davidson E, Shevalye H, Obrosov A, Torres M, Yorek MA. Progressive loss of corneal nerve fibers and sensitivity in rats modeling obesity and type 2 diabetes is reversible with omega-3 fatty acid intervention: supporting cornea analysis as a marker for peripheral neuropathy and treatment. Diabetes Metab Syndr Obes 2020; 13: 1367-84.
[http://dx.doi.org/10.2147/DMSO.S247571] [PMID: 32425569]
[144]
Oltman CL, Coppey LJ, Gellett JS, Davidson EP, Lund DD, Yorek MA. Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats. Am J Physiol Endocrinol Metab 2005; 289(1): E113-22.
[http://dx.doi.org/10.1152/ajpendo.00594.2004] [PMID: 15727946]
[145]
Davidson EP, Coppey LJ, Kardon RH, Yorek MA. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Invest Ophthalmol Vis Sci 2014; 55(3): 1222-30.
[http://dx.doi.org/10.1167/iovs.13-13794] [PMID: 24519423]
[146]
Holmes A, Coppey LJ, Davidson EP, Yorek MA. Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. J Diabetes Res 2015; 2015: 307285.
[http://dx.doi.org/10.1155/2015/307285] [PMID: 26229968]
[147]
Hinder LM, O’Brien PD, Hayes JM, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech 2017; 10(6): 717-25.
[http://dx.doi.org/10.1242/dmm.028530] [PMID: 28381495]
[148]
Obrosova IG, Ilnytska O, Lyzogubov VV, et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes 2007; 56(10): 2598-608.
[http://dx.doi.org/10.2337/db06-1176] [PMID: 17626889]
[149]
Singleton JR, Smith AG, Marcus RL. Exercise as therapy for diabetic and prediabetic neuropathy. Curr Diab Rep 2015; 15(12): 120.
[http://dx.doi.org/10.1007/s11892-015-0682-6] [PMID: 26538074]
[150]
Cooper MA, Kluding PM, Wright DE. Emerging relationships between exercise, sensory nerves, and neuropathic pain. Front Neurosci 2016; 10: 372.
[http://dx.doi.org/10.3389/fnins.2016.00372] [PMID: 27601974]
[151]
Kluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications 2012; 26(5): 424-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.05.007] [PMID: 22717465]
[152]
Groover AL, Ryals JM, Guilford BL, Wilson NM, Christianson JA, Wright DE. Exercise-mediated improvements in painful neuropathy associated with prediabetes in mice. Pain 2013; 154(12): 2658-67.
[http://dx.doi.org/10.1016/j.pain.2013.07.052] [PMID: 23932909]
[153]
Yorek MA. The potential role of angiotensin converting enzyme and vasopeptidase inhibitors in the treatment of diabetic neuropathy. Curr Drug Targets 2008; 9(1): 77-84.
[http://dx.doi.org/10.2174/138945008783431736] [PMID: 18220715]
[154]
de Cavanagh EMV, Inserra F, Toblli J, Stella I, Fraga CG, Ferder L. Enalapril attenuates oxidative stress in diabetic rats. Hypertension 2001; 38(5): 1130-6.
[http://dx.doi.org/10.1161/hy1101.092845] [PMID: 11711510]
[155]
Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113(5): 409-18.
[http://dx.doi.org/10.1016/S0002-9343(02)01241-X] [PMID: 12401536]
[156]
Forbes JM, Cooper ME, Thallas V, et al. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 2002; 51(11): 3274-82.
[http://dx.doi.org/10.2337/diabetes.51.11.3274] [PMID: 12401719]
[157]
Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E, Dominiczak AF. Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens 2002; 20(2): 281-6.
[http://dx.doi.org/10.1097/00004872-200202000-00018] [PMID: 11821713]
[158]
Münzel T, Keaney JF Jr. Are ACE inhibitors a “magic bullet” against oxidative stress? Circulation 2001; 104(13): 1571-4.
[http://dx.doi.org/10.1161/hc3801.095585] [PMID: 11571254]
[159]
Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 2002; 91(5): 406-13.
[http://dx.doi.org/10.1161/01.RES.0000033523.08033.16] [PMID: 12215489]
[160]
Wingler K, Wünsch S, Kreutz R, Rothermund L, Paul M, Schmidt HH. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med 2001; 31(11): 1456-64.
[http://dx.doi.org/10.1016/S0891-5849(01)00727-4] [PMID: 11728818]
[161]
Coppey LJ, Davidson EP, Rinehart TW, et al. ACE inhibitor or angiotensin II receptor antagonist attenuates diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetes 2006; 55(2): 341-8.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0885] [PMID: 16443766]
[162]
Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Yorek MA. Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity (Silver Spring) 2008; 16(1): 82-9.
[http://dx.doi.org/10.1038/oby.2007.19] [PMID: 18223617]
[163]
Cameron NE, Cotter MA, Robertson S. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia 1992; 35(1): 12-8.
[http://dx.doi.org/10.1007/BF00400846] [PMID: 1371757]
[164]
Maxfield EK, Cameron NE, Cotter MA, Dines KC. Angiotensin II receptor blockade improves nerve function, modulates nerve blood flow and stimulates endoneurial angiogenesis in streptozotocin-diabetic rats and nerve function. Diabetologia 1993; 36(12): 1230-7.
[http://dx.doi.org/10.1007/BF00400799] [PMID: 8307249]
[165]
Aggarwal M, Singh J, Sood S, Arora B. Effects of lisinopril on streptozotocin-induced diabetic neuropathy in rats. Methods Find Exp Clin Pharmacol 2001; 23(3): 131-4.
[http://dx.doi.org/10.1358/mf.2001.23.3.627945] [PMID: 11523311]
[166]
Malik RA, Williamson S, Abbott C, et al. Effect of angiotensin- converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998; 352(9145): 1978-81.
[http://dx.doi.org/10.1016/S0140-6736(98)02478-7] [PMID: 9872248]
[167]
Reja A, Tesfaye S, Harris ND, Ward JD. Is ACE inhibition with lisinopril helpful in diabetic neuropathy? Diabet Med 1995; 12(4): 307-9.
[http://dx.doi.org/10.1111/j.1464-5491.1995.tb00482.x] [PMID: 7600744]
[168]
Weber MA. Vasopeptidase inhibitors. Lancet 2001; 358(9292): 1525-32.
[http://dx.doi.org/10.1016/S0140-6736(01)06584-9] [PMID: 11705582]
[169]
Ebihara F, Di Marco GS, Juliano MA, Casarini DE. Neutral endopeptidase expression in mesangial cells. J Renin Angiotensin Aldosterone Syst 2003; 4(4): 228-33.
[http://dx.doi.org/10.3317/jraas.2003.037] [PMID: 14689370]
[170]
Vatter H, Schilling L, Schmiedek P, Ehrenreich H. Evidence for functional endothelin-converting enzyme activity in isolated rat basilar artery: effect of inhibitors. J Cardiovasc Pharmacol 1998; 31(Suppl. 1): S64-7.
[http://dx.doi.org/10.1097/00005344-199800001-00021] [PMID: 9595402]
[171]
Muangman P, Spenny ML, Tamura RN, Gibran NS. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock 2003; 19(6): 508-12.
[http://dx.doi.org/10.1097/01.shk.0000055815.40894.16] [PMID: 12785004]
[172]
Edwards RM, Pullen M, Nambi P. Distribution of neutral endopeptidase activity along the rat and rabbit nephron. Pharmacology 1999; 59(1): 45-50.
[http://dx.doi.org/10.1159/000028304] [PMID: 10352425]
[173]
González W, Soleilhac JM, Fournié-Zaluski MC, Roques BP, Michel JB. Characterization of neutral endopeptidase in vascular cells, modulation of vasoactive peptide levels. Eur J Pharmacol 1998; 345(3): 323-31.
[http://dx.doi.org/10.1016/S0014-2999(98)00038-7] [PMID: 9592033]
[174]
Kikkawa F, Shibata K, Suzuki T, et al. Signal pathway involved in increased expression of neutral endopeptidase 24.11 by gonadotropin releasing hormone in choriocarcinoma cells. Placenta 2004; 25(2-3): 176-83.
[http://dx.doi.org/10.1016/j.placenta.2003.09.002] [PMID: 14972450]
[175]
Suzuki T, Ino K, Kikkawa F, et al. Neutral endopeptidase/CD10 expression during phorbol ester-induced differentiation of choriocarcinoma cells through the protein kinase C- and extracellular signal-regulated kinase-dependent signalling pathway. Placenta 2002; 23(6): 475-82.
[http://dx.doi.org/10.1053/plac.2002.0820] [PMID: 12137745]
[176]
Davidson EP, Kleinschmidt TL, Oltman CL, Lund DD, Yorek MA. Treatment of streptozotocin-induced diabetic rats with AVE7688, a vasopeptidase inhibitor: effect on vascular and neural disease. Diabetes 2007; 56(2): 355-62.
[http://dx.doi.org/10.2337/db06-1180] [PMID: 17259379]
[177]
Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Dake B, Yorek MA. Role of the effect of inhibition of neutral endopeptidase on vascular and neural complications in streptozotocin-induced diabetic rats. Eur J Pharmacol 2011; 650(2-3): 556-62.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.047] [PMID: 21040718]
[178]
Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Yorek MA. Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab 2009; 11(3): 223-33.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00924.x] [PMID: 18564175]
[179]
Davidson EP, Coppey LJ, Holmes A, Yorek MA. Effect of inhibition of angiotensin converting enzyme and/or neutral endopeptidase on vascular and neural complications in high fat fed/low dose streptozotocin-diabetic rats. Eur J Pharmacol 2012; 677(1-3): 180-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.003] [PMID: 22198047]
[180]
Davidson EP, Coppey LJ, Holmes A, Dake B, Yorek MA. Effect of treatment of high fat fed/low dose streptozotocin-diabetic rats with Ilepatril on vascular and neural complications. Eur J Pharmacol 2011; 668(3): 497-506.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.016] [PMID: 21816138]
[181]
Davidson EP, Coppey LJ, Kleinschmidt TL, Oltman CL, Yorek MA. Vascular and neural dysfunctions in obese Zucker rats: effect of AVE7688. Exp Diabetes Res 2009; 2009: 912327.
[http://dx.doi.org/10.1155/2009/912327] [PMID: 19536347]
[182]
Davidson EP, Coppey LJ, Yorek MA. Early loss of innervation of cornea epithelium in streptozotocin-induced type 1 diabetic rats: improvement with ilepatril treatment. Invest Ophthalmol Vis Sci 2012; 53(13): 8067-74.
[http://dx.doi.org/10.1167/iovs.12-10826] [PMID: 23169880]
[183]
Davidson EP, Coppey LJ, Dake B, Yorek MA. Effect of treatment of Sprague Dawley rats with AVE7688, enalapril, or candoxatril on diet-induced obesity. J Obes 2011; 2011: 686952.
[http://dx.doi.org/10.1155/2011/686952] [PMID: 20847891]
[184]
Coppey L, Lu B, Gerard C, Yorek MA. Effect of inhibition of angiotensin-converting enzyme and/or neutral endopeptidase on neuropathy in high-fat-fed C57Bl/6J mice. J Obes 2012; 2012: 326806.
[http://dx.doi.org/10.1155/2012/326806] [PMID: 23056927]
[185]
Yorek MS, Obrosov A, Lu B, Gerard C, Kardon RH, Yorek MA. Effect of inhibition or deletion of neutral endopeptidase on neuropathic endpoints in high fat fed/low dose streptozotocin-treated mice. J Neuropathol Exp Neurol 2016; 75(11): 1072-80.
[http://dx.doi.org/10.1093/jnen/nlw083] [PMID: 27634964]
[186]
Khder Y, Shi V, McMurray JJV, Lefkowitz MP. Sacubitril/Valsartan (LCZ696) in Heart Failure. Handb Exp Pharmacol 2017; 243: 133-65.
[http://dx.doi.org/10.1007/164_2016_77] [PMID: 28004291]
[187]
Davidson EP, Coppey LJ, Shevalye H, Obrosov A, Yorek MA. Vascular and neural complications in type 2 diabetic rats: improvement by sacubitril/valsartan greater than valsartan alone. Diabetes 2018; 67(8): 1616-26.
[http://dx.doi.org/10.2337/db18-0062] [PMID: 29941448]
[188]
Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 2011; 31: 321-51.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104635] [PMID: 21756134]
[189]
Yorek MS, Obrosov A, Shevalye H, Coppey LJ, Kardon RH, Yorek MA. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, α-lipoic acid, menhaden oil or their combination: Effect on diabetic neuropathy related endpoints. Neuropharmacology 2017; 116: 122-31.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.022] [PMID: 28025096]
[190]
Davidson EP, Coppey LJ, Shevalye H, Obrosov A, Kardon RH, Yorek MA. Impaired corneal sensation and nerve loss in type 2 rat model of chronic diabetes is reversible with combination therapy of menhaden oil, α-lipoic acid, and enalapril. Cornea 2017; 36(6): 725-31.
[http://dx.doi.org/10.1097/ICO.0000000000001182] [PMID: 28476051]
[191]
Davidson EP, Holmes A, Coppey LJ, Yorek MA. Effect of combination therapy consisting of enalapril, α-lipoic acid, and menhaden oil on diabetic neuropathy in a high fat/low dose streptozotocin treated rat. Eur J Pharmacol 2015; 765: 258-67.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.015] [PMID: 26291662]
[192]
Shevalye H, Yorek MS, Coppey LJ, et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol 2015; 114(1): 199-208.
[http://dx.doi.org/10.1152/jn.00224.2015] [PMID: 25925322]
[193]
Obrosov A, Coppey LJ, Shevalye H, Yorek MA. Effect of fish oil vs. resolvin D1, E1, methyl esters of resolvins D1 or D2 on diabetic peripheral neuropathy. J Neurol Neurophysiol 2017; 8(6): 453.
[http://dx.doi.org/10.4172/2155-9562.1000453] [PMID: 29423332]
[194]
Yorek MS, Coppey LJ, Shevalye H, Obrosov A, Kardon RH, Yorek MA. Effect of treatment with salsalate, menhaden oil, combination of salsalate and menhaden oil, or resolvin D1 of C57Bl/6J type 1 diabetic mouse on neuropathic endpoints. J Nutr Metab 2016; 2016: 5905891.
[http://dx.doi.org/10.1155/2016/5905891] [PMID: 27774316]
[195]
Davidson EP, Coppey LJ, Shevalye H, Obrosov A, Yorek MA. Effect of dietary content of menhaden oil with or without salsalate on neuropathic endpoints in high-fat-fed/low-dose streptozotocin-treated Sprague Dawley rats. J Diabetes Res 2018; 2018: 2967127.
[http://dx.doi.org/10.1155/2018/2967127] [PMID: 30057911]
[196]
Goldfine AB, Fonseca V, Jablonski KA, et al. Targeting inflammation using salsalate in type 2 diabetes study team. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2013; 159(1): 1-12.
[http://dx.doi.org/10.7326/0003-4819-159-1-201307020-00003] [PMID: 23817699]
[197]
Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. TINSAL-T2D (Targeting Inflammation Using Salsalate in Type 2 Diabetes) Study Team. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2010; 152(6): 346-57.
[http://dx.doi.org/10.7326/0003-4819-152-6-201003160-00004] [PMID: 20231565]
[198]
Zhang YF, Ning G. Mecobalamin. Expert Opin Investig Drugs 2008; 17(6): 953-64.
[http://dx.doi.org/10.1517/13543784.17.6.953] [PMID: 18491996]
[199]
Yao H, Feng J, Zheng Q, Wei Y, Wang S, Feng W. The effects of gliclazide, methylcobalamin, and gliclazide+methylcobalamin combination therapy on diabetic peripheral neuropathy in rats. Life Sci 2016; 161: 60-8.
[http://dx.doi.org/10.1016/j.lfs.2016.07.019] [PMID: 27496624]
[200]
Mizukami H, Ogasawara S, Yamagishi S, Takahashi K, Yagihashi S. Methylcobalamin effects on diabetic neuropathy and nerve protein kinase C in rats. Eur J Clin Invest 2011; 41(4): 442-50.
[http://dx.doi.org/10.1111/j.1365-2362.2010.02430.x] [PMID: 21128935]
[201]
Jian-bo L, Cheng-ya W, Jia-wei C, Xiao-lu L, Zhen-qing F, Hong- tai M. The preventive efficacy of methylcobalamin on rat peripheral neuropathy influenced by diabetes via neural IGF-1 levels. Nutr Neurosci 2010; 13(2): 79-86.
[http://dx.doi.org/10.1179/147683010X12611460763607] [PMID: 20406575]
[202]
Han Y, Wang M, Shen J, et al. Differential efficacy of methylcobalamin and alpha-lipoic acid treatment on symptoms of diabetic peripheral neuropathy. Minerva Endocrinol 2018; 43(1): 11-8.
[PMID: 27901334]
[203]
Li S, Chen X, Li Q, et al. Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J Diabetes Investig 2016; 7(5): 777-85.
[http://dx.doi.org/10.1111/jdi.12493] [PMID: 27180954]
[204]
Sawangjit R, Thongphui S, Chaichompu W, Phumart P. Efficacy and safety of mecobalamin on peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J Altern Complement Med 2020; 26(12): 1117-29.
[http://dx.doi.org/10.1089/acm.2020.0068] [PMID: 32716261]
[205]
Peng H-Y, Gong Y-Y. Analysis of the effect of probucol-mecobalamin tablets combination on oxidative stress in patients with diabetic peripheral neuropathy. Neurosci Lett 2021; 741: 135484.
[http://dx.doi.org/10.1016/j.neulet.2020.135484] [PMID: 33161105]
[206]
Xu Q, Pan J, Yu J, et al. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract 2013; 101(2): 99-105.
[http://dx.doi.org/10.1016/j.diabres.2013.03.033] [PMID: 23664235]
[207]
Jiang D-Q, Zhao S-H, Li M-X, Jiang L-L, Wang Y, Wang Y. Prostaglandin E1 plus methylcobalamin combination therapy versus prostaglandin E1 monotherapy for patients with diabetic peripheral neuropathy: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018; 97(44): e13020.
[http://dx.doi.org/10.1097/MD.0000000000013020] [PMID: 30383660]
[208]
Cotter MA, Dines KC, Cameron NE. Prevention and reversal of motor and sensory peripheral nerve conduction abnormalities in streptozotocin-diabetic rats by the prostacyclin analogue iloprost. Naunyn Schmiedebergs Arch Pharmacol 1993; 347(5): 534-40.
[http://dx.doi.org/10.1007/BF00166747] [PMID: 7686634]
[209]
Ohno A, Kanazawa A, Tanaka A, Miwa T, Ito H. Effect of a prostaglandin I2 derivative (iloprost) on peripheral neuropathy of diabetic rats. Diabetes Res Clin Pract 1992; 18(2): 123-30.
[http://dx.doi.org/10.1016/0168-8227(92)90008-F] [PMID: 1282452]
[210]
Mo F, Hu G, Liu W, He L, Wang H. Prostaglandin e1 protects the peripheral nerve in diabetics through preventing vascular permeability changes. Exp Clin Endocrinol Diabetes 2018; 126(2): 113-22.
[http://dx.doi.org/10.1055/s-0043-112351] [PMID: 28954306]
[211]
Yasuda H, Sonobe M, Hatanaka I, et al. A new prostaglandin E1 analogue (TFC-612) prevents a decrease in motor nerve conduction velocity in streptozocin-diabetic rats. Biochem Biophys Res Commun 1988; 150(1): 225-30.
[http://dx.doi.org/10.1016/0006-291X(88)90509-8] [PMID: 3276309]
[212]
Suzuki K, Saito N, Sakata Y, Toyota T, Goto Y. A new prostaglandin E1 analogue (TFC-612) improves the reduction in motor nerve conduction velocity in spontaneously diabetic GK (Goto-Kakizaki) rats. Prostaglandins 1990; 40(5): 463-71.
[http://dx.doi.org/10.1016/0090-6980(90)90109-9] [PMID: 2255766]
[213]
Akahori H, Takamura T, Hayakawa T, Ando H, Yamashita H, Kobayashi K. Prostaglandin E1 in lipid microspheres ameliorates diabetic peripheral neuropathy: clinical usefulness of Semmes-Weinstein monofilaments for evaluating diabetic sensory abnormality. Diabetes Res Clin Pract 2004; 64(3): 153-9.
[http://dx.doi.org/10.1016/j.diabres.2003.10.012] [PMID: 15126001]
[214]
Hoshi K, Mizushima Y, Kiyokawa S, Yanagawa A. Prostaglandin E1 incorporated in lipid microspheres in the treatment of peripheral vascular diseases and diabetic neuropathy. Drugs Exp Clin Res 1986; 12(8): 681-5.
[PMID: 3757764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy