Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Survey on Machine Learning Based Medical Assistive Systems in Current Oncological Sciences

Author(s): Bobbinpreet Kaur , Bhawna Goyal* and Ebenezer Daniel

Volume 18, Issue 5, 2022

Published on: 17 February, 2021

Article ID: e150322191519 Pages: 15

DOI: 10.2174/1573405617666210217154446

Price: $65

conference banner
Abstract

Background: Cancer is one of the life-threatening diseases which is affecting a large number of population worldwide. Cancer cells multiply inside the body without showing much symptoms on the surface of the skin, thereby making it difficult to predict and detect the onset of the disease. Many organizations are working towards automating the process of cancer detection with minimal false detection rates.

Introduction: The machine learning algorithms serve to be a promising alternative to support health care practitioners to rule out the disease and predict the growth with various imaging and statistical analysis tools. Medical practitioners are utilizing the output of these algorithms to diagnose and design the course of treatment. These algorithms are capable of finding out the risk level of the patient and can reduce the mortality rate concerning cancer disease.

Method: This article presents the existing state of art techniques for identifying cancer affecting human organs based on machine learning models. The supported set of imaging operations is also elaborated for each type of cancer.

Conclusion: The CAD tools are the aid for the diagnostic radiologists for preliminary investigations and detecting the nature of tumor cells.

Keywords: Machine intelligence, lung cancer, breast cancer, brain tumor, CAD, medical imaging.

Graphical Abstract
[1]
Pizzoli SFM, Renzi C, Arnaboldi P, Russell-Edu W, Pravettoni G. From life-threatening to chronic disease: Is this the case of cancers? A systematic review. Cogent Psychol 2019; 6(1): 1577593.
[http://dx.doi.org/10.1080/23311908.2019.1577593]
[2]
International childhood cancer day 2022. Available at: https://www.iarc.fr/
[3]
Al-Tarawneh MS. Lung cancer detection using image processing techniques. Leonardo Electron J Pract Technol 2012; 11(21): 147-58.
[4]
Galatzer-Levy IR, Karstoft K-I, Statnikov A, Shalev AY. Quantitative forecasting of PTSD from early trauma responses: a machine learning application. J Psychiatr Res 2014; 59: 68-76.
[http://dx.doi.org/10.1016/j.jpsychires.2014.08.017] [PMID: 25260752]
[5]
Lane T, Brodley CE. An application of machine learning to anomaly detection. Proceedings of the 20th National Information Systems Security Conference. Baltimore, USA. 1997; pp. 1997; vol. 377: pp. 366-80.
[6]
Keith W, Graeme M. The application of machine learning to structural health monitoring. Philos Trans Royal Soc A 2007; 365(1851): 515-37.
[http://dx.doi.org/10.1098/rsta.2006.1938]
[7]
Magoulas GD, Prentza A. Machine learning in medical applications.Advanced course on artificial intelligence. Berlin, Heidelberg: Springer 1999; pp. 300-7.
[8]
Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 2013; 17(12): 595-610.
[http://dx.doi.org/10.1089/omi.2013.0017] [PMID: 24116388]
[9]
Kononenko I, Bratko I, Kukar M. Application of machine learning to medical diagnosis. Machine Learn Data Mining Methods Appl 1997; 389: 408.
[10]
Martin H, Tsymbal A, Zillner S. Medical ontologies for machine learning and decision support. U.S. Patent 7,899,764, 2011.
[11]
Vineis P, Simonato L. Proportion of lung and bladder cancers in males resulting from occupation: a systematic approach. Arch Environ Health 1991; 46(1): 6-15.
[http://dx.doi.org/10.1080/00039896.1991.9937423] [PMID: 1992935]
[12]
Persky L. Epidemiology of cancer of the penis. Tumors of the Male Genital System. Berlin, Heidelberg: Springer 1977; pp. 97-109.
[http://dx.doi.org/10.1007/978-3-642-81095-4_11]
[13]
Yuan Y, Liu L, Chen H, et al. Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 2016; 29(5): 711-22.
[http://dx.doi.org/10.1016/j.ccell.2016.04.001] [PMID: 27165743]
[14]
Kornegoor R, Verschuur-Maes AH, Buerger H, et al. Molecular subtyping of male breast cancer by immunohistochemistry. Mod Pathol 2012; 25(3): 398-404.
[http://dx.doi.org/10.1038/modpathol.2011.174] [PMID: 22056953]
[15]
McDuffie HH, Klaassen DJ, Dosman JA. Female-male differences in patients with primary lung cancer. Cancer 1987; 59(10): 1825-30.
[http://dx.doi.org/10.1002/1097-0142(19870515)59:10<1825::AID-CNCR2820591024>3.0.CO;2-2] [PMID: 3828951]
[16]
Teppo L, Salminen E, Pukkala E. Risk of a new primary cancer among patients with lung cancer of different histological types. Eur J Cancer 2001; 37(5): 613-9.
[http://dx.doi.org/10.1016/S0959-8049(00)00428-7] [PMID: 11290437]
[17]
Levi F, Franceschi S, Te VC, Randimbison L, La Vecchia C. Trends of skin cancer in the Canton of Vaud, 1976-92. Br J Cancer 1995; 72(4): 1047-53.
[http://dx.doi.org/10.1038/bjc.1995.460] [PMID: 7547221]
[18]
Maxwell PD. The global burden of urinary bladder cancer. Scand J Urol Nephrol 2008; 42(Suppl 218): 12-20.
[http://dx.doi.org/10.1080/03008880802285032]
[19]
Barthel E. Increased risk of lung cancer in pesticide-exposed male agricultural workers. J Toxicol Environ Health 1981; 8(5-6): 1027-40.
[http://dx.doi.org/10.1080/15287398109530135] [PMID: 7338938]
[20]
Keller AZ. Alcohol, tobacco and age factors in the relative frequency of cancer among males with and without liver cirrhosis. Am J Epidemiol 1977; 106(3): 194-202.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a112454] [PMID: 561538]
[21]
Haenszel W, Loveland DB, Sirken MG. Lung-cancer mortality as related to residence and smoking histories. I. White males. J Natl Cancer Inst 1962; 28(4): 947-1001.
[PMID: 13903525]
[22]
Wu AH, Paganini-Hill A, Ross RK, Henderson BE. Alcohol, physical activity and other risk factors for colorectal cancer: A prospective study. Br J Cancer 1987; 55(6): 687-94.
[http://dx.doi.org/10.1038/bjc.1987.140] [PMID: 3620314]
[23]
Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol 2002; 146(Suppl. 61): 1-6.
[http://dx.doi.org/10.1046/j.1365-2133.146.s61.2.x] [PMID: 11966724]
[24]
Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007; 2: 59-77.
[PMID: 19458758]
[25]
Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994; 271(5): 368-74.
[http://dx.doi.org/10.1001/jama.1994.03510290050036] [PMID: 7506797]
[26]
Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993; 187(1): 81-7.
[http://dx.doi.org/10.1148/radiology.187.1.8451441] [PMID: 8451441]
[27]
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015; 5: 13087.
[http://dx.doi.org/10.1038/srep13087] [PMID: 26278466]
[28]
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24(10): 1559-67.
[http://dx.doi.org/10.1038/s41591-018-0177-5] [PMID: 30224757]
[29]
Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 2008; 108(2): 191-201.
[http://dx.doi.org/10.1007/s10549-007-9596-6] [PMID: 18297396]
[30]
Daemen A, Griffith OL, Heiser LM, et al. Modeling precision treatment of breast cancer. Genome Biol 2013; 14(10): R110.
[http://dx.doi.org/10.1186/gb-2013-14-10-r110] [PMID: 24176112]
[31]
Viganó A, Bruera E, Jhangri GS, Newman SC, Fields AL, Suarez-Almazor ME. Clinical survival predictors in patients with advanced cancer. Arch Intern Med 2000; 160(6): 861-8.
[http://dx.doi.org/10.1001/archinte.160.6.861] [PMID: 10737287]
[32]
Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 2016; 375(13): 1216-9.
[http://dx.doi.org/10.1056/NEJMp1606181] [PMID: 27682033]
[33]
Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med 2016; 46(12): 2455-65.
[http://dx.doi.org/10.1017/S0033291716001367] [PMID: 27406289]
[34]
Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol 2008; 81(965): 362-78.
[http://dx.doi.org/10.1259/bjr/01948454] [PMID: 18440940]
[35]
Miah MBA, Abu Yousuf M. Detection of lung cancer from CT image using image processing and neural network. 2015 International conference on electrical engineering and information communication technology (ICEEICT). 1-6.
[http://dx.doi.org/10.1109/ICEEICT.2015.7307530]
[36]
Maeder AJ, Planitz BM. Medical image watermarking for multiple modalities. 34th Applied Imagery and Pattern Recognition Workshop (AIPR’05). Washington, DC, USA 2005.
[37]
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2014; 13: 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[38]
Zemmal N, Azizi N, Dey N, Sellami M. Adaptive semi supervised support vector machine semi supervised learning with features cooperation for breast cancer classification. J Med Imaging Health Inform 2016; 6(1): 53-62.
[http://dx.doi.org/10.1166/jmihi.2016.1591]
[39]
Doll R, Hill AB. Lung cancer and other causes of death in relation to smoking; a second report on the mortality of British doctors. BMJ 1956; 2(5001): 1071-81.
[http://dx.doi.org/10.1136/bmj.2.5001.1071] [PMID: 13364389]
[40]
Roy MP. Factors associated with mortality from lung cancer in India. Curr Probl Cancer 2020; 44(4): 100512.
[http://dx.doi.org/10.1016/j.currproblcancer.2019.100512] [PMID: 31703986]
[41]
Li C-C, Matthews AK, Rywant MM, Hallgren E, Shah RC. Racial disparities in eligibility for low-dose computed tomography lung cancer screening among older adults with a history of smoking. Cancer Causes Control 2019; 30(3): 235-40.
[http://dx.doi.org/10.1007/s10552-018-1092-2] [PMID: 30377905]
[42]
Radhika PR, Nair RAS, Veena G. A comparative study of lung cancer detection using machine learning algorithms. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore, India.. 2019; pp. 1-4.
[43]
Yanase J, Triantaphyllou E. The seven key challenges for the future of computer-aided diagnosis in medicine. Int J Med Inform 2019; 129: 413-22.
[http://dx.doi.org/10.1016/j.ijmedinf.2019.06.017] [PMID: 31445285]
[44]
Naqi SM, Sharif M, Yasmin M, Fernandes SL. Muhammad Sharif, Mussarat Yasmin, and Steven L. Fernandes. “Lung nodule detection using polygon approximation and hybrid features from CT images. Curr Med Imaging 2018; 14(1): 108-17.
[http://dx.doi.org/10.2174/1573405613666170306114320]
[45]
Alam J, Alam S, Hossan A. Multi-stage lung cancer detection and prediction using multi-class SVM classifie. 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). 1-4.
[http://dx.doi.org/10.1109/IC4ME2.2018.8465593]
[46]
Vas M, Dessai A. Lung cancer detection system using lung CT image processing. International Conference on Computing, Communication, Control and Automation (ICCUBEA). 2017; Pune, India.
[http://dx.doi.org/10.1109/ICCUBEA.2017.8463851]
[47]
Nadkarni NS, Borkar S. Detection of Lung Cancer in CT Images using Image Processing 3rd International Conference on Trends in Electronics and Informatics (ICOEI). 2019; Tirunelveli, India.
[http://dx.doi.org/10.1109/ICOEI.2019.8862577]
[48]
Kanitkar SS, Thombare ND, Lokhande SS. Detection of lung cancer using marker-controlled watershed transform. International Conference on Pervasive Computing (ICPC).
[49]
Shariaty F, Mousavi M. Application of CAD systems for the automatic detection of lung nodules. Informatics in Medicine Unlocked 2019; p. 100173.
[50]
Amer HM, Abou-Chadi FE, Kishk SS, Obayya MI. A CAD system for the early detection of lung nodules using computed tomography scan images. Int J Online Biomed Eng 2019; 15(04): 40-52.
[http://dx.doi.org/10.3991/ijoe.v15i04.9837]
[51]
Narayanan BN, Hardie RC, Kebede TM, Sprague MJ. Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities. Pattern Anal Appl 2019; 22(2): 559-71.
[http://dx.doi.org/10.1007/s10044-017-0653-4]
[52]
Wason JV, Nagarajan A. Image processing techniques for analyzing CT scan images towards the early detection of lung cancer. Bioinformation 2019; 15(8): 596-9.
[http://dx.doi.org/10.6026/97320630015596] [PMID: 31719770]
[53]
Nasser IM, Abu-Naser SS. Lung cancer detection using artificial neural network. Int J Eng Inform Syst 2019; 3(3): 17-23.
[54]
Radhika PR, Rakhi AS. A comparative study of lung cancer detection using machine learning algorithms. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Corpus ID: 204817030.
[55]
Reddy UJ, Reddy BRVR, Reddy BE. Recognition of lung cancer using machine learning mechanisms with fuzzy neural networks. Traitement du Signal 2019; 36(1): 87-91.
[http://dx.doi.org/10.18280/ts.360111]
[56]
Hussain L, Rathore S, Abbasi AA, Saeed S. Automated lung cancer detection based on multimodal features extracting strategy using machine learning techniques. Int Soc Optics Photon 2019; 10948: 109483Q.
[http://dx.doi.org/10.1117/12.2512059]
[57]
Reddy UJ, Ramana Reddy BV, Reddy BE, Reddy BE. Categorization & recognition of lung tumor using machine learning representations. Curr Med Imaging Rev 2019; 15(4): 405-13.
[http://dx.doi.org/10.2174/1573405614666180212162727] [PMID: 31989910]
[58]
Yu L, Tao G, Zhu L, et al. Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. BMC Cancer 2019; 19(1): 464.
[http://dx.doi.org/10.1186/s12885-019-5646-9] [PMID: 31101024]
[59]
Rehman MZ, Nawi NM, Tanveer A, Zafar H, Munir H, Hassan S. Lungs cancer nodules detection from CT scan images with convolutional neural networks. International Conference on Soft Computing and Data Mining. 382-91.
[http://dx.doi.org/10.1007/978-3-030-36056-6_36]
[60]
Toğaçar M, Ergen B, Cömert Z. Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybern Biomed Eng 2020; 40(1): 23-39.
[http://dx.doi.org/10.1016/j.bbe.2019.11.004]
[61]
Indian council of medical research, New Delhi. Available at: https://www.icmr.gov.in/
[62]
Johns Hopkins Pathology. Available at: http://pathology.jhu.edu/
[63]
Amin J, Sharif M, Raza M, Saba T, Anjum MA. Brain tumor detection using statistical and machine learning method. Comput Methods Programs Biomed 2019; 177: 69-79.
[http://dx.doi.org/10.1016/j.cmpb.2019.05.015] [PMID: 31319962]
[64]
Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn Syst Res 2020; 59: 221-30.
[http://dx.doi.org/10.1016/j.cogsys.2019.09.007]
[65]
Chaudhary A, Bhattacharjee V. An efficient method for brain tumor detection and categorization using MRI images by K-means clustering & DWT. Int J Inform Technol 2020; 12(1): 141-8.
[http://dx.doi.org/10.1007/s41870-018-0255-4]
[66]
Panda A, Mishra TK, Phaniharam VG. Automated brain tumor detection using discriminative clustering based MRI segmentation.Smart Innovations in Communication and Computational Sciences. Singapore: Springer 2019; pp. 117-26.
[http://dx.doi.org/10.1007/978-981-13-2414-7_12]
[67]
Gurusamy R, Subramaniam V. A machine learning approach for MRI brain tumor classification. Comput Mater Continua 2017; 53(2): 91-108.
[68]
Sharma K, Kaur A, Gujral S. Brain tumor detection based on machine learning algorithms. Int J Comput Appl 2014; 103(1): 7-11.
[69]
Abbasi S, Tajeripour F. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 2017; 219: 526-35.
[http://dx.doi.org/10.1016/j.neucom.2016.09.051]
[70]
Amin J, Sharif M, Raza M, Yasmin M. Detection of brain tumor based on features fusion and machine learning. J Ambient Intell Humaniz Comput 2018; 2018: 1-17.
[http://dx.doi.org/10.1007/s12652-018-1092-9]
[71]
Usman K, Rajpoot K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Appl 2017; 20(3): 871-81.
[http://dx.doi.org/10.1007/s10044-017-0597-8]
[72]
Fernandes SL, Gurupur VP, Lin H, Martis RJ. A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. J Med Imaging Health Inform 2017; 7(8): 1841-50.
[http://dx.doi.org/10.1166/jmihi.2017.2280]
[73]
Khan MA, Lali IU, Rehman A, et al. Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 2019; 82(6): 909-22.
[http://dx.doi.org/10.1002/jemt.23238] [PMID: 30801840]
[74]
Kshirsagar PR, Rakhonde AN, Chippalkatti P. MRI image based brain tumor detection using machine learning. Test Eng Manag 2020; 2020: 3672-80.
[75]
Lal H, Sharjil S, Ahmed Awan I, Idris A, Nadeem MSA, Chaudhry Q. Detecting brain tumor using machines learning techniques based on different features extracting strategies. Curr Med Imaging 2019; 15(6): 595-606.
[http://dx.doi.org/10.2174/1573405614666180718123533]
[76]
Soltaninejad M, Yang G, Lambrou T, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J CARS 2017; 12(2): 183-203.
[http://dx.doi.org/10.1007/s11548-016-1483-3] [PMID: 27651330]
[77]
Sharif M, Amin J, Raza M, Yasmin M, Satapathy SC. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit Lett 2020; 129: 150-7.
[http://dx.doi.org/10.1016/j.patrec.2019.11.017]
[78]
Pugalenthi R, Rajakumar MP, Ramya J, Rajinikanth V. Evaluation and classification of the brain tumor MRI using machine learning technique. J Control Eng Appl Inform 2019; 21(4): 12-21.
[79]
Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 2019; 7: 36266-73.
[http://dx.doi.org/10.1109/ACCESS.2019.2904145]
[80]
Brain tumor dataset. Figshare. Available at: https://figshare.com/articles/brain_tumor_dataset/1512427/5
[81]
Hemanth G, Janardhan M, Sujihelen L. Design and implementing brain tumor detection using machine learning approach. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). 1289-94.
[http://dx.doi.org/10.1109/ICOEI.2019.8862553]
[82]
Győrfi Á, Kovács L, Szilágyi L. Brain tumor detection and segmentation from magnetic resonance image data using ensemble learning methods. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 909-14.
[http://dx.doi.org/10.1109/SMC.2019.8914463]
[83]
Arunkumar N, Mohammed MA, Mostafa SA, Ibrahim DA, Rodrigues JJPC, de Albuquerque VHC. Fully automatic model‐based segmentation and classification approach for MRI brain tumor using artificial neural networks. Concurr Comput 2020; 32(1)
[http://dx.doi.org/10.1002/cpe.4962]
[84]
Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Jude Hemanth D. Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 2019; 78: 346-54.
[http://dx.doi.org/10.1016/j.asoc.2019.02.036]
[85]
Mlynarski P, Delingette H, Criminisi A, Ayache N. Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging (Bellingham) 2019; 6(3): arXiv:1812.04571.
[http://dx.doi.org/10.1117/1.JMI.6.3.034002] [PMID: 31423456]
[86]
Özyurt F, Sert E, Avci E, Dogantekin E. Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement 2019; 147: 106830.
[http://dx.doi.org/10.1016/j.measurement.2019.07.058]
[87]
Rehman A, Naz S, Razzak MI, Akram F, Imran M. A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits Syst Signal Process 2020; 39(2): 757-75.
[http://dx.doi.org/10.1007/s00034-019-01246-3]
[88]
Amin J, Sharif M, Gul N, et al. Brain tumor detection by using stacked autoencoders in deep learning. J Med Syst 2019; 44(2): 32.
[http://dx.doi.org/10.1007/s10916-019-1483-2] [PMID: 31848728]
[89]
Martini ML, Oermann EK. Intraoperative brain tumour identification with deep learning. Nat Rev Clin Oncol 2020; 17(4): 200-1.
[http://dx.doi.org/10.1038/s41571-020-0343-9] [PMID: 32099093]
[90]
Cirillo MD, Abramian D, Eklund A. Vox2Vox: 3D-GAN for brain tumour segmentation. arXiv preprint 2020.
[91]
India against cancer. Cancer Detection, Cancer Prevention and Cancer Treatment in India. Available at: http://cancerindia.org.in/
[92]
Alarming facts about breast cancer in India. Available at: https://www.oncostem.com/blog/alarming-facts-about-breast-cancer-in-india/
[93]
Development of CanAssist Breast. Available at: https://canassistbreast.com/validation-studies.php
[94]
Shinde V, Thirumala Rao B. Novel approach to segment the pectoral muscle in the mammograms.Cognitive Informatics and Soft Computing. Singapore: Springer 2019; pp. 227-37.
[http://dx.doi.org/10.1007/978-981-13-0617-4_22]
[95]
Rodríguez-Ruiz A, Krupinski E, Mordang J-J, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 2019; 290(2): 305-14.
[http://dx.doi.org/10.1148/radiol.2018181371] [PMID: 30457482]
[96]
Reig B, Heacock L, Geras KJ, Moy L. Machine learning in breast MRI. J Magn Reson Imaging 2020; 52(4): 998-1018.
[PMID: 31276247]
[97]
Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ 2019; 7: e6201.
[http://dx.doi.org/10.7717/peerj.6201] [PMID: 30713814]
[98]
Tapak L, Shirmohammadi-Khorram N, Amini P, Alafchi B, Hamidi O, Poorolajal J. Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin Epidemiol Glob Health 2019; 7(3): 293-9.
[http://dx.doi.org/10.1016/j.cegh.2018.10.003]
[99]
Tseng Y-J, Huang C-E, Wen C-N, et al. Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int J Med Inform 2019; 128: 79-86.
[http://dx.doi.org/10.1016/j.ijmedinf.2019.05.003] [PMID: 31103449]
[100]
Osmanović A, Halilović S, Abdel Ilah L, Fojnica A, Gromilić Z. Machine learning techniques for classification of breast cancer. In: World Congress on Medical Physics and Biomedical Engineering 2018. Singapore: Springer 2019; pp. 197-200.
[http://dx.doi.org/10.1007/978-981-10-9035-6_35]
[101]
Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F, Roselli M. Breast cancer prognosis using a machine learning approach. Cancers (Basel) 2019; 11(3): 328.
[http://dx.doi.org/10.3390/cancers11030328] [PMID: 30866535]
[102]
Deshwal V, Sharma M. Breast cancer detection using SVM classifier with grid search technique.s Int J Comput Appl 2019; 178(31): 18-23.
[103]
Vijayarajeswari R, Parthasarathy P, Vivekanandan S, Alavudeen Basha A. Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement 2019; 146: 800-5.
[http://dx.doi.org/10.1016/j.measurement.2019.05.083]
[104]
Yang L, Xu Z. Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int J Mach Learn Cybern 2019; 10(3): 591-601.
[http://dx.doi.org/10.1007/s13042-017-0741-1]
[105]
Yadav A, Jamir I, Jain RR, Sohani M. Breast cancer prediction using SVM with PCA feature selection method. International Journal of Scientific Research in Computer Science 2019; 5(2): 969-78.
[http://dx.doi.org/10.32628/CSEIT1952277]
[106]
Ghasemzadeh A, Azad SS, Esmaeili E. Breast cancer detection based on Gabor-wavelet transform and machine learning methods. Int J Mach Learn Cybern 2019; 10(7): 1603-12.
[http://dx.doi.org/10.1007/s13042-018-0837-2]
[107]
Ahmed A, Malebary S. ‘Feature selection and the fusion-based method for enhancing the classification accuracy of SVM for breast cancer detection. Int J Comput Sci Netw Secur 2019; 19(11): 55.
[108]
Karthiga R, Narasimhan K, Usha G. Breast cancer diagnosis using curvelet and regional features. 2019 International Conference on Computer Communication and Informatics (ICCCI). 1-5.
[http://dx.doi.org/10.1109/ICCCI.2019.8821825]
[109]
Celik Y, Talo M, Yildirim O, Karabatak M, Rajendra Acharya U. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recognit Lett 2020; 133: 232-9.
[http://dx.doi.org/10.1016/j.patrec.2020.03.011]
[110]
Akselrod-Ballin A, Chorev M, Shoshan Y, et al. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology 2019; 292(2): 331-42.
[http://dx.doi.org/10.1148/radiol.2019182622] [PMID: 31210611]
[111]
Benzebouchi NE, Azizi N, Ayadi K. A computer-aided diagnosis system for breast cancer using deep convolutional neural networks. Computational Intelligence in Data Mining. Singapore: Springer 2019; pp. 583-93.
[http://dx.doi.org/10.1007/978-981-10-8055-5_52]
[112]
Rakhlin A, Tiulpin A, Shvets AA, Kalinin AA, Iglovikov VI, Nikolenko S. Breast tumor cellularity assessment using deep neural networks. Proceedings of the IEEE International Conference on Computer Vision Workshops. 2019; Seoul, Korea (South).
[http://dx.doi.org/10.1109/ICCVW.2019.00048]
[113]
Feng X, Li J, Li H, et al. Age is important for the early-stage detection of breast cancer on both transcriptomic and methylomic biomarkers. Front Genet 2019; 10: 212.
[http://dx.doi.org/10.3389/fgene.2019.00212] [PMID: 30984234]
[114]
Jongerius C, Russo S, Mazzocco K, Pravettoni G. Research-tested mobile apps for breast cancer care: systematic review. JMIR Mhealth Uhealth 2019; 7(2): e10930.
[http://dx.doi.org/10.2196/10930] [PMID: 30741644]
[115]
Zhu J, Ebert L, Liu X, Wei D, Chan SW. Mobile breast cancer e-support program for Chinese women with breast cancer undergoing chemotherapy (Part 2): Multicenter randomized controlled trial. JMIR Mhealth Uhealth 2018; 6(4): e104.
[http://dx.doi.org/10.2196/mhealth.9438] [PMID: 29712622]
[116]
Young-Afat DA, van Gils CH, Bruinvels DJ, et al. Patients’ and health care providers’ opinions on a supportive health app during breast cancer treatment: a qualitative evaluation. JMIR Cancer 2016; 2(1): e8.
[http://dx.doi.org/10.2196/cancer.5334] [PMID: 28410170]
[117]
Cruz FOAM, Vilela RA, Ferreira EB, Melo NS, Reis PEDD. Evidence on the use of mobile apps during the treatment of breast cancer: systematic review. JMIR Mhealth Uhealth 2019; 7(8): e13245.
[http://dx.doi.org/10.2196/13245] [PMID: 31456578]
[118]
Smith AB, Bamgboje-Ayodele A, Butow P, et al. iConquerFear Community Advisory Group. Development and usability evaluation of an online self-management intervention for fear of cancer recurrence (iConquerFear). Psychooncology 2020; 29(1): 98-106.
[http://dx.doi.org/10.1002/pon.5218] [PMID: 31483911]
[119]
Lidington E, McGrath SE, Noble J, et al. Evaluating a digital tool for supporting breast cancer patients: a randomized controlled trial protocol (ADAPT). Trials 2020; 21(1): 86.
[http://dx.doi.org/10.1186/s13063-019-3971-6] [PMID: 31941539]
[120]
Liu Y, Geng Z, Wu F, Yuan C. Developing Information Assistant Proceedings of the 16th World Congress on Medical and Health Informatics. 2017; vol. 245: 156.
[121]
Segal G, Segev A, Brom A, Lifshitz Y, Wasserstrum Y, Zimlichman E. Reducing drug prescription errors and adverse drug events by application of a probabilistic, machine-learning based clinical decision support system in an inpatient setting. J Am Med Inform Assoc 2019; 26(12): 1560-5.
[http://dx.doi.org/10.1093/jamia/ocz135] [PMID: 31390471]
[122]
Feng Q-X, Liu C, Qi L, et al. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer. J Am Coll Radiol 2019; 16(7): 952-60.
[http://dx.doi.org/10.1016/j.jacr.2018.12.017] [PMID: 30733162]
[123]
Chan S, Siegel EL. Will machine learning end the viability of radiology as a thriving medical specialty? Br J Radiol 2019; 92(1094): 20180416.
[http://dx.doi.org/10.1259/bjr.20180416] [PMID: 30325645]
[124]
Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using machine learning. J Am Coll Radiol 2020; 17(1 Pt A): 56-63.
[http://dx.doi.org/10.1016/j.jacr.2019.05.012] [PMID: 31153798]
[125]
Masood A, Yang P, Sheng B, et al. Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT. IEEE J Transl Eng Health Med 2019; 8: 4300113.
[http://dx.doi.org/10.1109/JTEHM.2019.2955458] [PMID: 31929952]
[126]
Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A. Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 2019; 16(9 Pt B): 1239-47.
[http://dx.doi.org/10.1016/j.jacr.2019.05.047] [PMID: 31492401]
[127]
Jalal S, Nicolaou S, Parker W. Artificial intelligence, radiology, and the way forward. Can Assoc Radiol J 2019; 70(1): 10-2.
[http://dx.doi.org/10.1016/j.carj.2018.09.004] [PMID: 30691556]
[128]
Carrodeguas E, Lacson R, Swanson W, Khorasani R. Use of machine learning to identify follow-up recommendations in radiology reports. J Am Coll Radiol 2019; 16(3): 336-43.
[http://dx.doi.org/10.1016/j.jacr.2018.10.020] [PMID: 30600162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy