Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Differentiation Between Osteoporotic and Neoplastic Vertebral Fractures: State of The Art and Future Perspectives

Author(s): Paula Musa Aguiar, Paola Zarantonello and Maria Pilar Aparisi Gómez*

Volume 18, Issue 2, 2022

Published on: 12 April, 2021

Article ID: e120421192791 Pages: 21

DOI: 10.2174/1573405617666210412142758

Price: $65

conference banner
Abstract

Vertebral fractures are a common condition occurring in the context of osteoporosis and malignancy. These entities affect a group of patients in the same age range; clinical features may be indistinct and symptoms non-existing, and thus present challenges to diagnosis. In this article, we review the use and accuracy of different imaging modalities available to characterize vertebral fracture etiology, from well-established classical techniques to the role of new and advanced imaging techniques and the prospective use of artificial intelligence. We also address the role of imaging in treatment. In the context of osteoporosis, the importance of opportunistic diagnosis is highlighted. In the near future, the use of automated computer-aided diagnostic algorithms applied to different imaging techniques may be really useful to aid in diagnosis.

Keywords: Osteoporosis, vertebral fracture, MRI, CT, radiographs, neoplastic, DXA, imaging.

Graphical Abstract
[1]
Lewiecki EM, Ortendahl JD, Vanderpuye-Orgle J, et al. Healthcare policy changes in osteoporosis can improve outcomes and reduce costs in the United States. JBMR Plus 2019; 3(9): e10192.
[http://dx.doi.org/10.1002/jbm4.10192]
[2]
Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 2004; 183(4): 949-58.
[http://dx.doi.org/10.2214/ajr.183.4.1830949] [PMID: 15385286]
[3]
McKiernan FE. The broadening spectrum of osteoporotic vertebral fracture. Skeletal Radiol 2009; 38(4): 303-8.
[http://dx.doi.org/10.1007/s00256-008-0632-3] [PMID: 19183993]
[4]
Burns JE, Yao J, Summers RM. Vertebral body compression fractures and bone density: Automated detection and classification on CT images. Radiology 2017; 284(3): 788-97.
[http://dx.doi.org/10.1148/radiol.2017162100] [PMID: 28301777]
[5]
Griffith JF, Guglielmi G. Vertebral fracture. Radiol Clin North Am 2010; 48(3): 519-29.
[http://dx.doi.org/10.1016/j.rcl.2010.02.012] [PMID: 20609889]
[6]
Cauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci 2013; 68(10): 1243-51.
[http://dx.doi.org/10.1093/gerona/glt093] [PMID: 23902935]
[7]
Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK. Recognizing and reporting osteoporotic vertebral fractures. The Aging Spine. Berlin, Heidelberg: Springer-Verlag 2005; pp. 22-30.http://link.springer.com/10.1007/3-540-27376-X_5 [cited 2020 Sep 30]
[http://dx.doi.org/10.1007/3-540-27376-X_5]
[8]
Aparisi Gómez MP. Nonspinal Fragility Fractures. Semin Musculoskelet Radiol 2016; 20(4): 330-44.
[http://dx.doi.org/10.1055/s-0036-1592434] [PMID: 27842426]
[9]
Wáng YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH. Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg 2017; 7(5): 555-91.
[http://dx.doi.org/10.21037/qims.2017.10.05] [PMID: 29184768]
[10]
Broy SB. The Vertebral Fracture Cascade: Etiology and Clinical Implications. J Clin Densitom 2016; 19(1): 29-34.
[http://dx.doi.org/10.1016/j.jocd.2015.08.007] [PMID: 26363627]
[11]
Harrison RA, Siminoski K, Vethanayagam D, Majumdar SR. Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. J Bone Miner Res 2007; 22(3): 447-57.
[http://dx.doi.org/10.1359/jbmr.061202] [PMID: 17181402]
[12]
Old JL, Calvert M. Vertebral compression fractures in the elderly. Am Fam Phys 2004; 69(1): 111-6.
[PMID: 14727827]
[13]
Ross PD. Clinical consequences of vertebral fractures. Am J Med 1997; 103(2A): 30S-42S.
[http://dx.doi.org/10.1016/S0002-9343(97)90025-5] [PMID: 9302895]
[14]
Schousboe JT. Epidemiology of vertebral fractures. J Clin Densitom 2016; 19(1): 8-22.
[http://dx.doi.org/10.1016/j.jocd.2015.08.004] [PMID: 26349789]
[15]
Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 2000; 15(4): 721-39.
[http://dx.doi.org/10.1359/jbmr.2000.15.4.721] [PMID: 10780864]
[16]
Spinnato P, Bazzocchi A, Facchini G, et al. Vertebral Fractures of Unknown Origin: Role of Computed Tomography-Guided Biopsy. Int J Spine Surg 2018; 12(6): 673-9.
[http://dx.doi.org/10.14444/5084] [PMID: 30619670]
[17]
Mansoorinasab M, Abdolhoseinpour H. A review and update of vertebral fractures due to metastatic tumors of various sites to the spine: Percutaneous vertebroplasty. Interv Med Appl Sci 2018; 10(1): 1-6.
[http://dx.doi.org/10.1556/1646.10.2018.03] [PMID: 30363329]
[18]
Jung H-S, Jee W-H, McCauley TR, Ha K-Y, Choi K-H. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003; 23(1): 179-87.
[http://dx.doi.org/10.1148/rg.231025043] [PMID: 12533652]
[19]
Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer 1987; 55(1): 61-6.
[http://dx.doi.org/10.1038/bjc.1987.13] [PMID: 3814476]
[20]
Coleman RE, Smith P, Rubens RD. Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 1998; 77(2): 336-40.
[http://dx.doi.org/10.1038/bjc.1998.52] [PMID: 9461007]
[21]
Macedo F, Ladeira K, Pinho F, et al. Bone metastases: An overview. Oncol Rev 2017; 11(1): 321.
[PMID: 28584570]
[22]
Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001; 27(3): 165-76.
[http://dx.doi.org/10.1053/ctrv.2000.0210] [PMID: 11417967]
[23]
Higinbotham NL, Marcove RC. The management of pathological fractures. J Trauma 1965; 5(6): 792-8.
[http://dx.doi.org/10.1097/00005373-196511000-00015] [PMID: 5851126]
[24]
Boutin RD, Lenchik L. Value-Added Opportunistic CT: Insights Into Osteoporosis and Sarcopenia. AJR Am J Roentgenol 2020; 215(3): 582-94.
[http://dx.doi.org/10.2214/AJR.20.22874] [PMID: 32755187]
[25]
Bazzocchi A, Fuzzi F, Garzillo G, et al. Reliability and accuracy of scout CT in the detection of vertebral fractures. Br J Radiol 2013; 86(1032): 20130373.
[http://dx.doi.org/10.1259/bjr.20130373] [PMID: 24100019]
[26]
Bazzocchi A, Guglielmi G. Vertebral fracture identification. Semin Musculoskelet Radiol 2016; 20(4): 317-29.
[http://dx.doi.org/10.1055/s-0036-1592435] [PMID: 27842425]
[27]
Adams JE. Opportunistic Identification of Vertebral Fractures. J Clin Densitom 2016; 19(1): 54-62.
[http://dx.doi.org/10.1016/j.jocd.2015.08.010] [PMID: 26412139]
[28]
Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR. Recognition of vertebral fracture in a clinical setting. Osteoporos Int 2000; 11(7): 577-82.
[http://dx.doi.org/10.1007/s001980070078] [PMID: 11069191]
[29]
Diacinti D, Guglielmi G. Vertebral morphometry. Radiol Clin North Am 2010; 48(3): 561-75.
[http://dx.doi.org/10.1016/j.rcl.2010.02.018] [PMID: 20609892]
[30]
Delmas PD, van de Langerijt L, Watts NB, et al. IMPACT Study Group. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 2005; 20(4): 557-63.
[http://dx.doi.org/10.1359/JBMR.041214] [PMID: 15765173]
[31]
Hanrahan CJ, Christensen CR, Crim JR. Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 2010; 30(1): 127-42.
[http://dx.doi.org/10.1148/rg.301095066] [PMID: 20083590]
[32]
Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8(9): 1137-48.
[http://dx.doi.org/10.1002/jbmr.5650080915] [PMID: 8237484]
[33]
Kendler DL, Bauer DC, Davison KS, et al. Vertebral Fractures: Clinical Importance and Management. Am J Med 2016; 129(2): 221.e1-221.e10.
[http://dx.doi.org/10.1016/j.amjmed.2015.09.020] [PMID: 26524708]
[34]
Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics 2011; 31(5): 1343-64.
[http://dx.doi.org/10.1148/rg.315105712] [PMID: 21918048]
[35]
Kanis JA, Kanis JA. WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 1994; 4(6): 368-81.
[http://dx.doi.org/10.1007/BF01622200] [PMID: 7696835]
[36]
Briggs AM, Perilli E, Codrington J, Reynolds KJ, Parkinson IH, Wark JD. Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density. Calcif Tissue Int 2014; 95(2): 97-107.
[http://dx.doi.org/10.1007/s00223-014-9866-3] [PMID: 24858710]
[37]
Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol 2017; 16(3): 989-1000.
[http://dx.doi.org/10.1007/s10237-016-0866-2] [PMID: 28004226]
[38]
Bazzocchi A, Spinnato P, Fuzzi F, et al. Vertebral fracture assessment by new dual-energy X-ray absorptiometry. Bone 2012; 50(4): 836-41.
[http://dx.doi.org/10.1016/j.bone.2012.01.018] [PMID: 22316655]
[39]
Hospers IC, van der Laan JG, Zeebregts CJ, et al. Vertebral fracture assessment in supine position: comparison by using conventional semiquantitative radiography and visual radiography. Radiology 2009; 251(3): 822-8.
[http://dx.doi.org/10.1148/radiol.2513080887] [PMID: 19380691]
[40]
Rud B, Vestergaard A, Hyldstrup L. Accuracy of densitometric vertebral fracture assessment when performed by DXA technicians- a cross-sectional, multiobserver study. Osteoporos Int 2016; 27(4): 1451-8.
[http://dx.doi.org/10.1007/s00198-015-3395-4] [PMID: 26556734]
[41]
Bazzocchi A, Ferrari F, Diano D, et al. Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 2012; 91(2): 149-56.
[http://dx.doi.org/10.1007/s00223-012-9609-2] [PMID: 22623178]
[42]
Shapiro CL, Keating J, Angell JE, et al. Monitoring therapeutic response in skeletal metastases using dual-energy x-ray absorptiometry: a prospective feasibility study in breast cancer patients. Cancer Invest 1999; 17(8): 566-74.
[http://dx.doi.org/10.3109/07357909909032841] [PMID: 10592763]
[43]
Berruti A, Dogliotti L, Osella G, et al. Evaluation by dual energy X-ray absorptiometry of changed bone density in metastatic bone sites as a consequence of systemic treatment. Oncol Rep 2000; 7(4): 777-81.
[http://dx.doi.org/10.3892/or.7.4.777] [PMID: 10854543]
[44]
Smith GL, Doherty AP, Banks LM, et al. Dual X-ray absorptiometry detects disease- and treatment-related alterations of bone density in prostate cancer patients. Clin Exp Metastasis 2000; 18(5): 385-90.
[http://dx.doi.org/10.1023/A:1010991213842] [PMID: 11467770]
[45]
Woo EK, Mansoubi H, Alyas F. Incidental vertebral fractures on multidetector CT images of the chest: prevalence and recognition. Clin Radiol 2008; 63(2): 160-4.
[http://dx.doi.org/10.1016/j.crad.2007.01.031] [PMID: 18194691]
[46]
Laredo JD, Lakhdari K, Bellaïche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology 1995; 194(1): 41-8.
[http://dx.doi.org/10.1148/radiology.194.1.7997579] [PMID: 7997579]
[47]
Chang M-Y, Lee SH, Ha JW, Park Y, Zhang H-Y, Lee SH. Predicting bone marrow edema and fracture age in vertebral fragility fractures using MDCT. AJR Am J Roentgenol 2020; 215(4): 970-7.
[http://dx.doi.org/10.2214/AJR.19.22606] [PMID: 32809864]
[48]
Mauch JT, Carr CM, Cloft H, Diehn FE. Review of the imaging features of benign osteoporotic and malignant vertebral compression fractures. AJNR Am J Neuroradiol 2018; 39(9): 1584-92.
[http://dx.doi.org/10.3174/ajnr.A5528] [PMID: 29348133]
[49]
Wong WD, Shah S, Murray N, Walstra F, Khosa F, Nicolaou S. Advanced musculoskeletal applications of dual-energy computed tomography. Radiol Clin North Am 2018; 56(4): 587-600.
[http://dx.doi.org/10.1016/j.rcl.2018.03.003] [PMID: 29936949]
[50]
Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: What Is the role beyond gout? AJR Am J Roentgenol 2019; 213(3): 493-505.
[http://dx.doi.org/10.2214/AJR.19.21095] [PMID: 31039024]
[51]
Pache G, Krauss B, Strohm P, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions- feasibility study. Radiology 2010; 256(2): 617-24.
[http://dx.doi.org/10.1148/radiol.10091230] [PMID: 20551186]
[52]
Bierry G, Venkatasamy A, Kremer S, Dosch J-C, Dietemann J-L. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 2014; 43(4): 485-92.
[http://dx.doi.org/10.1007/s00256-013-1812-3] [PMID: 24445957]
[53]
Diekhoff T, Hermann KG, Pumberger M, Hamm B, Putzier M, Fuchs M. Dual-energy CT virtual non-calcium technique for detection of bone marrow edema in patients with vertebral fractures: A prospective feasibility study on a single- source volume CT scanner. Eur J Radiol 2017; 87: 59-65.
[http://dx.doi.org/10.1016/j.ejrad.2016.12.008] [PMID: 28065376]
[54]
Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu C-W. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 2018; 28(10): 4182-94.
[http://dx.doi.org/10.1007/s00330-018-5411-5] [PMID: 29679212]
[55]
Cao J-X, Wang Y-M, Kong X-Q, Yang C, Wang P. Good interrater reliability of a new grading system in detecting traumatic bone marrow lesions in the knee by dual energy CT virtual non- calcium images. Eur J Radiol 2015; 84(6): 1109-15.
[http://dx.doi.org/10.1016/j.ejrad.2015.03.003] [PMID: 25816992]
[56]
Thomas C, Schabel C, Krauss B, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204(3): W324-31.
[http://dx.doi.org/10.2214/AJR.14.12613] [PMID: 25714318]
[57]
Kim J-H, Kim J-I, Jang B-H, Seo J-G, Kim J-H. The comparison of bone scan and MRI in osteoporotic compression fractures. Asian Spine J 2010; 4(2): 89-95.
[http://dx.doi.org/10.4184/asj.2010.4.2.89] [PMID: 21165311]
[58]
Tokuda O, Harada Y, Ueda T, Ohishi Y, Matsunaga N. Malignant versus benign vertebral compression fractures: can we use bone SPECT as a substitute for MR imaging? Nucl Med Commun 2011; 32(3): 192-8.
[http://dx.doi.org/10.1097/MNM.0b013e3283425665] [PMID: 21150808]
[59]
Bredella MA, Essary B, Torriani M, Ouellette HA, Palmer WE. Use of FDG-PET in differentiating benign from malignant compression fractures. Skeletal Radiol 2008; 37(5): 405-13.
[http://dx.doi.org/10.1007/s00256-008-0452-5] [PMID: 18278491]
[60]
Uchida K, Nakajima H, Miyazaki T, et al. (18)F-FDG PET/CT for diagnosis of osteosclerotic and osteolytic vertebral metastatic lesions: Comparison with bone scintigraphy. Asian Spine J 2013; 7(2): 96-103.
[http://dx.doi.org/10.4184/asj.2013.7.2.96] [PMID: 23741546]
[61]
Shin D-S, Shon O-J, Byun S-J, Choi J-H, Chun K-A, Cho I-H. Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Skeletal Radiol 2008; 37(5): 415-21.
[http://dx.doi.org/10.1007/s00256-008-0462-3] [PMID: 18309481]
[62]
Cho W-I, Chang U-K. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine 2011; 14(2): 177-83.
[http://dx.doi.org/10.3171/2010.10.SPINE10175] [PMID: 21214309]
[63]
Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine 2012; 37(12): E736-44.
[http://dx.doi.org/10.1097/BRS.0b013e3182458cac] [PMID: 22210011]
[64]
Takigawa T, Tanaka M, Sugimoto Y, Tetsunaga T, Nishida K, Ozaki T. Discrimination between balignant and benign vertebral fractures using magnetic resonance imaging. Asian Spine J 2017; 11(3): 478-83.
[http://dx.doi.org/10.4184/asj.2017.11.3.478] [PMID: 28670417]
[65]
Abdel-Wanis ME, Solyman MTM, Hasan NMA. Sensitivity, specificity and accuracy of magnetic resonance imaging for differentiating vertebral compression fractures caused by malignancy, osteoporosis, and infections. J Orthop Surg (Hong Kong) 2011; 19(2): 145-50.
[http://dx.doi.org/10.1177/230949901101900203] [PMID: 21857034]
[66]
Leake RL, Mills MK, Hanrahan CJ. Spinal marrow imaging: Clues to disease. Radiol Clin North Am 2019; 57(2): 359-75.
[http://dx.doi.org/10.1016/j.rcl.2018.09.008] [PMID: 30709475]
[67]
Hanrahan CJ, Shah LM. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol 2011; 197(6): 1309-21.
[http://dx.doi.org/10.2214/AJR.11.7420] [PMID: 22109284]
[68]
Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993; 188(1): 249-52.
[http://dx.doi.org/10.1148/radiology.188.1.8511306] [PMID: 8511306]
[69]
Ganesan K, Bydder GM. A prospective comparison study of fast T1 weighted fluid attenuation inversion recovery and T1 weighted turbo spin echo sequence at 3 T in degenerative disease of the cervical spine. Br J Radiol 2014; 87(1041): 20140091.
[http://dx.doi.org/10.1259/bjr.20140091] [PMID: 25010068]
[70]
Melhem ER, Israel DA, Eustace S, Jara H. MR of the spine with a fast T1-weighted fluid-attenuated inversion recovery sequence. AJNR Am J Neuroradiol 1997; 18(3): 447-54.
[PMID: 9090401]
[71]
Tan DYL, Tsou IYY, Chee TSG. Differentiation of malignant vertebral collapse from osteoporotic and other benign causes using magnetic resonance imaging. Ann Acad Med Singapore 2002; 31(1): 8-14.
[PMID: 11885502]
[72]
Ishiyama M, Fuwa S, Numaguchi Y, Kobayashi N, Saida Y. Pedicle involvement on MR imaging is common in osteoporotic compression fractures. AJNR Am J Neuroradiol 2010; 31(4): 668-73.
[http://dx.doi.org/10.3174/ajnr.A1905] [PMID: 20019106]
[73]
Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225(3): 730-5.
[http://dx.doi.org/10.1148/radiol.2253011413] [PMID: 12461253]
[74]
Lecouvet FE, Malghem J, Michaux L, et al. Vertebral compression fractures in multiple myeloma. Part II. Assessment of fracture risk with MR imaging of spinal bone marrow. Radiology 1997; 204(1): 201-5.
[http://dx.doi.org/10.1148/radiology.204.1.9205247] [PMID: 9205247]
[75]
Filonzi G, Mancuso K, Zamagni E, et al. A Comparison of different staging systems for multiple myeloma: Can the MRI pattern play a prognostic role? AJR Am J Roentgenol 2017; 209(1): 152-8.
[http://dx.doi.org/10.2214/AJR.16.17219] [PMID: 28418695]
[76]
Ormond Filho AG, Carneiro BC, Pastore D, et al. Whole-body imaging of multiple myeloma: Diagnostic criteria. Radiographics 2019; 39(4): 1077-97.
[http://dx.doi.org/10.1148/rg.2019180096] [PMID: 31283452]
[77]
Bruno F, Arrigoni F, Mariani S, et al. Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications. Radiol Med (Torino) 2019; 124(4): 243-52.
[http://dx.doi.org/10.1007/s11547-019-01035-7] [PMID: 30949892]
[78]
Dallaudière B, Lecouvet F, Vande B, et al. Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 2015; 96(4): 327-40.
[http://dx.doi.org/10.1016/j.diii.2014.10.008] [PMID: 25704147]
[79]
Hagmann P, Jonasson L, Maeder P, Thiran J-P, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. RadioGraphics 2006; 26(suppl_1): S205-223.
[80]
Sung JK, Jee W-H, Jung J-Y, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology 2014; 271(2): 488-98.
[http://dx.doi.org/10.1148/radiol.13130399] [PMID: 24484060]
[81]
Park S-W, Lee J-H, Ehara S, et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine; Is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 2004; 28(2): 102-8.
[http://dx.doi.org/10.1016/S0899-7071(03)00247-X] [PMID: 15050221]
[82]
Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169(5): 1439-47.
[http://dx.doi.org/10.2214/ajr.169.5.9353477] [PMID: 9353477]
[83]
Zajick DC Jr, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237(2): 590-6.
[http://dx.doi.org/10.1148/radiol.2372040990] [PMID: 16244268]
[84]
Romeo V, Ugga L, Stanzione A, Cocozza S, Cuocolo R, Brunetti A. Differential diagnosis of benign and malignant vertebral compression fractures using conventional and advanced MRI techniques. BJR|Open 2019; 1(1): 20180033.
[http://dx.doi.org/10.1259/bjro.20180033]
[85]
Ragab Y, Emad Y, Gheita T, et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of phase MR imaging. Eur J Radiol 2009; 72(1): 125-33.
[http://dx.doi.org/10.1016/j.ejrad.2008.06.019] [PMID: 18672340]
[86]
Geith T, Schmidt G, Biffar A, et al. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence? AJR Am J Roentgenol 2014; 203(3): 582-8.
[http://dx.doi.org/10.2214/AJR.13.11632] [PMID: 25148160]
[87]
Morales KA, Arevalo-Perez J, Peck KK, Holodny AI, Lis E, Karimi S. Differentiating atypical hemangiomas and metastatic vertebral lesions: The role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol 2018; 39(5): 968-73.
[http://dx.doi.org/10.3174/ajnr.A5630] [PMID: 29650780]
[88]
Burke MC, Garg A, Youngner JM, Deshmukh SD, Omar IM. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol 2019; 48(4): 605-13.
[http://dx.doi.org/10.1007/s00256-018-3087-1] [PMID: 30343440]
[89]
Chandra RV, Maingard J, Asadi H, et al. Vertebroplasty and kyphoplasty for osteoporotic vertebral fractures: What are the latest data? AJNR Am J Neuroradiol 2018; 39(5): 798-806.
[http://dx.doi.org/10.3174/ajnr.A5458] [PMID: 29170272]
[90]
Predey TA, Sewall LE, Smith SJ. Percutaneous vertebroplasty: new treatment for vertebral compression fractures. Am Fam Physician 2002; 66(4): 611-5.
[PMID: 12201552]
[91]
Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Musculoskeletal Group, editor Cochrane Database of Systematic Reviews 2018. Available from: http://doi.wiley.com/10.1002/14651858.CD006349.pub4
[92]
Clark W, Bird P, Diamond T, Gonski P. Vertebroplasty for acute painful osteoporotic fractures (VAPOUR): study protocol for a randomized controlled trial. Trials 2015; 16(1): 159.
[http://dx.doi.org/10.1186/s13063-015-0671-8] [PMID: 25873274]
[93]
Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 2001; 26(14): 1537-41.
[http://dx.doi.org/10.1097/00007632-200107150-00007] [PMID: 11462082]
[94]
Kallmes DF, Comstock BA, Heagerty PJ, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 2009; 361(6): 569-79.
[http://dx.doi.org/10.1056/NEJMoa0900563] [PMID: 19657122]
[95]
Leake CB, Brinjikji W, Cloft HJ, Kallmes DF. Trends of inpatient spine augmentation: 2001-2008. AJNR Am J Neuroradiol 2011; 32(8): 1464-8.
[http://dx.doi.org/10.3174/ajnr.A2503] [PMID: 21622578]
[96]
Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovasc Intervent Radiol 2006; 29(4): 580-5.
[http://dx.doi.org/10.1007/s00270-005-0138-5] [PMID: 16565797]
[97]
Wang H, Sribastav SS, Ye F, et al. Comparison of percutaneous vertebroplasty and balloon kyphoplasty for the treatment of single level vertebral compression fractures: a meta-analysis of the literature. Pain Physician 2015; 18(3): 209-22.
[PMID: 26000665]
[98]
Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities- part II. J Vasc Interv Radiol 2001; 12(10): 1135-48.
[http://dx.doi.org/10.1016/S1051-0443(07)61670-4] [PMID: 11585879]
[99]
Gazelle GS, Goldberg SN, Solbiati L, Livraghi T. Tumor ablation with radio-frequency energy. Radiology 2000; 217(3): 633-46.
[http://dx.doi.org/10.1148/radiology.217.3.r00dc26633] [PMID: 11110923]
[100]
Gangi A, Kastler B, Klinkert A, Dietemann JL. Injection of alcohol into bone metastases under CT guidance. J Comput Assist Tomogr 1994; 18(6): 932-5.
[http://dx.doi.org/10.1097/00004728-199411000-00016] [PMID: 7962803]
[101]
Goldberg SN, Grassi CJ, Cardella JF, et al. Society of Interventional Radiology Technology Assessment Committee. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 2005; 16(6): 765-78.
[http://dx.doi.org/10.1097/01.RVI.0000170858.46668.65] [PMID: 15947040]
[102]
Thanos L, Mylona S, Galani P, et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skeletal Radiol 2008; 37(3): 189-94.
[http://dx.doi.org/10.1007/s00256-007-0404-5] [PMID: 18030464]
[103]
Lentle BC, Brown JP, Khan A, et al. Scientific Advisory Council of Osteoporosis Canada; Canadian Association of Radiologists. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 2007; 58(1): 27-36.
[PMID: 17408160]
[104]
Lunt M, O’Neill TW, Felsenberg D, et al. European Prospective Osteoporosis Study Group. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 2003; 33(4): 505-13.
[http://dx.doi.org/10.1016/S8756-3282(03)00248-5] [PMID: 14555253]
[105]
Guglielmi G, Diacinti D, van Kuijk C, et al. Vertebral morphometry: current methods and recent advances. Eur Radiol 2008; 18(7): 1484-96.
[http://dx.doi.org/10.1007/s00330-008-0899-8] [PMID: 18351350]
[106]
Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW. Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol 2009; 69(1): 179-83.
[http://dx.doi.org/10.1016/j.ejrad.2007.08.028] [PMID: 17913429]
[107]
Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 2003; 33(4): 522-32.
[http://dx.doi.org/10.1016/S8756-3282(03)00241-2] [PMID: 14555255]
[108]
Guglielmi G, Palmieri F, Placentino MG, D’Errico F, Stoppino LP. Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry. Eur J Radiol 2009; 70(1): 142-8.
[http://dx.doi.org/10.1016/j.ejrad.2007.12.001] [PMID: 18242911]
[109]
Burns JE, Yao J, Muñoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 2016; 278(1): 64-73.
[http://dx.doi.org/10.1148/radiol.2015142346] [PMID: 26172532]
[110]
Sekuboyina A, Kukačka J, Kirschke JS, Menze BH, Valentinitsch A. Attention-Driven Deep Learning for Pathological Spine Segmentation. In: Glocker B, Yao J, Vrtovec T, Frangi A, Zheng G, Eds. Computational Methods and Clinical Applications in Musculoskeletal Imaging. Cham: Springer International Publishing 2018; vol. 10734: pp. 108-19. Available from: http://link.springer.com/10.1007/978-3-319-74113-0_10
[http://dx.doi.org/10.1007/978-3-319-74113-0_10]
[111]
Lessmann N, van Ginneken B, de Jong PA, Išgum I. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal 2019; 53: 142-55.
[http://dx.doi.org/10.1016/j.media.2019.02.005] [PMID: 30771712]
[112]
Janssens R, Zeng G, Zheng G. Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks. IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018; 893-7. Available from: https://ieeexplore.ieee.org/document/8363715/
[113]
Sekuboyina A, Bayat A, Husseini ME, et al. VerSe: A Vertebrae Labelling and Segmentation Benchmark. 2020. Available from: http://arxiv.org/abs/2001.09193
[114]
Löffler MT, Sekuboyina A, Jacob A, et al. A Vertebral Segmentation Dataset with Fracture Grading. Radiology. Artif Intell 2020; 2(4): e190138.
[115]
Nicolaes J, Raeymaeckers S, Robben D, et al. Detection of Vertebral Fractures in CT Using 3D Convolutional Neural Networks. Computational Methods and Clinical Applications for Spine Imaging 2020; : 3-14.vol. 11963 Available from: http://link.springer.com/10.1007/978-3-030-39752-4_1
[116]
Rajapakse CS, Phillips EA, Sun W, et al. Vertebral deformities and fractures are associated with MRI and pQCT measures obtained at the distal tibia and radius of postmenopausal women. Osteoporos Int 2014; 25(3): 973-82.
[http://dx.doi.org/10.1007/s00198-013-2569-1] [PMID: 24221453]
[117]
Valentinitsch A, Trebeschi S, Alarcón E, et al. Regional analysis of age-related local bone loss in the spine of a healthy population using 3D voxel-based modeling. Bone 2017; 103: 233-40.
[http://dx.doi.org/10.1016/j.bone.2017.06.013] [PMID: 28716553]
[118]
Pickhardt PJ, Lee SJ, Liu J, et al. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br J Radiol 2019; 92(1094): 20180726.
[http://dx.doi.org/10.1259/bjr.20180726] [PMID: 30433815]
[119]
Hammon M, Dankerl P, Tsymbal A, et al. Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography. Eur Radiol 2013; 23(7): 1862-70.
[http://dx.doi.org/10.1007/s00330-013-2774-5] [PMID: 23397381]
[120]
O’Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT- preliminary study. Radiology 2007; 242(3): 811-6.
[http://dx.doi.org/10.1148/radiol.2423060260] [PMID: 17325068]
[121]
Burns JE, Yao J, Wiese TS, Muñoz HE, Jones EC, Summers RM. Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 2013; 268(1): 69-78.
[http://dx.doi.org/10.1148/radiol.13121351] [PMID: 23449957]
[122]
Razek AAKA, Sherif FM. Diagnostic accuracy of diffusion tensor imaging in differentiating malignant from benign compressed vertebrae. Neuroradiology 2019; 61(11): 1291-6.
[http://dx.doi.org/10.1007/s00234-019-02286-x] [PMID: 31492969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy