Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Liposomes: An Emerging Approach for the Treatment of Cancer

Author(s): Keerti Mishra and Akhlesh K. Jain*

Volume 27, Issue 20, 2021

Published on: 06 April, 2021

Page: [2398 - 2414] Pages: 17

DOI: 10.2174/1381612827666210406141449

Price: $65

conference banner
Abstract

Background: Conventional drug delivery agents for a life-threatening disease, i.e., cancer, lack specificity towards cancer cells, producing a greater degree of side effects in the normal cells with a poor therapeutic index. These toxic side effects often limit dose escalation of anti-cancer drugs, leading to incomplete tumor suppression/ cancer eradication, early disease relapse, and ultimately, the development of drug resistance. Accordingly, targeting the tumor vasculatures is essential for the treatment of cancer.

Objective: To search and describe a safer drug delivery carrier for the treatment of cancer with reduced systemic toxicities.

Method: Data were collected from Medline, PubMed, Google Scholar, Science Direct using the following keywords: ‘liposomes’, ‘nanocarriers’, ‘targeted drug delivery’, ‘ligands’, ‘liposome for anti-cancerous drugs’, ‘treatment for cancer’ and ‘receptor targeting.’

Results: Liposomes have provided a safe platform for the targeted delivery of encapsulated anti-cancer drugs for the treatment of cancer, which results in the reduction of the cytotoxic side effects of anti-cancer drugs on normal cells.

Conclusion: Liposomal targeting is a better emerging approach as an advanced drug delivery carrier with targeting ligands for anti-cancer agents.

Keywords: Cancer, anti-cancer drugs, nanocarriers, drug delivery, liposomes, ligands, targeted therapy.

[1]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract 2017; 4: 127-9.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[2]
Cancer statistics Available from URL: http://cancerindia.org.in/cancer-statistics/
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[5]
Xing K, Lisong S. Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine 2017; 1: 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[6]
Ruegg C, Mutter N. Anti-angiogenic therapies in cancer: achievements and open questions. Bull Cancer 2007; 94(9): 753-62.
[PMID: 17878094]
[7]
Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009; 109(7): 2859-61.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[8]
Friedman M, Ståhl S. Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 2009; 53(Pt 1): 1-29.
[http://dx.doi.org/10.1042/BA20080287] [PMID: 19341363]
[9]
Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007; 7(2): 107-17.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
[10]
Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005; 2(4): 369-81.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[11]
Copland M, Jørgensen HG, Holyoake TL. Evolving molecular therapy for chronic myeloid leukaemia-are we on target? Hematology 2005; 10(5): 349-59.
[http://dx.doi.org/10.1080/10245330500234195] [PMID: 16203604]
[12]
Raaijmakers MH, de Grouw EP, Heuver LH, et al. Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res 2005; 11(6): 2436-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0212] [PMID: 15788695]
[13]
Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancer 2012; 6.
[14]
O’Neill VJ, Twelves CJ. Oral cancer treatment: developments in chemotherapy and beyond. Br J Cancer 2002; 87(9): 933-7.
[http://dx.doi.org/10.1038/sj.bjc.6600591] [PMID: 12434279]
[15]
Hellriegel ET, Bjornsson TD, Hauck WW. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther 1996; 60(6): 601-7.
[http://dx.doi.org/10.1016/S0009-9236(96)90208-8] [PMID: 8988062]
[16]
Stuurman FE, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet 2013; 52(6): 399-414.
[http://dx.doi.org/10.1007/s40262-013-0040-2] [PMID: 23420518]
[17]
Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1999; 1999: 1-21.
[PMID: 14585120]
[18]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[19]
Fenga S-S, Shu Chienc. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 2003; 58: 4087-411.
[http://dx.doi.org/10.1016/S0009-2509(03)00234-3]
[20]
Chen W, Cooper TK, Zahnow CA, et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 2004; 6(4): 387-98.
[http://dx.doi.org/10.1016/j.ccr.2004.08.030] [PMID: 15488761]
[21]
Natanson L. New report shows monoclonal antibody development times are lengthening, biotech companies continue to drive innovation. BIO 2011. Available from URL: https://archive.bio.org/articles/new-report-shows-monoclonal-antibody-development-times-are-lengthening
[22]
Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P. Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy 2011; 31(8): 813-28.
[http://dx.doi.org/10.1592/phco.31.8.813] [PMID: 21923608]
[23]
Friedmann T. A brief history of gene therapy. Nat Genet 1992; 2(2): 93-8.
[http://dx.doi.org/10.1038/ng1092-93] [PMID: 1303270]
[24]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[25]
Freeman SM, Abboud CN, Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53(21): 5274-83.
[PMID: 8221662]
[26]
Nasu Y, Saika T, Ebara S, et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol Ther 2007; 15(4): 834-40.
[http://dx.doi.org/10.1038/sj.mt.6300096] [PMID: 17327829]
[27]
Natsume A, Yoshida J. Gene therapy for high-grade glioma: current approaches and future directions. Cell Adhes Migr 2008; 2(3): 186-91.
[http://dx.doi.org/10.4161/cam.2.3.6278] [PMID: 19262115]
[28]
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411(6836): 494-8.
[http://dx.doi.org/10.1038/35078107] [PMID: 11373684]
[29]
Weiss B, Davidkova G, Zhou LW. Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci 1999; 55(3): 334-58.
[http://dx.doi.org/10.1007/s000180050296] [PMID: 10228554]
[30]
Putney SD, Brown J, Cucco C, et al. Enhanced anti-tumor effects with microencapsulated c-myc antisense oligonucleotide. Antisense Nucleic Acid Drug Dev 1999; 9(5): 451-8.
[http://dx.doi.org/10.1089/oli.1.1999.9.451] [PMID: 10555152]
[31]
Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006; 16(4): 318-30.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.015] [PMID: 16934487]
[32]
Xu CF, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci 2015; 10(1): 1-12.
[http://dx.doi.org/10.1016/j.ajps.2014.08.011]
[33]
Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 2005; 11(3): 336-47.
[http://dx.doi.org/10.1016/j.ymthe.2004.12.006] [PMID: 15727930]
[34]
Sarisozen C, Salzano G, Torchilin VP. Recent advances in siRNA delivery. Biomol Concepts 2015; 6(5-6): 321-41.
[http://dx.doi.org/10.1515/bmc-2015-0019] [PMID: 26609865]
[35]
Halder J, Kamat AA, Landen CN Jr, et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006; 12(16): 4916-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0021] [PMID: 16914580]
[36]
Gray MJ, Van Buren G, Dallas NA, et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 2008; 100(2): 109-20.
[http://dx.doi.org/10.1093/jnci/djm279] [PMID: 18182619]
[37]
Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconjug Chem 2009; 20(1): 5-14.
[http://dx.doi.org/10.1021/bc800278e] [PMID: 19053311]
[38]
Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310(3): 1062-75.
[http://dx.doi.org/10.1124/jpet.104.065607] [PMID: 15159443]
[39]
Grogan K. Ark/Oxford BioMedica mergertouted as Cerepro file is pulled. Pharma Times Available from URL: http://www.pharmatimes.com
[40]
Cadet J, Douki T, Ravanat JL. Artifacts associated with the measurement of oxidized DNA bases. Environ Health Perspect 1997; 105(10): 1034-9.
[PMID: 9349826]
[41]
Gupta RK, Patel AK, Shah N. Oxidative stress and cancer: an overview. Asian Pac J Cancer Prev 2014; 15(11): 4405-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4405] [PMID: 24969860]
[42]
Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 2018; 32(16): 1926-50.
[http://dx.doi.org/10.1080/14786419.2017.1356838] [PMID: 28748726]
[43]
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 2013; 71(9): 585-99.
[http://dx.doi.org/10.1111/nure.12051] [PMID: 24032363]
[44]
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2018; 58(8): 1271-93.
[http://dx.doi.org/10.1080/10408398.2016.1252711] [PMID: 27874279]
[45]
Perrone D, Ardito F, Giannatempo G, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10(5): 1615-23.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[46]
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016; 148: 313-28.
[http://dx.doi.org/10.1016/j.lfs.2016.02.022] [PMID: 26876915]
[47]
Rahimi HR, Nedaeinia R, Sepehri Shamloo A, Nikdoust S, Kazemi Oskuee R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J Phytomed 2016; 6(4): 383-98.
[PMID: 27516979]
[48]
Farooqi AA, Qureshi MZ, Khalid S, et al. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers (Basel) 2019; 11(4): e478.
[http://dx.doi.org/10.3390/cancers11040478] [PMID: 30987378]
[49]
Wang ZP, Wu JB, Chen TS, et al. In vitro and in vivo antitumor efficacy of berberine-nanostructured lipid carriers against H22 tumor. Proc SPIE 9324, Biophotonics and Immune Responses X 93240Y.
[50]
Liu Y, Tang ZG, Lin Y, et al. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed Pharmacother 2017; 92: 33-8.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[51]
Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett 2008; 269(2): 315-25.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[52]
Yang F, Song L, Wang H, Wang J, Xu Z, Xing N. Quercetin in prostate cancer: Chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential (Review). Oncol Rep 2015; 33(6): 2659-68.
[http://dx.doi.org/10.3892/or.2015.3886] [PMID: 25845380]
[53]
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine (Lond) 2013; 9(1): 1-14.
[http://dx.doi.org/10.1016/j.nano.2012.05.013] [PMID: 22684017]
[54]
Tinkle S, McNeil SE, Mühlebach S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 2014; 1313: 35-56.
[http://dx.doi.org/10.1111/nyas.12403] [PMID: 24673240]
[55]
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015; 91: 3-6.
[http://dx.doi.org/10.1016/j.addr.2015.01.002] [PMID: 25579058]
[56]
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[57]
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[58]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[59]
Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012; 1820(7): 940-8.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.017] [PMID: 22503788]
[60]
Martinelli C. Exosomes: new biomarkers for targeted cancer therapy. Molecular Oncology: Underlying Mechanisms and Translational Advancements. Switzerland AG: Springer Nature, Springer 2017; pp. 129-57.
[http://dx.doi.org/10.1007/978-3-319-53082-6_6]
[61]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[62]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[63]
Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 2016; 10(3): 3323-33.
[http://dx.doi.org/10.1021/acsnano.5b06939] [PMID: 26938862]
[64]
Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine (Lond) 2018; 14(1): 195-204.
[http://dx.doi.org/10.1016/j.nano.2017.09.011] [PMID: 28982587]
[65]
Lapierre V, Thery C, Virault-Rocroy P. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade. Immunother 2010; 34(1): 65-75.
[66]
Cho JA, Yeo DJ, Son HY, et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer 2005; 114(4): 613-22.
[http://dx.doi.org/10.1002/ijc.20757] [PMID: 15609328]
[67]
Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011; 3(15): 15.
[PMID: 21876726]
[68]
Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 20360.
[http://dx.doi.org/10.3402/jev.v2i0.20360] [PMID: 24009894]
[69]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[70]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017; 9(2): 1-33.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[71]
Clemons KV, Stevens DA. Comparative efficacies of four amphotericin B formulations-Fungizone, amphotec (Amphocil), AmBisome, and Abelcet-against systemic murine aspergillosis. Antimicrob Agents Chemother 2004; 48(3): 1047-50.
[http://dx.doi.org/10.1128/AAC.48.3.1047-1050.2004] [PMID: 14982807]
[72]
Mamot C, Ritschard R, Wicki A, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 2012; 13(12): 1234-41.
[http://dx.doi.org/10.1016/S1470-2045(12)70476-X] [PMID: 23153506]
[73]
Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One 2014; 9(9): e108703.
[http://dx.doi.org/10.1371/journal.pone.0108703] [PMID: 25264757]
[74]
Olivier KN, Griffith DE, Eagle G, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195(6): 814-23.
[http://dx.doi.org/10.1164/rccm.201604-0700OC] [PMID: 27748623]
[75]
Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D, Hoos A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol 2006; 58(6): 759-64.
[http://dx.doi.org/10.1007/s00280-006-0235-4] [PMID: 16847673]
[76]
Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, et al. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech 2012; 13(1): 150-8.
[http://dx.doi.org/10.1208/s12249-011-9733-8] [PMID: 22167418]
[77]
Strumberg D, Schultheis B, Traugott U, et al. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther 2012; 50(1): 76-8.
[http://dx.doi.org/10.5414/CPP50076] [PMID: 22192654]
[78]
Lancet JE, Uy GL, Cortes JE, et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary). Am J Clin Oncol 2016; 34: 7000.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.7000]
[79]
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]
[80]
Lancet JE, Cortes JE, Hogge DE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014; 123(21): 3239-46.
[http://dx.doi.org/10.1182/blood-2013-12-540971] [PMID: 24687088]
[81]
Kaspers GJ, Zimmermann M, Reinhardt D, et al. Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol 2013; 31(5): 599-607.
[http://dx.doi.org/10.1200/JCO.2012.43.7384] [PMID: 23319696]
[82]
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[83]
Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[84]
Listed N. Kaposi’s sarcoma: DaunoXome approved. AIDS Treat News 1996; 79(246): 3-4.
[PMID: 11363485]
[85]
Phuphanich S, Maria B, Braeckman R, Chamberlain M. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neurooncol 2007; 81(2): 201-8.
[http://dx.doi.org/10.1007/s11060-006-9218-x] [PMID: 16941075]
[86]
Carvalho B, Roland LM, Chu LF, Campitelli VA III, Riley ET. Single-dose, extended-release epidural morphine (DepoDur) compared to conventional epidural morphine for post-cesarean pain. Anesth Analg 2007; 105(1): 176-83.
[http://dx.doi.org/10.1213/01.ane.0000265533.13477.26] [PMID: 17578973]
[87]
Kohli AG, Kivimäe S, Tiffany MR, Szoka FC. Improving the distribution of Doxil® in the tumor matrix by depletion of tumor hyaluronan. J Control Release 2014; 191: 105-14.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.019] [PMID: 24852095]
[88]
Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006; 7(11): 1469-74.
[http://dx.doi.org/10.1517/14656566.7.11.1469] [PMID: 16859430]
[89]
James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6.
[http://dx.doi.org/10.1016/S0936-6555(05)80269-9] [PMID: 7530036]
[90]
Strieth S, Dunau C, Michaelis U, et al. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck 2014; 36(7): 976-84.
[http://dx.doi.org/10.1002/hed.23397] [PMID: 23733258]
[91]
Awada A, Bondarenko IN, Bonneterre J, et al. CT4002 study group. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 2014; 25(4): 824-31.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]
[92]
Lim J, Song YJ, Park WS, et al. The immunogenicity of a single dose of hepatitis A virus vaccines (Havrix® and Epaxal®) in Korean young adults. Yonsei Med J 2014; 55(1): 126-31.
[http://dx.doi.org/10.3349/ymj.2014.55.1.126] [PMID: 24339297]
[93]
Yeung J, Crisp CC, Mazloomdoost D, Kleeman SD, Pauls RN. Liposomal bupivacaine during robotic colpopexy and posterior repair: a randomized controlled trial. Obstet Gynecol 2018; 131(1): 39-46.
[http://dx.doi.org/10.1097/AOG.0000000000002375] [PMID: 29215511]
[94]
Ahn HK, Jung M, Sym SJ, et al. A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2014; 74(2): 277-82.
[http://dx.doi.org/10.1007/s00280-014-2498-5] [PMID: 24906423]
[95]
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6(1): 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[96]
Gasparini R, Amicizia D, Lai PL, Rossi S, Panatto D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal V ® and Fluad ®) in preventing hospitalization for influenza and pneumonia in the elderly: a matched case-control study. Hum Vaccin Immunother 2013; 9(1): 144-52.
[http://dx.doi.org/10.4161/hv.22231] [PMID: 23143775]
[97]
Semple SC, Leone R, Wang J, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci 2005; 94(5): 1024-38.
[http://dx.doi.org/10.1002/jps.20332] [PMID: 15793796]
[98]
Ugwu S, Zhang A, Parmar M, et al. Preparation, characterization, and stability of liposome-based formulations of mitoxantrone. Drug Dev Ind Pharm 2005; 31(2): 223-9.
[http://dx.doi.org/10.1081/DDC-200047850] [PMID: 15773289]
[99]
Slingerland M, Guchelaar HJ, Rosing H, et al. Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 2013; 35(12): 1946-54.
[http://dx.doi.org/10.1016/j.clinthera.2013.10.009] [PMID: 24290734]
[100]
Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release 2013; 172(1): 48-61.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.022] [PMID: 23928356]
[101]
[102]
Rau KM, Lin YC, Chen YY, et al. Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: an open-label, multi-center, non-comparative phase II study. BMC Cancer 2015; 15: 423.
[http://dx.doi.org/10.1186/s12885-015-1433-4] [PMID: 25994543]
[103]
Smith JA, Mathew L, Burney M, Nyshadham P, Coleman RL. Equivalency challenge: Evaluation of Lipodox® as the generic equivalent for Doxil® in a human ovarian cancer orthotropic mouse model. Gynecol Oncol 2016; 141(2): 357-63.
[http://dx.doi.org/10.1016/j.ygyno.2016.02.033] [PMID: 26946092]
[104]
Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv 2012; 2012: 581363.
[http://dx.doi.org/10.1155/2012/581363] [PMID: 21904682]
[105]
Wetzler M, Thomas DA, Wang ES, et al. Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 2013; 13(4): 430-4.
[http://dx.doi.org/10.1016/j.clml.2013.03.015] [PMID: 23763920]
[106]
McMurtry V, Nieves-Alicea R, Donato N, et al. Liposome incorporated Grb2 antisense oligonucleotides as a novel therapy against drug resistant chronic myelogenous leukemia. Cancer Res 2008; 68: 1503-3.
[107]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[108]
Stathopoulos GP, Boulikas T, Kourvetaris A, Stathopoulos J. Liposomal oxaliplatin in the treatment of advanced cancer: a phase I study. Anticancer Res 2006; 26(2B): 1489-93.
[PMID: 16619562]
[109]
Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 2013; 14(4): 2591-4.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2591] [PMID: 23725180]
[110]
Ye L, He J, Hu Z, et al. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem Toxicol 2013; 52: 200-6.
[http://dx.doi.org/10.1016/j.fct.2012.11.004] [PMID: 23149094]
[111]
Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2013; 71(3): 555-64.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[112]
Senzer NN, Matsuno K, Yamagata N, et al. Abstract C36: MBP-426, a novel liposome-encapsulated oxaliplatin, in combination with 5-FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro-esophageal adenocarcinoma, with pharmacokinetics. Mol Cancer Ther 2009; 8(1): C36-6.
[113]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[114]
Sinatra ST, Teter BB, Bowden J, Houston MC, Martinez-Gonzalez MA. The saturated fat, cholesterol, and statin controversy a commentary. J Am Coll Nutr 2014; 33(1): 79-88.
[http://dx.doi.org/10.1080/07315724.2014.878633] [PMID: 24533611]
[115]
Miller K, Cortes J, Hurvitz SA, et al. HERMIONE: a randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer 2016; 16(1): 352.
[http://dx.doi.org/10.1186/s12885-016-2385-z] [PMID: 27259714]
[116]
Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017; 35(2): 180-8.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[117]
Li L, Yuan L, Luo J, Gao J, Guo J, Xie X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med 2013; 13(2): 109-17.
[http://dx.doi.org/10.1007/s10238-012-0186-5] [PMID: 22623155]
[118]
Eitan R, Fishman A, Meirovitz M, et al. Liposome-encapsulated doxorubicin citrate (Myocet) for treatment of recurrent epithelial ovarian cancer: a retrospective analysis. Anticancer Drugs 2014; 25(1): 101-5.
[http://dx.doi.org/10.1097/CAD.0000000000000023] [PMID: 24263191]
[119]
Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19(5): 1444-54.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1444] [PMID: 11230490]
[120]
Pelzer U, Blanc JF, Melisi D, et al. Quality-adjusted survival with combination nal-IRI+5-FU/LV vs 5-FU/LV alone in metastatic pancreatic cancer patients previously treated with gemcitabine-based therapy: a Q-TWiST analysis. Br J Cancer 2017; 116(10): 1247-53.
[http://dx.doi.org/10.1038/bjc.2017.67] [PMID: 28350787]
[121]
DiGiulio S. FDA approves onivyde combo regimen for advanced pancreatic cancer. Oncol Times 2015; 37: 8.
[http://dx.doi.org/10.1097/01.COT.0000475247.29686.b2]
[122]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[123]
Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 2004; 93(1): 229-32.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.037] [PMID: 15047241]
[124]
Hough B, Posner M, Chung C, et al. A phase II study of single agent OSI-7904L in patients with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN). J Clin Oncol 2009; 27(15): e17005.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e17005]
[125]
Graziani SR, Vital CG, Morikawa AT, et al. Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma. Med Oncol 2017; 34(9): 151.
[http://dx.doi.org/10.1007/s12032-017-1009-z] [PMID: 28756613]
[126]
Jin Z, Lv Y, Cao H, et al. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep 2016; 6: 27559.
[http://dx.doi.org/10.1038/srep27559] [PMID: 27278751]
[127]
Hwang JH, Lim MC, Seo SS, Park SY, Kang S. Phase II study of belotecan (CKD 602) as a single agent in patients with recurrent or progressive carcinoma of uterine cervix. Jpn J Clin Oncol 2011; 41(5): 624-9.
[http://dx.doi.org/10.1093/jjco/hyr017] [PMID: 21355002]
[128]
Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 2014; 32(1): 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[129]
Ohyanagi F, Horai T, Sekine I, et al. Safety of BLP25 liposome vaccine (L-BLP25) in Japanese patients with unresectable stage III NSCLC after primary chemoradiotherapy: preliminary results from a Phase I/II study. Jpn J Clin Oncol 2011; 41(5): 718-22.
[http://dx.doi.org/10.1093/jjco/hyr021] [PMID: 21393255]
[130]
Dou Y, Hynynen K, Allen C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release 2017; 249: 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.025] [PMID: 28122204]
[131]
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012; 7: 49-60.
[PMID: 22275822]
[132]
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (Basel) 2016; 6(7): 125.
[http://dx.doi.org/10.3390/nano6070125] [PMID: 28335253]
[133]
Jain M, Zellweger M, Frobert A, et al. Intra-arterial drug and light delivery for photodynamic therapy using Visudyne®: implication for atherosclerotic plaque treatment. Front Physiol 2016; 7: 400.
[http://dx.doi.org/10.3389/fphys.2016.00400] [PMID: 27672369]
[134]
Belogurov A Jr, Zakharov K, Lomakin Y, et al. CD206-targeted liposomal myelin basic protein peptides in patients with multiple sclerosis resistant to first-line disease-modifying therapies: a first-in-human, proof-of-concept dose-escalation study. Neurotherapeutics 2016; 13(4): 895-904.
[http://dx.doi.org/10.1007/s13311-016-0448-0] [PMID: 27324388]
[135]
Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des 2004; 10(24): 2981-9.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[136]
Dagar S, Sekosan M, Lee BS, Rubinstein I, Onyüksel H. VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery. J Control Release 2001; 74(1-3): 129-34.
[http://dx.doi.org/10.1016/S0168-3659(01)00326-1] [PMID: 11489489]
[137]
Medina OP, Söderlund T, Laakkonen LJ, Tuominen EK, Koivunen E, Kinnunen PK. Binding of novel peptide inhibitors of type IV collagenases to phospholipid membranes and use in liposome targeting to tumor cells in vitro. Cancer Res 2001; 61(10): 3978-85.
[PMID: 11358815]
[138]
Pegram MD, Reese DM. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol 2002; 29(3)(Suppl. 11): 29-37.
[http://dx.doi.org/10.1016/S0093-7754(02)70124-3] [PMID: 12138395]
[139]
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[140]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[141]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[142]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[143]
Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279(5349): 377-80.
[http://dx.doi.org/10.1126/science.279.5349.377] [PMID: 9430587]
[144]
Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (Lond) 2015; 10(13): 1993-5.
[http://dx.doi.org/10.2217/nnm.15.86] [PMID: 26096565]
[145]
Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008; 99(3): 392-7.
[http://dx.doi.org/10.1038/sj.bjc.6604483] [PMID: 18648371]
[146]
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res Int 2014; 2014: 814208.
[http://dx.doi.org/10.1155/2014/814208] [PMID: 24672796]
[147]
Shi S, Yang K, Hong H, et al. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 2013; 34(12): 3002-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.047] [PMID: 23374706]
[148]
Hong H, Yang K, Zhang Y, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012; 6(3): 2361-70.
[http://dx.doi.org/10.1021/nn204625e] [PMID: 22339280]
[149]
Burrows FJ, Thorpe PE. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 1993; 90(19): 8996-9000.
[http://dx.doi.org/10.1073/pnas.90.19.8996] [PMID: 7692443]
[150]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[151]
Lehtinen J, Raki M, Bergström KA, et al. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLoS One 2012; 7(7): e41410.
[http://dx.doi.org/10.1371/journal.pone.0041410] [PMID: 22844475]
[152]
Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int 2014; 2014: 852748.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[153]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[154]
Shmeeda H, Tzemach D, Mak L, Gabizon A. Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Control Release 2009; 136(2): 155-60.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.002] [PMID: 19331844]
[155]
Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005; 65(24): 11631-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[156]
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 2010; 8(11): 1439-52.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0168] [PMID: 21047773]
[157]
Han CY, Yue LL, Tai LY, et al. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro. Int J Nanomedicine 2013; 8: 1541-9.
[PMID: 23626467]
[158]
Yi YS. Folate Receptor-Targeted Diagnostics and Therapeutics for Inflammatory Diseases. Immune Netw 2016; 16(6): 337-43.
[http://dx.doi.org/10.4110/in.2016.16.6.337] [PMID: 28035209]
[159]
Ling SSN, Yuen KH, Magosso E, Barker SA. Oral bioavailability enhancement of a hydrophilic drug delivered via folic acid-coupled liposomes in rats. J Pharm Pharmacol 2009; 61(4): 445-9.
[http://dx.doi.org/10.1211/jpp.61.04.0005] [PMID: 19298690]
[160]
Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 2008; 41(1): 120-9.
[http://dx.doi.org/10.1021/ar7000815] [PMID: 17655275]
[161]
Watanabe K, Kaneko M, Maitani Y. Functional coating of liposomes using a folate- polymer conjugate to target folate receptors. Int J Nanomedicine 2012; 7: 3679-88.
[PMID: 22888227]
[162]
Duarte S, Faneca H, Lima MC. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int J Pharm 2012; 423(2): 365-77.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.035] [PMID: 22209825]
[163]
Chaudhury A, Das S, Bunte RM, Chiu GN. Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft. Int J Nanomedicine 2012; 7: 739-51.
[PMID: 22359453]
[164]
Zhong Z, Wan Y, Han J, Shi S, Zhang Z, Sun X. Improvement of adenoviral vector-mediated gene transfer to airway epithelia by folate-modified anionic liposomes. Int J Nanomedicine 2011; 6: 1083-93.
[PMID: 21698075]
[165]
Niu R, Zhao P, Wang H, et al. Preparation, characterization, and antitumor activity of paclitaxel-loaded folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes. J Drug Target 2011; 19(5): 373-81.
[http://dx.doi.org/10.3109/1061186X.2010.504266] [PMID: 20677917]
[166]
Shmeeda H, Amitay Y, Gorin J, et al. Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release 2010; 146(1): 76-83.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.028] [PMID: 20462513]
[167]
Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010; 141(2): 183-92.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.020] [PMID: 19799948]
[168]
Yoon DJ, Chu DS, Ng CW, et al. Genetically engineering transferrin to improve its in vitro ability to deliver cytotoxins. J Control Release 2009; 133(3): 178-84.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.006] [PMID: 18992290]
[169]
Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer-potential therapeutic implications. Nutrients 2013; 5(8): 2836-59.
[http://dx.doi.org/10.3390/nu5082836] [PMID: 23887041]
[170]
Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006; 121(2): 159-76.
[http://dx.doi.org/10.1016/j.clim.2006.06.006] [PMID: 16920030]
[171]
Zhai G, Wu J, Yu B, Guo C, Yang X, Lee RJ. A transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol 2010; 10(8): 5129-36.
[http://dx.doi.org/10.1166/jnn.2010.2393] [PMID: 21125861]
[172]
Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013; 8(2): 137-43.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[173]
Noble CO, Kirpotin DB, Hayes ME, et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets 2004; 8(4): 335-53.
[http://dx.doi.org/10.1517/14728222.8.4.335] [PMID: 15268628]
[174]
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277: 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[175]
Riaz MK, Riaz MA, Zhang X, et al. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[176]
Lin C, Wong BCK, Chen H, et al. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 2017; 7(1): 1097.
[http://dx.doi.org/10.1038/s41598-017-00957-4] [PMID: 28428618]
[177]
Catuogno S, Esposito CL, de Franciscis V. Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals (Basel) 2016; 9(4): 69.
[http://dx.doi.org/10.3390/ph9040069] [PMID: 27827876]
[178]
Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J Control Release 2008; 126(1): 77-84.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.002] [PMID: 18083264]
[179]
Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 2010; 10(3): 343-53.
[http://dx.doi.org/10.2174/156800910791190210] [PMID: 20370682]
[180]
Zhang Z, Yao J. Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech 2012; 13(3): 802-10.
[http://dx.doi.org/10.1208/s12249-012-9776-5] [PMID: 22639238]
[181]
Keegan-Rogers V, Wu GY. Targeted protection of hepatocytes from galactosamine toxicity in vivo. Cancer Chemother Pharmacol 1990; 26(2): 93-6.
[http://dx.doi.org/10.1007/BF02897251] [PMID: 1693313]
[182]
Kassem NM, Ayad AM, El Husseiny NM, El-Demerdash DM, Kassem HA, Mattar MM. Role of Granulocyte-Macrophage Colony-Stimulating Factor in Acute Myeloid Leukemia/Myelodysplastic Syndromes. J Glob Oncol 2018; 4: 1-6.
[http://dx.doi.org/10.1200/JGO.2017.009332] [PMID: 30241179]
[183]
Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60(3): 722-7.
[PMID: 10676659]
[184]
Sapra P, Moase EH, Ma J, Allen TM. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res 2004; 10(3): 1100-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0041] [PMID: 14871990]
[185]
Singh V, Gupta D, Almasan A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. J Cancer Sci Ther 2015; 7(11): 347-58.
[http://dx.doi.org/10.4172/1948-5956.1000373] [PMID: 27413424]
[186]
Traczewski P, Rudnicka L. Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol 2011; 71(2): 175-82.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03767.x] [PMID: 21219397]
[187]
Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 2012; 18(1): 152-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1839] [PMID: 22068660]
[188]
Kaminetzky D, Hymes KB. Denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Biologics 2008; 2(4): 717-24.
[PMID: 19707452]
[189]
Stasi R. Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin Biol Ther 2008; 8(4): 527-40.
[http://dx.doi.org/10.1517/14712598.8.4.527] [PMID: 18352855]
[190]
Cowan AJ, Laszl o GS, Estey EH, et al. Antibody-based therapy of acute myeloid leukemia with gemtuzumab ozogamicin. Front Biosci (Landmark Ed) 2013; 18: 1311-34.
[191]
Tan M, Yu D. Molecular Mechanisms of ErbB2-Mediated Breast Cancer Chemoresistance.Madame Curie Bioscience Database In: Available from URL: https://www.ncbi.nlm.nih.gov/books/NBK6194/
[http://dx.doi.org/10.1007/978-0-387-74039-3_9]
[192]
Laginha KM, Moase EH, Yu N, Huang A, Allen TM. Bioavailability and therapeutic efficacy of HER2 scFv-targeted liposomal doxorubicin in a murine model of HER2-overexpressing breast cancer. J Drug Target 2008; 16(7): 605-10.
[http://dx.doi.org/10.1080/10611860802229978] [PMID: 18686132]
[193]
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23(6): 1326.
[http://dx.doi.org/10.3390/molecules23061326] [PMID: 29857542]
[194]
Guadagni F, Roselli M, Cosimelli M, et al. Correlation between tumor-associated glycoprotein 72 mucin levels in tumor and serum of colorectal patients as measured by the quantitative CA 72-4 immunoassay. Cancer Res 1996; 56(22): 5293-8.
[PMID: 8912871]
[195]
Brösicke N, Faissner A. Role of tenascins in the ECM of gliomas. Cell Adhes Migr 2015; 9(1-2): 131-40.
[http://dx.doi.org/10.1080/19336918.2014.1000071] [PMID: 25695402]
[196]
Madhankumar AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 2009; 8(3): 648-54.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0853] [PMID: 19276162]
[197]
Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 2009; 373(1-2): 116-23.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.023] [PMID: 19429296]
[198]
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9(11): 2961-73.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287]
[199]
Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 2009; 17(1): 10-8.
[http://dx.doi.org/10.1080/10611860802368966] [PMID: 19016068]
[200]
Saad M, Garbuzenko OB, Ber E, et al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 2008; 130(2): 107-14.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.024] [PMID: 18582982]
[201]
Iwase Y, Maitani Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm 2011; 8(2): 330-7.
[http://dx.doi.org/10.1021/mp100380y] [PMID: 21166471]
[202]
Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 2010; 7(4): 1159-68.
[http://dx.doi.org/10.1021/mp1000235] [PMID: 20524673]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy