Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature

Author(s): Ali Tootee, Behrouz Nikbin, Aziz Ghahary, Ensieh Nasli Esfahani, Babak Arjmand, Hamidreza Aghayan, Mostafa Qorbani and Bagher Larijani*

Volume 22, Issue 2, 2022

Published on: 03 February, 2021

Page: [169 - 197] Pages: 29

DOI: 10.2174/1871530321666210203212809

Price: $65

conference banner
Abstract

Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements, including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D are primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients’ lung-resident macrophages have recently emerged as a mechanism responsible for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides an explanation as to how stem cell- based interventions can influence immune system and maintain the physiologic equilibrium.

Keywords: Type 1 Diabetes, an autoimmune disorder, stem cells, immunomodulation, treatment, review.

Next »
Graphical Abstract
[1]
Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr., 2020, 14(4), 303-310.
[http://dx.doi.org/10.1016/j.dsx.2020.04.004] [PMID: 32298981]
[2]
Banting, F.G.; Best, C.H. The internal secretion of the pancreas. 1922. Indian J. Med. Res., 2007, 125(3), 251-266.
[PMID: 17582843]
[3]
Petrov, M.S. Panorama of mediators in postpancreatitis diabetes mellitus. Curr. Opin. Gastroenterol., 2020, 36(5), 443-451.
[http://dx.doi.org/10.1097/MOG.0000000000000654] [PMID: 32618612]
[4]
Zaid, H; Said, O; Hadieh, B; Saad, AK Diabetes prevention and treatment with Greco-Arab And Islamic-based natural products. civilization., 2011, 1, 4.
[5]
Thomas, N.J.; Jones, S.E.; Weedon, M.N.; Shields, B.M.; Oram, R.A.; Hattersley, A.T. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol., 2018, 6(2), 122-129.
[http://dx.doi.org/10.1016/S2213-8587(17)30362-5] [PMID: 29199115]
[6]
Mallone, R.; Eizirik, D.L. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia, 2020, 63(10), 1999-2006.
[http://dx.doi.org/10.1007/s00125-020-05176-7] [PMID: 32894310]
[7]
Almaça, J.; Caicedo, A.; Landsman, L. Beta cell dysfunction in diabetes: the islet microenvironment as an unusual suspect. Diabetologia, 2020, 63(10), 2076-2085.
[http://dx.doi.org/10.1007/s00125-020-05186-5] [PMID: 32894318]
[8]
Xie, Z.; Chang, C.; Huang, G.; Zhou, Z. The Role of Epigenetics in Type 1 Diabetes.Epigenetics in Allergy and Autoimmunity; Springer, 2020, pp. 223-257.
[http://dx.doi.org/10.1007/978-981-15-3449-2_9]
[9]
Patterson, C.C.; Harjutsalo, V.; Rosenbauer, J.; Neu, A.; Cinek, O.; Skrivarhaug, T.; Rami-Merhar, B.; Soltesz, G.; Svensson, J.; Parslow, R.C.; Castell, C.; Schoenle, E.J.; Bingley, P.J.; Dahlquist, G.; Jarosz-Chobot, P.K.; Marčiulionytė, D.; Roche, E.F.; Rothe, U.; Bratina, N.; Ionescu-Tirgoviste, C.; Weets, I.; Kocova, M.; Cherubini, V.; Rojnic Putarek, N.; deBeaufort, C.E.; Samardzic, M.; Green, A. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study. Diabetologia, 2019, 62(3), 408-417.
[http://dx.doi.org/10.1007/s00125-018-4763-3] [PMID: 30483858]
[10]
Bach, J-F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat. Rev. Immunol., 2017.
[PMID: 29034905]
[11]
Norris, J.M.; Johnson, R.K.; Stene, L.C. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol., 2020, 8(3), 226-238.
[http://dx.doi.org/10.1016/S2213-8587(19)30412-7] [PMID: 31999944]
[12]
Zhou, H.; Sun, L.; Zhang, S.; Zhao, X.; Gang, X.; Wang, G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol., 2020, 56(3), 249-265.
[http://dx.doi.org/10.1007/s00592-020-01563-z] [PMID: 32712802]
[13]
Dunne, D.W.; Cooke, A. A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat. Rev. Immunol., 2005, 5(5), 420-426.
[http://dx.doi.org/10.1038/nri1601] [PMID: 15864275]
[14]
Rouxel, O; Beaudoin, L; Nel, I; Tard, C; Cagninacci, L; Kiaf, B Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nature immunology., 2017, 3854.
[http://dx.doi.org/10.1038/ni.3854]
[15]
Petersone, L; Walker, LS MAIT cells in type 1 diabetes: a good friend turned bad. Nature immunology., 2017, 3869.
[http://dx.doi.org/10.1038/ni.3869]
[16]
von Zur-Mühlen, B.; Scholz, H.; Hellman, J.; Korsgren, O.; Lundgren, T. Treating diabetes with islet transplantation: Lessons learnt from the Nordic network for clinical islet transplantation.Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; Elsevier, 2020, pp. 599-611.
[17]
Helman, A.; Melton, D.A. A stem cell approach to cure type 1 diabetes. Cold Spring Harb. Perspect. Biol., 2020.
[http://dx.doi.org/10.1101/cshperspect.a035741] [PMID: 32122884]
[18]
Syed, I.; Rubin de Celis, M.F.; Mohan, J.F.; Moraes-Vieira, P.M.; Vijayakumar, A.; Nelson, A.T.; Siegel, D.; Saghatelian, A.; Mathis, D.; Kahn, B.B. PAHSAs attenuate immune responses and promote β cell survival in autoimmune diabetic mice. J. Clin. Invest., 2019, 129(9), 3717-3731.
[http://dx.doi.org/10.1172/JCI122445] [PMID: 31380811]
[19]
Warshauer, J.T.; Bluestone, J.A.; Anderson, M.S. New frontiers in the treatment of type 1 diabetes. Cell Metab., 2020, 31(1), 46-61.
[http://dx.doi.org/10.1016/j.cmet.2019.11.017] [PMID: 31839487]
[20]
Robertson, R.P.; Davis, C.; Larsen, J.; Stratta, R.; Sutherland, D.E. Pancreas and islet transplantation for patients with diabetes. Diabetes Care, 2000, 23(1), 112-116.
[http://dx.doi.org/10.2337/diacare.23.1.112] [PMID: 10857979]
[21]
Sneddon, J.B.; Tang, Q.; Stock, P.; Bluestone, J.A.; Roy, S.; Desai, T.; Hebrok, M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell, 2018, 22(6), 810-823.
[http://dx.doi.org/10.1016/j.stem.2018.05.016] [PMID: 29859172]
[22]
Association, A.D. American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2020. Diabetes Care, 2020, 43(Suppl. 1), S193-S202.
[http://dx.doi.org/10.2337/dc20-S015] [PMID: 31862758]
[23]
Xiao, X; Guo, P; Shiota, C; Zhang, T; Coudriet, GM; Fischbach, S Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell stem cell., 2018, 22(1), 78-90.
[24]
Tanday, N.; Flatt, P.R.; Irwin, N.; Moffett, R.C. Liraglutide and sitagliptin counter beta- to alpha-cell transdifferentiation in diabetes. J. Endocrinol., 2020, 245(1), 53-64.
[http://dx.doi.org/10.1530/JOE-19-0451] [PMID: 31977315]
[25]
Schacker, M.; Cheng, Y-H.; Eckersley-Maslin, M.; Snaith, R.M.; Colledge, W.H. Hypermethylation and reduced expression of Gtl2, Rian and Mirg at the Dlk1-Dio3 imprinted locus as a marker for poor developmental potential of mouse embryonic stem cells. Stem Cell Res. (Amst.), 2020, 48, 101931.
[http://dx.doi.org/10.1016/j.scr.2020.101931] [PMID: 32822966]
[26]
Birhan, M. Review on: regenerative medicine, tissue engineering and stem cell therapy in diabetes mellitus. J Life Sci Biomed., 2019, 9(4), 102-108.
[27]
Cabrera, O.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Berggren, P-O.; Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2334-2339.
[http://dx.doi.org/10.1073/pnas.0510790103] [PMID: 16461897]
[28]
Halban, P.A.; Wollheim, C.B.; Blondel, B.; Meda, P.; Niesor, E.N.; Mintz, D.H. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology, 1982, 111(1), 86-94.
[http://dx.doi.org/10.1210/endo-111-1-86] [PMID: 6123433]
[29]
Ravier, M.A.; Güldenagel, M.; Charollais, A.; Gjinovci, A.; Caille, D.; Söhl, G.; Wollheim, C.B.; Willecke, K.; Henquin, J.C.; Meda, P. Loss of connexin36 channels alters β-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes, 2005, 54(6), 1798-1807.
[http://dx.doi.org/10.2337/diabetes.54.6.1798] [PMID: 15919802]
[30]
Wojtusciszyn, A.; Armanet, M.; Morel, P.; Berney, T.; Bosco, D. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia, 2008, 51(10), 1843-1852.
[http://dx.doi.org/10.1007/s00125-008-1103-z] [PMID: 18665347]
[31]
Sasson, A.; Rachi, E.; Sakhneny, L.; Baer, D.; Lisnyansky, M.; Epshtein, A.; Landsman, L. Islet pericytes are required for beta-cell maturity. Diabetes, 2016, 65(10), 3008-3014.
[http://dx.doi.org/10.2337/db16-0365] [PMID: 27388217]
[32]
Hori, Y.; Rulifson, I.C.; Tsai, B.C.; Heit, J.J.; Cahoy, J.D.; Kim, S.K. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16105-16110.
[http://dx.doi.org/10.1073/pnas.252618999] [PMID: 12441403]
[33]
Blyszczuk, P.; Czyz, J.; Kania, G.; Wagner, M.; Roll, U.; St-Onge, L.; Wobus, A.M. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 998-1003.
[http://dx.doi.org/10.1073/pnas.0237371100] [PMID: 12525695]
[34]
Dorrell, C.; Schug, J.; Canaday, P.S.; Russ, H.A.; Tarlow, B.D.; Grompe, M.T.; Horton, T.; Hebrok, M.; Streeter, P.R.; Kaestner, K.H.; Grompe, M. Human islets contain four distinct subtypes of β cells. Nat. Commun., 2016, 7, 11756.
[http://dx.doi.org/10.1038/ncomms11756] [PMID: 27399229]
[35]
Bertuzzi, F.; Colussi, G.; Lauterio, A.; De Carlis, L. Intramuscular islet allotransplantation in type 1 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(6), 1731-1736.
[PMID: 29630119]
[36]
Wagner, M.J.; Khan, M.; Mohsin, S. Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Front. Immunol., 2020, 11, 639.
[http://dx.doi.org/10.3389/fimmu.2020.00639] [PMID: 32328072]
[37]
Galipeau, J.; Sensébé, L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell, 2018, 22(6), 824-833.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[38]
Dhaliwal, H.K. Immunosuppressive Therapy in Autoimmune Hepatitis: Efficacy and Toxicity; University of Sheffield, 2018.
[39]
Tolar, J.; Nauta, A.J.; Osborn, M.J.; Panoskaltsis Mortari, A.; McElmurry, R.T.; Bell, S.; Xia, L.; Zhou, N.; Riddle, M.; Schroeder, T.M.; Westendorf, J.J.; McIvor, R.S.; Hogendoorn, P.C.; Szuhai, K.; Oseth, L.; Hirsch, B.; Yant, S.R.; Kay, M.A.; Peister, A.; Prockop, D.J.; Fibbe, W.E.; Blazar, B.R. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 2007, 25(2), 371-379.
[http://dx.doi.org/10.1634/stemcells.2005-0620] [PMID: 17038675]
[40]
Nasli-Esfahani, E; Ghadami, M; Amini, P; Amiri, S; Ghodsi, M; Rambod, C Transitional Meningioma After Fetal Liver-Derived Cell Suspension Allotransplant: A Case Report. Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation., 2017, 15(2), 231-4.
[41]
Breitbach, M.; Bostani, T.; Roell, W.; Xia, Y.; Dewald, O.; Nygren, J.M.; Fries, J.W.; Tiemann, K.; Bohlen, H.; Hescheler, J.; Welz, A.; Bloch, W.; Jacobsen, S.E.; Fleischmann, B.K. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 2007, 110(4), 1362-1369.
[http://dx.doi.org/10.1182/blood-2006-12-063412] [PMID: 17483296]
[42]
Sivanathan, K.N.; Rojas-Canales, D.M.; Hope, C.M.; Krishnan, R.; Carroll, R.P.; Gronthos, S.; Grey, S.T.; Coates, P.T. Interleukin-17A-Induced Human Mesenchymal Stem Cells Are Superior Modulators of Immunological Function. Stem Cells, 2015, 33(9), 2850-2863.
[http://dx.doi.org/10.1002/stem.2075] [PMID: 26037953]
[43]
Giwa, A.M.; Ahmed, R.; Omidian, Z.; Majety, N.; Karakus, K.E.; Omer, S.M.; Donner, T.; Hamad, A.R.A. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J. Diabetes, 2020, 11(1), 13-25.
[http://dx.doi.org/10.4239/wjd.v11.i1.13] [PMID: 31938470]
[44]
Abdi, R.; Fiorina, P.; Adra, C.N.; Atkinson, M.; Sayegh, M.H. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 2008, 57(7), 1759-1767.
[http://dx.doi.org/10.2337/db08-0180] [PMID: 18586907]
[45]
Kuo, Y-R; Chen, C-C; Goto, S; Lin, P-Y; Wei, F-C; Chen, C-L Mesenchymal stem cells as immunomodulators in a vascularized composite allotransplantation. Clin. Dev. Immunol., 2012, 2012, 854846.
[http://dx.doi.org/10.1155/2012/854846]
[46]
Reading, J.L.; Sabbah, S.; Busch, S.; Tree, T.I. Mesenchymal stromal cells as a means of controlling pathological T-cell responses in allogeneic islet transplantation. Curr. Opin. Organ Transplant., 2013, 18(1), 59-64.
[http://dx.doi.org/10.1097/MOT.0b013e32835c2adf] [PMID: 23222174]
[47]
Kim, Y.S.; Ahn, Y.; Kwon, J.S.; Cho, Y.K.; Jeong, M.H.; Cho, J.G.; Park, J.C.; Kang, J.C. Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs, 2012, 195(5), 428-442.
[http://dx.doi.org/10.1159/000329234] [PMID: 21893931]
[48]
Davatchi, F.; Sadeghi Abdollahi, B.; Mohyeddin, M.; Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int. J. Rheum. Dis., 2016, 19(3), 219-225.
[http://dx.doi.org/10.1111/1756-185X.12670] [PMID: 25990685]
[49]
Mohyeddin Bonab, M.; Mohajeri, M.; Sahraian, M.A.; Yazdanifar, M.; Aghsaie, A.; Farazmand, A.; Nikbin, B. Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Arch. Med. Res., 2013, 44(4), 266-272.
[http://dx.doi.org/10.1016/j.arcmed.2013.03.007] [PMID: 23684533]
[50]
Tootee, A.; Esfahani, E.N.; Ghodsi, M.; Razi, F.; Amini, M.; Larijani, B. Application of Allotransplantation of Fetal Liver-derived Stem-Cells for Treatment of Type 1 Diabetes: a Single-arm, Phase 3 Clinical Trial. Iran. J. Public Health, 2015, 44(2), 36-41.
[51]
Vagnozzi, R.J.; Maillet, M.; Sargent, M.A.; Khalil, H.; Johansen, A.K.Z.; Schwanekamp, J.A.; York, A.J.; Huang, V.; Nahrendorf, M.; Sadayappan, S.; Molkentin, J.D. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature, 2020, 577(7790), 405-409.
[http://dx.doi.org/10.1038/s41586-019-1802-2] [PMID: 31775156]
[52]
Le Blanc, K.; Rasmusson, I.; Götherström, C.; Seidel, C.; Sundberg, B.; Sundin, M.; Rosendahl, K.; Tammik, C.; Ringdén, O. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand. J. Immunol., 2004, 60(3), 307-315.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01483.x] [PMID: 15320889]
[53]
Song, H.; Kwon, K.; Lim, S.; Kang, S-M.; Ko, Y-G.; Xu, Z. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions.Molecules & Cells; Springer Science & Business Media BV., 2005, 19, . (3)
[54]
Longoni, B.; Szilagyi, E.; Quaranta, P.; Paoli, G.T.; Tripodi, S.; Urbani, S.; Mazzanti, B.; Rossi, B.; Fanci, R.; Demontis, G.C.; Marzola, P.; Saccardi, R.; Cintorino, M.; Mosca, F. Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol. Ther., 2010, 12(6), 435-446.
[http://dx.doi.org/10.1089/dia.2009.0154] [PMID: 20470228]
[55]
Tan, J.; Wu, W.; Xu, X.; Liao, L.; Zheng, F.; Messinger, S.; Sun, X.; Chen, J.; Yang, S.; Cai, J.; Gao, X.; Pileggi, A.; Ricordi, C. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA, 2012, 307(11), 1169-1177.
[http://dx.doi.org/10.1001/jama.2012.316] [PMID: 22436957]
[56]
Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; Moseley, A.; Hoffman, R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 2002, 30(1), 42-48.
[http://dx.doi.org/10.1016/S0301-472X(01)00769-X] [PMID: 11823036]
[57]
Nauta, A.J.; Fibbe, W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110(10), 3499-3506.
[http://dx.doi.org/10.1182/blood-2007-02-069716] [PMID: 17664353]
[58]
Tyndall, A.; Walker, U.A.; Cope, A.; Dazzi, F.; De Bari, C.; Fibbe, W. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division.BioMed Central; London, UK, 2007.
[59]
Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11), 2739-2749.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[60]
Augello, A.; Tasso, R.; Negrini, S.M.; Amateis, A.; Indiveri, F.; Cancedda, R.; Pennesi, G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol., 2005, 35(5), 1482-1490.
[http://dx.doi.org/10.1002/eji.200425405] [PMID: 15827960]
[61]
Chen, T.S.; Lai, R.C.; Lee, M.M.; Choo, A.B.H.; Lee, C.N.; Lim, S.K. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res., 2010, 38(1), 215-224.
[http://dx.doi.org/10.1093/nar/gkp857] [PMID: 19850715]
[62]
Ghahremani Piraghaj, M.; Soudi, S.; Ghanbarian, H.; Bolandi, Z.; Namaki, S.; Hashemi, S.M. Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sci., 2018, 212, 203-212.
[http://dx.doi.org/10.1016/j.lfs.2018.09.052] [PMID: 30287233]
[63]
Poon, I.K.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[64]
Elliott, M.R.; Koster, K.M.; Murphy, P.S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol., 2017, 198(4), 1387-1394.
[http://dx.doi.org/10.4049/jimmunol.1601520] [PMID: 28167649]
[65]
de Witte, S.F.H.; Luk, F.; Sierra Parraga, J.M.; Gargesha, M.; Merino, A.; Korevaar, S.S.; Shankar, A.S.; O’Flynn, L.; Elliman, S.J.; Roy, D.; Betjes, M.G.H.; Newsome, P.N.; Baan, C.C.; Hoogduijn, M.J. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells, 2018, 36(4), 602-615.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[66]
Ankrum, J.A.; Ong, J.F.; Karp, J.M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol., 2014, 32(3), 252-260.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
[67]
Lin, S; Staahl, BT; Alla, RK; Doudna, JA Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife., 2014, 3, e04766.
[68]
Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med., 2018, 8(3)
[http://dx.doi.org/10.1101/cshperspect.a028936] [PMID: 29358320]
[69]
Gibson, V.B.; Nikolic, T.; Pearce, V.Q.; Demengeot, J.; Roep, B.O.; Peakman, M. Proinsulin multi-peptide immunotherapy induces antigen-specific regulatory T cells and limits autoimmunity in a humanized model. Clin. Exp. Immunol., 2015, 182(3), 251-260.
[http://dx.doi.org/10.1111/cei.12687] [PMID: 26206289]
[70]
Medzhitov, R.; Janeway, C.A., Jr Decoding the patterns of self and nonself by the innate immune system. Science, 2002, 296(5566), 298-300.
[http://dx.doi.org/10.1126/science.1068883] [PMID: 11951031]
[71]
Sen, P.; Dickens, A.M.; López-Bascón, M.A.; Lindeman, T.; Kemppainen, E.; Lamichhane, S.; Rönkkö, T.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyöty, H.; Hyötyläinen, T.; Knip, M.; Orešič, M. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia, 2020, 63(5), 1017-1031.
[http://dx.doi.org/10.1007/s00125-020-05107-6] [PMID: 32043185]
[72]
Beyan, H.; Buckley, L.R.; Yousaf, N.; Londei, M.; Leslie, R.D. A role for innate immunity in type 1 diabetes? Diabetes Metab. Res. Rev., 2003, 19(2), 89-100.
[http://dx.doi.org/10.1002/dmrr.341] [PMID: 12673777]
[73]
Hao, N-B; Lü, M-H; Fan, Y-H; Cao, Y-L; Zhang, Z-R; Yang, S-M Macrophages in tumor microenvironments and the progression of tumors. Clinical and Developmental Immunology., 2012.
[http://dx.doi.org/10.1155/2012/948098]
[74]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[75]
Hutchings, P.; Rosen, H.; O’Reilly, L.; Simpson, E.; Gordon, S.; Cooke, A. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature, 1990, 348(6302), 639-642.
[http://dx.doi.org/10.1038/348639a0] [PMID: 2250718]
[76]
Jun, H-S.; Yoon, C-S.; Zbytnuik, L.; van Rooijen, N.; Yoon, J-W. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Exp. Med., 1999, 189(2), 347-358.
[http://dx.doi.org/10.1084/jem.189.2.347] [PMID: 9892617]
[77]
Alleva, D.G.; Pavlovich, R.P.; Grant, C.; Kaser, S.B.; Beller, D.I. Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice. Diabetes, 2000, 49(7), 1106-1115.
[http://dx.doi.org/10.2337/diabetes.49.7.1106] [PMID: 10909966]
[78]
Martin, A.P.; Rankin, S.; Pitchford, S.; Charo, I.F.; Furtado, G.C.; Lira, S.A. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes, 2008, 57(11), 3025-3033.
[http://dx.doi.org/10.2337/db08-0625] [PMID: 18633103]
[79]
Yang, L-J. Big mac attack: does it play a direct role for monocytes/macrophages in type 1 diabetes? Diabetes, 2008, 57(11), 2922-2923.
[http://dx.doi.org/10.2337/db08-1007] [PMID: 18971442]
[80]
Lehuen, A.; Diana, J.; Zaccone, P.; Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol., 2010, 10(7), 501-513.
[http://dx.doi.org/10.1038/nri2787] [PMID: 20577267]
[81]
Uno, S.; Imagawa, A.; Okita, K.; Sayama, K.; Moriwaki, M.; Iwahashi, H.; Yamagata, K.; Tamura, S.; Matsuzawa, Y.; Hanafusa, T.; Miyagawa, J.; Shimomura, I. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-α in patients with recent-onset type 1 diabetes. Diabetologia, 2007, 50(3), 596-601.
[http://dx.doi.org/10.1007/s00125-006-0569-9] [PMID: 17221211]
[82]
Arnush, M.; Scarim, A.L.; Heitmeier, M.R.; Kelly, C.B.; Corbett, J.A. Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J. Immunol., 1998, 160(6), 2684-2691.
[PMID: 9510167]
[83]
Dahlén, E.; Dawe, K.; Ohlsson, L.; Hedlund, G. Dendritic cells and macrophages are the first and major producers of TNF-α in pancreatic islets in the nonobese diabetic mouse. J. Immunol., 1998, 160(7), 3585-3593.
[PMID: 9531322]
[84]
Cho, D-I.; Kim, M.R.; Jeong, H.Y.; Jeong, H.C.; Jeong, M.H.; Yoon, S.H.; Kim, Y.S.; Ahn, Y. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med., 2014, 46(1), e70.
[http://dx.doi.org/10.1038/emm.2013.135] [PMID: 24406319]
[85]
Hussain, M.J.; Peakman, M.; Gallati, H.; Lo, S.S.; Hawa, M.; Viberti, G.C.; Watkins, P.J.; Leslie, R.D.; Vergani, D. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia, 1996, 39(1), 60-69.
[PMID: 8720604]
[86]
Mandrup-Poulsen, T. beta-cell apoptosis: stimuli and signaling. Diabetes, 2001, 50(Suppl. 1), S58-S63.
[http://dx.doi.org/10.2337/diabetes.50.2007.S58] [PMID: 11272204]
[87]
Benhamou, P.Y.; Mullen, Y.; Clare-Salzler, M.; Sangkharat, A.; Benhamou, C.; Shevlin, L.; Go, V.L. Essential fatty acid deficiency prevents autoimmune diabetes in nonobese diabetic mice through a positive impact on antigen-presenting cells and Th2 lymphocytes. Pancreas, 1995, 11(1), 26-37.
[http://dx.doi.org/10.1097/00006676-199507000-00003] [PMID: 7667243]
[88]
Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 2005, 5(12), 953-964.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[89]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[90]
Oikawa, Y.; Shimada, A. Possible involvement of autoimmunity in fulminant type 1 diabetes. Diabetol. Int., 2020, 11(4), 329-335.
[http://dx.doi.org/10.1007/s13340-020-00460-8] [PMID: 33088639]
[91]
Yuan, Y.; Li, L.; Zhu, L.; Liu, F.; Tang, X.; Liao, G.; Liu, J.; Cheng, J.; Chen, Y.; Lu, Y. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells, 2020, 38(5), 639-652.
[http://dx.doi.org/10.1002/stem.3144] [PMID: 31904160]
[92]
Maggini, J.; Mirkin, G.; Bognanni, I.; Holmberg, J.; Piazzón, I.M.; Nepomnaschy, I.; Costa, H.; Cañones, C.; Raiden, S.; Vermeulen, M.; Geffner, J.R. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 2010, 5(2)
[http://dx.doi.org/10.1371/journal.pone.0009252] [PMID: 20169081]
[93]
François, M.; Romieu-Mourez, R.; Li, M.; Galipeau, J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol. Ther., 2012, 20(1), 187-195.
[http://dx.doi.org/10.1038/mt.2011.189] [PMID: 21934657]
[94]
Schmidt, A.; Zhang, X.M.; Joshi, R.N.; Iqbal, S.; Wahlund, C.; Gabrielsson, S.; Harris, R.A.; Tegnér, J. Human macrophages induce CD4(+)Foxp3(+) regulatory T cells via binding and re-release of TGF-β. Immunol. Cell Biol., 2016, 94(8), 747-762.
[http://dx.doi.org/10.1038/icb.2016.34] [PMID: 27075967]
[95]
Fu, W.; Farache, J.; Clardy, S.M.; Hattori, K.; Mander, P.; Lee, K.; Rioja, I.; Weissleder, R.; Prinjha, R.K.; Benoist, C.; Mathis, D. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. eLife, 2014, 3
[http://dx.doi.org/10.7554/eLife.04631] [PMID: 25407682]
[96]
Freytes, D.O.; Kang, J.W.; Marcos-Campos, I.; Vunjak-Novakovic, G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem., 2013, 114(1), 220-229.
[http://dx.doi.org/10.1002/jcb.24357] [PMID: 22903635]
[97]
Adutler-Lieber, S.; Ben-Mordechai, T.; Naftali-Shani, N.; Asher, E.; Loberman, D.; Raanani, E.; Leor, J. Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. J. Cardiovasc. Pharmacol. Ther., 2013, 18(1), 78-86.
[http://dx.doi.org/10.1177/1074248412453875] [PMID: 22894882]
[98]
Robertson, M.J.; Ritz, J. Biology and clinical relevance of human natural killer cells. Blood, 1990, 76(12), 2421-2438.
[http://dx.doi.org/10.1182/blood.V76.12.2421.2421] [PMID: 2265240]
[99]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol., 2008, 9(5), 503-510.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[100]
Spaggiari, G.M.; Capobianco, A.; Becchetti, S.; Mingari, M.C.; Moretta, L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006, 107(4), 1484-1490.
[http://dx.doi.org/10.1182/blood-2005-07-2775] [PMID: 16239427]
[101]
Trinchieri, G. Biology of natural killer cells. Adv. Immunol., 1989, 47, 187-376.
[http://dx.doi.org/10.1016/S0065-2776(08)60664-1] [PMID: 2683611]
[102]
Shahrabi, S.; Zayeri, Z.D.; Ansari, N.; Hadad, E.H.; Rajaei, E. Flip-flops of natural killer cells in autoimmune diseases versus cancers: Immunologic axis. J. Cell. Physiol., 2019, 234(10), 16998-17010.
[http://dx.doi.org/10.1002/jcp.28421] [PMID: 30864163]
[103]
Shi, F-D.; Wang, H-B.; Li, H.; Hong, S.; Taniguchi, M.; Link, H.; Van Kaer, L.; Ljunggren, H.G. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat. Immunol., 2000, 1(3), 245-251.
[http://dx.doi.org/10.1038/79792] [PMID: 10973283]
[104]
Poirot, L.; Benoist, C.; Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl. Acad. Sci. USA, 2004, 101(21), 8102-8107.
[http://dx.doi.org/10.1073/pnas.0402065101] [PMID: 15141080]
[105]
Feuerer, M.; Shen, Y.; Littman, D.R.; Benoist, C.; Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity, 2009, 31(4), 654-664.
[http://dx.doi.org/10.1016/j.immuni.2009.08.023] [PMID: 19818653]
[106]
Nekoua, M.P.; Dechaumes, A.; Sane, F.; Alidjinou, E.K.; Moutairou, K.; Yessoufou, A.; Hober, D. Enteroviral pathogenesis of type 1 Diabetes: The role of natural killer cells. Microorganisms, 2020, 8(7), 989.
[http://dx.doi.org/10.3390/microorganisms8070989] [PMID: 32630332]
[107]
Brauner, H.; Elemans, M.; Lemos, S.; Broberger, C.; Holmberg, D.; Flodström-Tullberg, M.; Kärre, K.; Höglund, P. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J. Immunol., 2010, 184(5), 2272-2280.
[http://dx.doi.org/10.4049/jimmunol.0804358] [PMID: 20130214]
[108]
Gur, C.; Porgador, A.; Elboim, M.; Gazit, R.; Mizrahi, S.; Stern-Ginossar, N.; Achdout, H.; Ghadially, H.; Dor, Y.; Nir, T.; Doviner, V.; Hershkovitz, O.; Mendelson, M.; Naparstek, Y.; Mandelboim, O. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat. Immunol., 2010, 11(2), 121-128.
[http://dx.doi.org/10.1038/ni.1834] [PMID: 20023661]
[109]
Flodström, M.; Maday, A.; Balakrishna, D.; Cleary, M.M.; Yoshimura, A.; Sarvetnick, N. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol., 2002, 3(4), 373-382.
[http://dx.doi.org/10.1038/ni771] [PMID: 11919579]
[110]
Alba, A.; Planas, R.; Clemente, X.; Carrillo, J.; Ampudia, R.; Puertas, M.C.; Pastor, X.; Tolosa, E.; Pujol-Borrell, R.; Verdaguer, J.; Vives-Pi, M. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-β. Clin. Exp. Immunol., 2008, 151(3), 467-475.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03580.x] [PMID: 18190608]
[111]
Ogasawara, K.; Hamerman, J.A.; Ehrlich, L.R.; Bour-Jordan, H.; Santamaria, P.; Bluestone, J.A.; Lanier, L.L. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity, 2004, 20(6), 757-767.
[http://dx.doi.org/10.1016/j.immuni.2004.05.008] [PMID: 15189740]
[112]
Carnaud, C.; Gombert, J.; Donnars, O.; Garchon, H.; Herbelin, A. Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J. Immunol., 2001, 166(4), 2404-2411.
[http://dx.doi.org/10.4049/jimmunol.166.4.2404] [PMID: 11160299]
[113]
Ogasawara, K.; Hamerman, J.A.; Hsin, H.; Chikuma, S.; Bour-Jordan, H.; Chen, T.; Pertel, T.; Carnaud, C.; Bluestone, J.A.; Lanier, L.L. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity, 2003, 18(1), 41-51.
[http://dx.doi.org/10.1016/S1074-7613(02)00505-8] [PMID: 12530974]
[114]
Rodacki, M.; Svoren, B.; Butty, V.; Besse, W.; Laffel, L.; Benoist, C.; Mathis, D. Altered natural killer cells in type 1 diabetic patients. Diabetes, 2007, 56(1), 177-185.
[http://dx.doi.org/10.2337/db06-0493] [PMID: 17192480]
[115]
Hussain, M.J.; Alviggi, L.; Millward, B.A.; Leslie, R.D.; Pyke, D.A.; Vergani, D. Evidence that the reduced number of natural killer cells in type 1 (insulin-dependent) diabetes may be genetically determined. Diabetologia, 1987, 30(12), 907-911.
[http://dx.doi.org/10.1007/BF00295872] [PMID: 3436487]
[116]
Spaggiari, G.M.; Capobianco, A.; Abdelrazik, H.; Becchetti, F.; Mingari, M.C.; Moretta, L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 2008, 111(3), 1327-1333.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
[117]
Shen, Z.Y.; Wu, B.; Liu, T.; Yang, Y.; Yin, M.L.; Zheng, W.P.; Zhang, B.Y.; Song, H.L. Immunomodulatory effects of bone marrow mesenchymal stem cells overexpressing heme oxygenase-1: Protective effects on acute rejection following reduced-size liver transplantation in a rat model. Cell. Immunol., 2017, 313, 10-24.
[http://dx.doi.org/10.1016/j.cellimm.2016.12.006] [PMID: 28069109]
[118]
Coelho, V.; Saitovitch, D.; Kalil, J.; Silva, H.M. Rethinking the multiple roles of B cells in organ transplantation. Curr. Opin. Organ Transplant., 2013, 18(1), 13-21.
[http://dx.doi.org/10.1097/MOT.0b013e32835c8043] [PMID: 23254702]
[119]
Spaggiari, G.M.; Abdelrazik, H.; Becchetti, F.; Moretta, L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 2009, 113(26), 6576-6583.
[http://dx.doi.org/10.1182/blood-2009-02-203943] [PMID: 19398717]
[120]
Meisel, R.; Zibert, A.; Laryea, M.; Göbel, U.; Däubener, W.; Dilloo, D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 2004, 103(12), 4619-4621.
[http://dx.doi.org/10.1182/blood-2003-11-3909] [PMID: 15001472]
[121]
Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4), 1815-1822.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[122]
Tipnis, S.; Viswanathan, C.; Majumdar, A.S. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol. Cell Biol., 2010, 88(8), 795-806.
[http://dx.doi.org/10.1038/icb.2010.47] [PMID: 20386557]
[123]
Ren, G.; Su, J.; Zhang, L.; Zhao, X.; Ling, W.; L’huillie, A.; Zhang, J.; Lu, Y.; Roberts, A.I.; Ji, W.; Zhang, H.; Rabson, A.B.; Shi, Y. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 2009, 27(8), 1954-1962.
[http://dx.doi.org/10.1002/stem.118] [PMID: 19544427]
[124]
Ryan, J.M.; Barry, F.; Murphy, J.M.; Mahon, B.P. Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin. Exp. Immunol., 2007, 149(2), 353-363.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03422.x] [PMID: 17521318]
[125]
Hwu, P.; Du, M.X.; Lapointe, R.; Do, M.; Taylor, M.W.; Young, H.A. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol., 2000, 164(7), 3596-3599.
[http://dx.doi.org/10.4049/jimmunol.164.7.3596] [PMID: 10725715]
[126]
Balachandran, V.P.; Cavnar, M.J.; Zeng, S.; Bamboat, Z.M.; Ocuin, L.M.; Obaid, H.; Sorenson, E.C.; Popow, R.; Ariyan, C.; Rossi, F.; Besmer, P.; Guo, T.; Antonescu, C.R.; Taguchi, T.; Yuan, J.; Wolchok, J.D.; Allison, J.P.; DeMatteo, R.P. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med., 2011, 17(9), 1094-1100.
[http://dx.doi.org/10.1038/nm.2438] [PMID: 21873989]
[127]
von Bergwelt-Baildon, M.S.; Popov, A.; Saric, T.; Chemnitz, J.; Classen, S.; Stoffel, M.S.; Fiore, F.; Roth, U.; Beyer, M.; Debey, S.; Wickenhauser, C.; Hanisch, F.G.; Schultze, J.L. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood, 2006, 108(1), 228-237.
[http://dx.doi.org/10.1182/blood-2005-08-3507] [PMID: 16522817]
[128]
Maes, M.; Van der Planken, M.; Van Gastel, A.; Desnyder, R. Blood coagulation and platelet aggregation in major depression. J. Affect. Disord., 1996, 40(1-2), 35-40.
[http://dx.doi.org/10.1016/0165-0327(96)00044-4] [PMID: 8882912]
[129]
Musselman, D.L.; Miller, A.H.; Porter, M.R.; Manatunga, A.; Gao, F.; Penna, S.; Pearce, B.D.; Landry, J.; Glover, S.; McDaniel, J.S.; Nemeroff, C.B. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am. J. Psychiatry, 2001, 158(8), 1252-1257.
[http://dx.doi.org/10.1176/appi.ajp.158.8.1252] [PMID: 11481159]
[130]
Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta, 2006, 364(1-2), 82-90.
[http://dx.doi.org/10.1016/j.cca.2005.06.013] [PMID: 16139256]
[131]
Wirleitner, B.; Rudzite, V.; Neurauter, G.; Murr, C.; Kalnins, U.; Erglis, A.; Trusinskis, K.; Fuchs, D. Immune activation and degradation of tryptophan in coronary heart disease. Eur. J. Clin. Invest., 2003, 33(7), 550-554.
[http://dx.doi.org/10.1046/j.1365-2362.2003.01186.x] [PMID: 12814390]
[132]
Capuron, L.; Schroecksnadel, S.; Féart, C.; Aubert, A.; Higueret, D.; Barberger-Gateau, P.; Layé, S.; Fuchs, D. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry, 2011, 70(2), 175-182.
[http://dx.doi.org/10.1016/j.biopsych.2010.12.006] [PMID: 21277567]
[133]
Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif., 2020, 53(1)
[http://dx.doi.org/10.1111/cpr.12712] [PMID: 31730279]
[134]
Porcelli, S.; Morita, C.T.; Brenner, M.B. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature, 1992, 360(6404), 593-597.
[http://dx.doi.org/10.1038/360593a0] [PMID: 1281285]
[135]
Hammond, K.J.; Poulton, L.D.; Palmisano, L.J.; Silveira, P.A.; Godfrey, D.I.; Baxter, A.G. α/β-T cell receptor (TCR)+CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med., 1998, 187(7), 1047-1056.
[http://dx.doi.org/10.1084/jem.187.7.1047] [PMID: 9529321]
[136]
Lehuen, A.; Lantz, O.; Beaudoin, L.; Laloux, V.; Carnaud, C.; Bendelac, A.; Bach, J.F.; Monteiro, R.C. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med., 1998, 188(10), 1831-1839.
[http://dx.doi.org/10.1084/jem.188.10.1831] [PMID: 9815260]
[137]
Sharif, S.; Arreaza, G.A.; Zucker, P.; Mi, Q-S.; Sondhi, J.; Naidenko, O.V.; Kronenberg, M.; Koezuka, Y.; Delovitch, T.L.; Gombert, J.M.; Leite-De-Moraes, M.; Gouarin, C.; Zhu, R.; Hameg, A.; Nakayama, T.; Taniguchi, M.; Lepault, F.; Lehuen, A.; Bach, J.F.; Herbelin, A. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med., 2001, 7(9), 1057-1062.
[http://dx.doi.org/10.1038/nm0901-1057] [PMID: 11533711]
[138]
Hong, S.; Wilson, M.T.; Serizawa, I.; Wu, L.; Singh, N.; Naidenko, O.V.; Miura, T.; Haba, T.; Scherer, D.C.; Wei, J.; Kronenberg, M.; Koezuka, Y.; Van Kaer, L. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med., 2001, 7(9), 1052-1056.
[http://dx.doi.org/10.1038/nm0901-1052] [PMID: 11533710]
[139]
Laloux, V.; Beaudoin, L.; Jeske, D.; Carnaud, C.; Lehuen, A. NK T cell-induced protection against diabetes in V α 14-J α 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J. Immunol., 2001, 166(6), 3749-3756.
[http://dx.doi.org/10.4049/jimmunol.166.6.3749] [PMID: 11238616]
[140]
Prigione, I.; Benvenuto, F.; Bocca, P.; Battistini, L.; Uccelli, A.; Pistoia, V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells, 2009, 27(3), 693-702.
[http://dx.doi.org/10.1634/stemcells.2008-0687] [PMID: 19096038]
[141]
Dazzi, F.; Krampera, M. Mesenchymal stem cells and autoimmune diseases. Best Pract. Res. Clin. Haematol., 2011, 24(1), 49-57.
[http://dx.doi.org/10.1016/j.beha.2011.01.002] [PMID: 21396592]
[142]
Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature, 1998, 392(6673), 245-252.
[http://dx.doi.org/10.1038/32588] [PMID: 9521319]
[143]
Tarbell, K.V.; Yamazaki, S.; Olson, K.; Toy, P.; Steinman, R.M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med., 2004, 199(11), 1467-1477.
[http://dx.doi.org/10.1084/jem.20040180] [PMID: 15184500]
[144]
Ludewig, B.; Odermatt, B.; Landmann, S.; Hengartner, H.; Zinkernagel, R.M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med., 1998, 188(8), 1493-1501.
[http://dx.doi.org/10.1084/jem.188.8.1493] [PMID: 9782126]
[145]
Zhao, L; Li, Y; Lv, Q; Wang, M; Luan, Y; Song, J Insulin-Attenuated inflammatory response of Dendritic Cells in diabetes by regulating RAGE-PKCβ1-IRS1-NF-κB signal pathway: A study on the Anti-Inflammatory mechanism of insulin in Diabetes. J. Diabetes Res., 2020, (ID 1596357)
[146]
Lacy, P.E.; Davie, J.M.; Finke, E.H. Prolongation of islet allograft survival following in vitro culture (24 degrees C) and a single injection of ALS. Science, 1979, 204(4390), 312-313.
[http://dx.doi.org/10.1126/science.107588] [PMID: 107588]
[147]
Turley, S.; Poirot, L.; Hattori, M.; Benoist, C.; Mathis, D. Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med., 2003, 198(10), 1527-1537.
[http://dx.doi.org/10.1084/jem.20030966] [PMID: 14623908]
[148]
Marleau, A.M.; Summers, K.L.; Singh, B. Differential contributions of APC subsets to T cell activation in nonobese diabetic mice. J. Immunol., 2008, 180(8), 5235-5249.
[http://dx.doi.org/10.4049/jimmunol.180.8.5235] [PMID: 18390704]
[149]
Ohnmacht, C.; Pullner, A.; King, S.B.; Drexler, I.; Meier, S.; Brocker, T.; Voehringer, D. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med., 2009, 206(3), 549-559.
[http://dx.doi.org/10.1084/jem.20082394] [PMID: 19237601]
[150]
Boldison, J.; Da Rosa, L.C.; Davies, J.; Wen, L.; Wong, F.S. Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells. Cell. Mol. Immunol., 2020, 17(8), 843-855.
[http://dx.doi.org/10.1038/s41423-019-0324-z] [PMID: 31728048]
[151]
Ueno, H.; Klechevsky, E.; Morita, R.; Aspord, C.; Cao, T.; Matsui, T.; Di Pucchio, T.; Connolly, J.; Fay, J.W.; Pascual, V.; Palucka, A.K.; Banchereau, J. Dendritic cell subsets in health and disease. Immunol. Rev., 2007, 219(1), 118-142.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00551.x] [PMID: 17850486]
[152]
Tang, Q.; Bluestone, J.A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol., 2008, 9(3), 239-244.
[http://dx.doi.org/10.1038/ni1572] [PMID: 18285775]
[153]
Badal, D.; Dayal, D.; Singh, G.; Sachdeva, N. Role of DNA-LL37 complexes in the activation of plasmacytoid dendritic cells and monocytes in subjects with type 1 diabetes. Sci. Rep., 2020, 10(1), 8896.
[http://dx.doi.org/10.1038/s41598-020-65851-y] [PMID: 32483133]
[154]
Kared, H.; Masson, A.; Adle-Biassette, H.; Bach, J-F.; Chatenoud, L.; Zavala, F. Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4(+)CD25(+) regulatory T-cells. Diabetes, 2005, 54(1), 78-84.
[http://dx.doi.org/10.2337/diabetes.54.1.78] [PMID: 15616013]
[155]
Chilton, P.M.; Rezzoug, F.; Fugier-Vivier, I.; Weeter, L.A.; Xu, H.; Huang, Y.; Ray, M.B.; Ildstad, S.T. Flt3-ligand treatment prevents diabetes in NOD mice. Diabetes, 2004, 53(8), 1995-2002.
[http://dx.doi.org/10.2337/diabetes.53.8.1995] [PMID: 15277378]
[156]
O’Keeffe, M.; Brodnicki, T.C.; Fancke, B.; Vremec, D.; Morahan, G.; Maraskovsky, E.; Steptoe, R.; Harrison, L.C.; Shortman, K. Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. Int. Immunol., 2005, 17(3), 307-314.
[http://dx.doi.org/10.1093/intimm/dxh210] [PMID: 15684037]
[157]
Saxena, V.; Ondr, J.K.; Magnusen, A.F.; Munn, D.H.; Katz, J.D. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J. Immunol., 2007, 179(8), 5041-5053.
[http://dx.doi.org/10.4049/jimmunol.179.8.5041] [PMID: 17911589]
[158]
Grohmann, U.; Fallarino, F.; Bianchi, R.; Orabona, C.; Vacca, C.; Fioretti, M.C.; Puccetti, P. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J. Exp. Med., 2003, 198(1), 153-160.
[http://dx.doi.org/10.1084/jem.20030633] [PMID: 12835483]
[159]
Alexander, A.M.; Crawford, M.; Bertera, S.; Rudert, W.A.; Takikawa, O.; Robbins, P.D.; Trucco, M. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes, 2002, 51(2), 356-365.
[http://dx.doi.org/10.2337/diabetes.51.2.356] [PMID: 11812742]
[160]
Chen, L.; Zhang, W.; Yue, H.; Han, Q.; Chen, B.; Shi, M.; Li, J.; Li, B.; You, S.; Shi, Y.; Zhao, R.C. Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev., 2007, 16(5), 719-731.
[http://dx.doi.org/10.1089/scd.2007.0065] [PMID: 17999594]
[161]
Shahir, M.; Mahmoud Hashemi, S.; Asadirad, A.; Varahram, M.; Kazempour-Dizaji, M.; Folkerts, G.; Garssen, J.; Adcock, I.; Mortaz, E. Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. J. Cell. Physiol., 2020, 235(10), 7043-7055.
[http://dx.doi.org/10.1002/jcp.29601] [PMID: 32043593]
[162]
Molina, M.S.; Stokes, J.; Hoffman, E.A.; Eremija, J.; Zeng, Y.; Simpson, R.J.; Katsanis, E. Bendamustine Conditioning Skews Murine Host DCs Toward Pre-cDC1s and Reduces GvHD Independently of Batf3. Front. Immunol., 2020, 11, 1410.
[http://dx.doi.org/10.3389/fimmu.2020.01410] [PMID: 32765499]
[163]
Jiang, X-X.; Zhang, Y.; Liu, B.; Zhang, S-X.; Wu, Y.; Yu, X-D.; Mao, N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005, 105(10), 4120-4126.
[http://dx.doi.org/10.1182/blood-2004-02-0586] [PMID: 15692068]
[164]
Nauta, A.J.; Kruisselbrink, A.B.; Lurvink, E.; Willemze, R.; Fibbe, W.E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol., 2006, 177(4), 2080-2087.
[http://dx.doi.org/10.4049/jimmunol.177.4.2080] [PMID: 16887966]
[165]
Beyth, S.; Borovsky, Z.; Mevorach, D.; Liebergall, M.; Gazit, Z.; Aslan, H.; Galun, E.; Rachmilewitz, J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005, 105(5), 2214-2219.
[http://dx.doi.org/10.1182/blood-2004-07-2921] [PMID: 15514012]
[166]
Ramasamy, R.; Fazekasova, H.; Lam, E.W-F.; Soeiro, I.; Lombardi, G.; Dazzi, F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 2007, 83(1), 71-76.
[http://dx.doi.org/10.1097/01.tp.0000244572.24780.54] [PMID: 17220794]
[167]
Shlomchik, W.D.; Couzens, M.S.; Tang, C.B.; McNiff, J.; Robert, M.E.; Liu, J.; Shlomchik, M.J.; Emerson, S.G. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science, 1999, 285(5426), 412-415.
[http://dx.doi.org/10.1126/science.285.5426.412] [PMID: 10411505]
[168]
Saeidi, M.; Masoud, A.; Shakiba, Y.; Hadjati, J.; Mohyeddin Bonab, M.; Nicknam, M.H.; Latifpour, M.; Nikbin, B. Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iran. J. Allergy Asthma Immunol., 2013, 12(1), 37-49.
[PMID: 23454777]
[169]
Muraro, P.A.; Douek, D.C.; Packer, A.; Chung, K.; Guenaga, F.J.; Cassiani-Ingoni, R.; Campbell, C.; Memon, S.; Nagle, J.W.; Hakim, F.T.; Gress, R.E.; McFarland, H.F.; Burt, R.K.; Martin, R. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med., 2005, 201(5), 805-816.
[http://dx.doi.org/10.1084/jem.20041679] [PMID: 15738052]
[170]
Song, W-C.; Sarrias, M.R.; Lambris, J.D. Complement and innate immunity. Immunopharmacology, 2000, 49(1-2), 187-198.
[http://dx.doi.org/10.1016/S0162-3109(00)80303-3] [PMID: 10904117]
[171]
Bernuy-Guevara, C.; Chehade, H.; Muller, Y.D.; Vionnet, J.; Cachat, F.; Guzzo, G.; Ochoa-Sangrador, C.; Álvarez, F.J.; Teta, D.; Martín-García, D.; Adler, M.; de Paz, F.J.; Lizaraso-Soto, F.; Pascual, M.; Herrera-Gómez, F. The inhibition of complement system in formal and emerging Indications: Results from parallel one-stage pairwise and network Meta-Analyses of clinical trials and real-life Data studies. Biomedicines, 2020, 8(9), 355.
[http://dx.doi.org/10.3390/biomedicines8090355] [PMID: 32948059]
[172]
Ruddy, S.; Austen, K.F. Activation of the complement and properdin systems in rheumatoid arthritis. Ann. N. Y. Acad. Sci., 1975, 256(1), 96-104.
[http://dx.doi.org/10.1111/j.1749-6632.1975.tb36039.x] [PMID: 1099964]
[173]
Sundsmo, J.S.; Papin, R.A.; Wood, L.; Hirani, S.; Waldeck, N.; Buckingham, B.; Kershnar, A.; Ascher, M.; Charles, M.A. Complement activation in type 1 human diabetes. Clin. Immunol. Immunopathol., 1985, 35(2), 211-225.
[http://dx.doi.org/10.1016/0090-1229(85)90067-4] [PMID: 3907907]
[174]
Radillo, O.; Nocera, A.; Leprini, A.; Barocci, S.; Mollnes, T.E.; Pocecco, M.; Pausa, M.; Valente, U.; Betterle, C.; Tedesco, F. Complement-fixing islet cell antibodies in type-1 diabetes can trigger the assembly of the terminal complement complex on human islet cells and are potentially cytotoxic. Clin. Immunol. Immunopathol., 1996, 79(3), 217-223.
[http://dx.doi.org/10.1006/clin.1996.0071] [PMID: 8635278]
[175]
Shahulhameed, S.; Vishwakarma, S.; Chhablani, J.; Tyagi, M.; Pappuru, R.R.; Jakati, S.; Chakrabarti, S.; Kaur, I. A systematic investigation on complement pathway activation in diabetic retinopathy. Front. Immunol., 2020, 11, 154.
[http://dx.doi.org/10.3389/fimmu.2020.00154] [PMID: 32117292]
[176]
Lennon, V.A.; Lambert, E.H. Monoclonal autoantibodies to acetylcholine receptors: evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann. N. Y. Acad. Sci., 1981, 377(1), 77-96.
[http://dx.doi.org/10.1111/j.1749-6632.1981.tb33725.x] [PMID: 6176167]
[177]
Piddlesden, S.J.; Jiang, S.; Levin, J.L.; Vincent, A.; Morgan, B.P. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J. Neuroimmunol., 1996, 71(1-2), 173-177.
[http://dx.doi.org/10.1016/S0165-5728(96)00144-0] [PMID: 8982117]
[178]
Ooi, Y.M.; Vallota, E.H.; West, C.D. Classical complement pathway activation in membranoproliferative glomerulonephritis. Kidney Int., 1976, 9(1), 46-53.
[http://dx.doi.org/10.1038/ki.1976.6] [PMID: 781380]
[179]
Perrin, L.H.; Lambert, P.H.; Miescher, P.A. Complement breakdown products in plasma from patients with systemic lupus erythematosus and patients with membranoproliferative or other glomerulonephritis. J. Clin. Invest., 1975, 56(1), 165-176.
[http://dx.doi.org/10.1172/JCI108065] [PMID: 1141431]
[180]
Chrupcala, M.; Pomer, S.; Staehler, G.; Waldherr, R.; Kirschfink, C. Prolongation of discordant renal xenograft survival by depletion of complement. Comparative effects of systemically administered cobra venom factor and soluble complement receptor type 1 in a guinea-pig to rat model. Transpl. Int., 1994, 7(S1)(Suppl. 1), S650-S653.
[http://dx.doi.org/10.1111/j.1432-2277.1994.tb01465.x] [PMID: 11271331]
[181]
Local C3 activation and macrophage accumulation in renal allografts with early vascular rejection. Transplantation proceedings., 1992.
[182]
Doi, T; Takemura, S; Ueda, M; Deguchi, M; Ichio, N; Yanagida, K Suppressed increase of C3 receptors on polymorphonuclear leukocytes by stimulation with C5a in diabetes mellitus. Arerugi=[Allergy]., 1995, 44(10), 1223-1228.
[183]
Mühlig, A.K.; Keir, L.S.; Abt, J.C.; Heidelbach, H.S.; Horton, R.; Welsh, G.I.; Meyer-Schwesinger, C.; Licht, C.; Coward, R.J.; Fester, L.; Saleem, M.A.; Oh, J. Podocytes Produce and Secrete Functional Complement C3 and Complement Factor H. Front. Immunol., 2020, 11, 1833.
[http://dx.doi.org/10.3389/fimmu.2020.01833] [PMID: 32922395]
[184]
Tu, Z.; Li, Q.; Bu, H.; Lin, F. Mesenchymal stem cells inhibit complement activation by secreting factor H. Stem Cells Dev., 2010, 19(11), 1803-1809.
[http://dx.doi.org/10.1089/scd.2009.0418] [PMID: 20163251]
[185]
Zipfel, P.F.; Hellwage, J.; Friese, M.A.; Hegasy, G.; Jokiranta, S.T.; Meri, S. Factor H and disease: a complement regulator affects vital body functions. Mol. Immunol., 1999, 36(4-5), 241-248.
[http://dx.doi.org/10.1016/S0161-5890(99)00038-3] [PMID: 10403477]
[186]
Whaley, K.; Ruddy, S. Modulation of the alternative complement pathways by beta 1 H globulin. J. Exp. Med., 1976, 144(5), 1147-1163.
[http://dx.doi.org/10.1084/jem.144.5.1147] [PMID: 62817]
[187]
Kazatchkine, M.D.; Fearon, D.T.; Austen, K.F. Human alternative complement pathway: membrane-associated sialic acid regulates the competition between B and β1 H for cell-bound C3b. J. Immunol., 1979, 122(1), 75-81.
[PMID: 762425]
[188]
Weiler, J.M.; Daha, M.R.; Austen, K.F.; Fearon, D.T. Control of the amplification convertase of complement by the plasma protein beta1H. Proc. Natl. Acad. Sci. USA, 1976, 73(9), 3268-3272.
[http://dx.doi.org/10.1073/pnas.73.9.3268] [PMID: 1067618]
[189]
Brooimans, R.A.; Hiemstra, P.S.; van der Ark, A.A.; Sim, R.B.; van Es, L.A.; Daha, M.R. Biosynthesis of complement factor H by human umbilical vein endothelial cells. Regulation by T cell growth factor and IFN-gamma. J. Immunol.1989, 142(6), 2024-2030. PMID: 2522130
[190]
Edner, N.M.; Heuts, F.; Thomas, N.; Wang, C.J.; Petersone, L.; Kenefeck, R.; Kogimtzis, A.; Ovcinnikovs, V.; Ross, E.M.; Ntavli, E.; Elfaki, Y.; Eichmann, M.; Baptista, R.; Ambery, P.; Jermutus, L.; Peakman, M.; Rosenthal, M.; Walker, L.S.K. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol., 2020, 21(10), 1244-1255.
[http://dx.doi.org/10.1038/s41590-020-0744-z] [PMID: 32747817]
[191]
Churina, E.G.; Urazova, O.I.; Novitskiy, V.V. The role of foxp3-expressing regulatory T cells and T helpers in immunopathogenesis of multidrug resistant pulmonary tuberculosis. Tuberc. Res. Treat., 2012, 2012
[http://dx.doi.org/10.1155/2012/931291] [PMID: 22666578]
[192]
Ketlinskiy, S. Th17 as a new line of differentiation of T-helpers: data review. Cytokines and inflammation., 2009, 8(2), 3-15.
[193]
Alpdogana, O.; van den Brinkb, M.R.M. Immune tolerance and transplantation. Seminars in oncology. Seminars oncol., 2012, 39(6), 629-642.
[194]
Mohammadi Ayenehdeh, J.; Niknam, B.; Rasouli, S.; Hashemi, S.M.; Rahavi, H.; Rezaei, N.; Soleimani, M.; Liaeiha, A.; Niknam, M.H.; Tajik, N. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol. Lett., 2017, 188, 21-31.
[http://dx.doi.org/10.1016/j.imlet.2017.05.006] [PMID: 28506774]
[195]
Mamonkin, M. Detonating T-ALL. Blood, 2020, 136(11), 1218-1219.
[http://dx.doi.org/10.1182/blood.2020006991] [PMID: 32957114]
[196]
Klocperk, A.; Petruzelkova, L.; Pavlikova, M.; Rataj, M.; Kayserova, J.; Pruhova, S.; Kolouskova, S.; Sklenarova, J.; Parackova, Z.; Sediva, A.; Sumnik, Z. Changes in innate and adaptive immunity over the first year after the onset of type 1 diabetes. Acta Diabetol., 2020, 57(3), 297-307.
[http://dx.doi.org/10.1007/s00592-019-01427-1] [PMID: 31570993]
[197]
IMAM, S.; DAR, P; ALFONSO-JAUME, MA; JAUME, JC 125-LB: Beta-Cell Antigen-Specific Chimeric Antigen Receptor Tregs for Type 1 Diabetes Prevention and Treatment. In: Am Diabetes Assoc; , 2020.
[198]
Marinescu, C; Preda, B; Burlacu, A. A procedure for in vitro evaluation of the immunosuppressive effect of mesenchymal stem cells on activated T cell proliferation. Stem Cell Res. Ther., 2021, 12(1), 319.
[199]
Memon, B.; Abdelalim, E.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors. Cells, 2020, 9(2), 283.
[http://dx.doi.org/10.3390/cells9020283] [PMID: 31979403]
[200]
Shokoohifar, N.; Ahmady-Asbchin, S.; Besharat, S.; Roudbari, F.; Mohammadi, S.; Amiriani, T. The Impaired Balance of CD4+/CD8+ Ratio in Patients with Chronic Hepatitis B. Hepat. Mon., 2020, 20(1)
[http://dx.doi.org/10.5812/hepatmon.96799]
[201]
Jackute, J.; Zemaitis, M.; Pranys, D.; Sitkauskiene, B.; Miliauskas, S.; Bajoriunas, V.; Lavinskiene, S.; Sakalauskas, R. The prognostic influence of tumor infiltrating Foxp3(+)CD4(+), CD4(+) and CD8(+) T cells in resected non-small cell lung cancer. J. Inflamm. (Lond.), 2015, 12, 63.
[http://dx.doi.org/10.1186/s12950-015-0108-x] [PMID: 26604855]
[202]
Han, S.; Zhang, C.; Li, Q.; Dong, J.; Liu, Y.; Huang, Y.; Jiang, T.; Wu, A. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer, 2014, 110(10), 2560-2568.
[http://dx.doi.org/10.1038/bjc.2014.162] [PMID: 24691423]
[203]
Tootee, A.; Esfahani, E.N.; Ghodsi, M.; Razi, F.; Adibi, H.; Heshmat, R. Flowcytometric Assessment of Lymphocyte Subsets in Type-1 Diabetic Patients following Allotransplantation of Liver-derived Fetal Stem-cells. Iran. J. Public Health, 2015, 44(2), 48.
[204]
Devine, S.M.; Cobbs, C.; Jennings, M.; Bartholomew, A.; Hoffman, R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 2003, 101(8), 2999-3001.
[http://dx.doi.org/10.1182/blood-2002-06-1830] [PMID: 12480709]
[205]
Murphy, S.P.; Porrett, P.M.; Turka, L.A. Innate immunity in transplant tolerance and rejection. Immunol. Rev., 2011, 241(1), 39-48.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01009.x] [PMID: 21488888]
[206]
Shin, B; Benavides, GA; Geng, J; Koralov, SB; Hu, H; Darley-Usmar, VM Mitochondrial Oxidative Phosphorylation Regulates the Fate Decision between Pathogenic Th17 and Regulatory T Cells. Cell Reports., 2020, 30(6), 1989-909.
[207]
Boonpiyathad, T.; Sözener, Z.C.; Akdis, M.; Akdis, C.A. The role of Treg cell subsets in allergic disease. Asian Pac. J. Allergy Immunol., 2020, 38(3), 139-149.
[PMID: 32563231]
[208]
Wang, L.; Gu, L.; Tang, Z. Cytokines secreted by arecoline activate fibroblasts that affect the balance of TH17 and Treg. J. Oral Pathol. Med., 2020, 49(2), 156-163.
[http://dx.doi.org/10.1111/jop.12965] [PMID: 31610043]
[209]
Zhang, K.; Kong, J.; Liu, B.; Meng, X. Regulatory T cells suppress the expression of COX-2 in vulnerable plaque. Heart Vessels, 2020, 35(2), 278-283.
[http://dx.doi.org/10.1007/s00380-019-01491-1] [PMID: 31501952]
[210]
Salomon, B.; Lenschow, D.J.; Rhee, L.; Ashourian, N.; Singh, B.; Sharpe, A.; Bluestone, J.A. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000, 12(4), 431-440.
[http://dx.doi.org/10.1016/S1074-7613(00)80195-8] [PMID: 10795741]
[211]
Cipriani, P.; Di Benedetto, P.; Liakouli, V.; Del Papa, B.; Di Padova, M.; Di Ianni, M.; Marrelli, A.; Alesse, E.; Giacomelli, R. Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clin. Exp. Immunol., 2013, 173(2), 195-206.
[http://dx.doi.org/10.1111/cei.12111] [PMID: 23607751]
[212]
El-Mokhtar, MA; Elsherbiny, NM; Sayed, D; Raafat, DM; Askar, E; Hussein, A ltered Regulatory B Cell Subsets in Children with Type 1 Diabetes Mellitus. Journal of Immunology Research., 2020.
[213]
Vandamme, C.; Kinnunen, T. B cell helper T cells and type 1 diabetes. Scand. J. Immunol., 2020, 92(4)
[http://dx.doi.org/10.1111/sji.12943] [PMID: 32697399]
[214]
Martin, B. Activation and pathogenic potential of MOG-specific B cells in spontaneous experimental autoimmune encephalomyelitis: lmu, 2019.
[215]
Pescovitz, M.D.; Greenbaum, C.J.; Krause-Steinrauf, H.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; McGee, P.F.; Moran, A.M.; Raskin, P.; Rodriguez, H.; Schatz, D.A.; Wherrett, D.; Wilson, D.M.; Lachin, J.M.; Skyler, J.S. Type 1 Diabetes TrialNet Anti-CD20 Study Group. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med., 2009, 361(22), 2143-2152.
[http://dx.doi.org/10.1056/NEJMoa0904452] [PMID: 19940299]
[216]
Franquesa, M.; Hoogduijn, M.J.; Bestard, O.; Grinyó, J.M. Immunomodulatory effect of mesenchymal stem cells on B cells. Front. Immunol., 2012, 3, 212.
[http://dx.doi.org/10.3389/fimmu.2012.00212] [PMID: 22833744]
[217]
Rasmusson, I.; Le Blanc, K.; Sundberg, B.; Ringdén, O. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol., 2007, 65(4), 336-343.
[http://dx.doi.org/10.1111/j.1365-3083.2007.01905.x] [PMID: 17386024]
[218]
Tabera, S; Pérez-Simón, JA; Díez-Campelo, M; Sánchez-Abarca, LI; Blanco, B; López, A The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. haematologica., 2008, 93(9), 1301-9.
[219]
Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; Uccelli, A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006, 107(1), 367-372.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[220]
Crop, M.J.; Baan, C.C.; Korevaar, S.S.; Ijzermans, J.N.; Pescatori, M.; Stubbs, A.P.; van Ijcken, W.F.; Dahlke, M.H.; Eggenhofer, E.; Weimar, W.; Hoogduijn, M.J. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin. Exp. Immunol., 2010, 162(3), 474-486.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04256.x] [PMID: 20846162]
[221]
Schena, F.; Gambini, C.; Gregorio, A.; Mosconi, M.; Reverberi, D.; Gattorno, M.; Casazza, S.; Uccelli, A.; Moretta, L.; Martini, A.; Traggiai, E. Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum., 2010, 62(9), 2776-2786.
[http://dx.doi.org/10.1002/art.27560] [PMID: 20496367]
[222]
Mizoguchi, A.; Bhan, A.K. A case for regulatory B cells. J. Immunol., 2006, 176(2), 705-710.
[http://dx.doi.org/10.4049/jimmunol.176.2.705] [PMID: 16393950]
[223]
Marner, B.; Agner, T.; Binder, C.; Lernmark, A.; Nerup, J.; Mandrup-Poulsen, T.; Walldorff, S. Increased reduction in fasting C-peptide is associated with islet cell antibodies in type 1 (insulin-dependent) diabetic patients. Diabetologia, 1985, 28(12), 875-880.
[http://dx.doi.org/10.1007/BF00703129] [PMID: 3912242]
[224]
Wallensteen, M.; Dahlquist, G.; Persson, B.; Landin-Olsson, M.; Lernmark, A.; Sundkvist, G.; Thalme, B. Factors influencing the magnitude, duration, and rate of fall of B-cell function in type 1 (insulin-dependent) diabetic children followed for two years from their clinical diagnosis. Diabetologia, 1988, 31(9), 664-669.
[http://dx.doi.org/10.1007/BF00278749] [PMID: 3069534]
[225]
Peig, M.; Gomis, R.; Ercilla, G.; Casamitjana, R.; Bottazzo, G.F.; Pujol-Borrell, R. Correlation between residual β-cell function and islet cell antibodies in newly diagnosed type I diabetes. Follow-up study. Diabetes, 1989, 38(11), 1396-1401.
[http://dx.doi.org/10.2337/diab.38.11.1396] [PMID: 2695374]
[226]
Manna, R; Salvatore, M; Scuderi, F; Papa, G; Marietti, G; Greco, A Negative correlation between ICA persistence and beta cell restoration after IDDM diagnosis. Diabetes research (Edinburgh, Scotland)., 1988, 9(3), 101-3.
[227]
Schiffrin, A.; Suissa, S.; Poussier, P.; Guttmann, R.; Weitzner, G. Prospective study of predictors of β-cell survival in type I diabetes. Diabetes, 1988, 37(7), 920-925.
[http://dx.doi.org/10.2337/diab.37.7.920] [PMID: 3290010]
[228]
Couper, J.J.; Hudson, I.; Werther, G.A.; Warne, G.L.; Court, J.M.; Harrison, L.C. Factors predicting residual β-cell function in the first year after diagnosis of childhood type 1 diabetes. Diabetes Res. Clin. Pract., 1991, 11(1), 9-16.
[http://dx.doi.org/10.1016/0168-8227(91)90135-Z] [PMID: 2019237]
[229]
Merchant, P.C.; Godse, C.S.; Varthakavi, P.K.; Patel, K.L.; Nihalani, K.D. Prevalence of islet cell antibodies and B cell functional status in insulin dependent diabetes. J. Assoc. Physicians India, 1996, 44(7), 457-460.
[PMID: 9282605]
[230]
Komulainen, J.; Knip, M.; Lounamaa, R.; Vähäsalo, P.; Karjalainen, J.; Sabbah, E.; Akerblom, H.K. The Childhood Diabetes in Finland Study Group. Poor beta-cell function after the clinical manifestation of type 1 diabetes in children initially positive for islet cell specific autoantibodies. Diabet. Med., 1997, 14(7), 532-537.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199707)14:7<532::AID-DIA403>3.0.CO;2-6] [PMID: 9223390]
[231]
Törn, C.; Landin-Olsson, M.; Lernmark, A.; Palmer, J.P.; Arnqvist, H.J.; Blohmé, G.; Lithner, F.; Littorin, B.; Nyström, L.; Scherstén, B.; Sundkvist, G.; Wibell, L.; Ostman, J. Prognostic factors for the course of β cell function in autoimmune diabetes. J. Clin. Endocrinol. Metab., 2000, 85(12), 4619-4623.
[http://dx.doi.org/10.1210/jc.85.12.4619] [PMID: 11134117]
[232]
Verge, C.F.; Stenger, D.; Bonifacio, E.; Colman, P.G.; Pilcher, C.; Bingley, P.J.; Eisenbarth, G.S. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes, 1998, 47(12), 1857-1866.
[http://dx.doi.org/10.2337/diabetes.47.12.1857] [PMID: 9836516]
[233]
Pöllänen, P.M.; Ryhänen, S.J.; Toppari, J.; Ilonen, J.; Vähäsalo, P.; Veijola, R.; Siljander, H.; Knip, M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J. Clin. Endocrinol. Metab., 2020, 105(12)
[http://dx.doi.org/10.1210/clinem/dgaa624] [PMID: 32882033]
[234]
Taplin, C.E.; Barker, J.M. Autoantibodies in type 1 diabetes. Autoimmunity, 2008, 41(1), 11-18.
[http://dx.doi.org/10.1080/08916930701619169] [PMID: 18176860]
[235]
Sundkvist, G.; Tydén, G.; Karlsson, F.A.; Bolinder, J. Islet autoimmunity before and after pancreas transplantation in patients with Type I diabetes mellitus. Diabetologia, 1998, 41(12), 1532-1533.
[http://dx.doi.org/10.1007/s001250051102] [PMID: 9867223]
[236]
Alhadj Ali, M.; Liu, Y-F.; Arif, S.; Tatovic, D.; Shariff, H.; Gibson, V.B.; Yusuf, N.; Baptista, R.; Eichmann, M.; Petrov, N.; Heck, S.; Yang, J.H.M.; Tree, T.I.M.; Pujol-Autonell, I.; Yeo, L.; Baumard, L.R.; Stenson, R.; Howell, A.; Clark, A.; Boult, Z.; Powrie, J.; Adams, L.; Wong, F.S.; Luzio, S.; Dunseath, G.; Green, K.; O’Keefe, A.; Bayly, G.; Thorogood, N.; Andrews, R.; Leech, N.; Joseph, F.; Nair, S.; Seal, S.; Cheung, H.; Beam, C.; Hills, R.; Peakman, M.; Dayan, C.M. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci. Transl. Med., 2017, 9(402)
[http://dx.doi.org/10.1126/scitranslmed.aaf7779] [PMID: 28794283]
[237]
Ponka, P.; Lok, C.N. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol., 1999, 31(10), 1111-1137.
[http://dx.doi.org/10.1016/S1357-2725(99)00070-9] [PMID: 10582342]
[238]
Richardson, D.R.; Ponka, P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta, 1997, 1331(1), 1-40.
[http://dx.doi.org/10.1016/S0304-4157(96)00014-7] [PMID: 9325434]
[239]
Daniels, T.R.; Delgado, T.; Rodriguez, J.A.; Helguera, G.; Penichet, M.L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol., 2006, 121(2), 144-158.
[http://dx.doi.org/10.1016/j.clim.2006.06.010] [PMID: 16904380]
[240]
Habashy, H.O.; Powe, D.G.; Staka, C.M.; Rakha, E.A.; Ball, G.; Green, A.R.; Aleskandarany, M.; Paish, E.C.; Douglas Macmillan, R.; Nicholson, R.I.; Ellis, I.O.; Gee, J.M. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res. Treat., 2010, 119(2), 283-293.
[http://dx.doi.org/10.1007/s10549-009-0345-x] [PMID: 19238537]
[241]
Francavilla, R.; Cristofori, F.; Vacca, M.; Barone, M.; De Angelis, M. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Rev. Gastroenterol. Hepatol., 2020, 14(5), 323-333.
[http://dx.doi.org/10.1080/17474124.2020.1745630] [PMID: 32216476]
[242]
Hanifi-Moghaddam, P.; Schloot, N.C.; Kappler, S.; Seissler, J.; Kolb, H. An association of autoantibody status and serum cytokine levels in type 1 diabetes. Diabetes, 2003, 52(5), 1137-1142.
[http://dx.doi.org/10.2337/diabetes.52.5.1137] [PMID: 12716743]
[243]
Schloot, N.C.; Hanifi-Moghaddam, P.; Goebel, C.; Shatavi, S.V.; Flohé, S.; Kolb, H.; Rothe, H. Serum IFN-γ and IL-10 levels are associated with disease progression in non-obese diabetic mice. Diabetes Metab. Res. Rev., 2002, 18(1), 64-70.
[http://dx.doi.org/10.1002/dmrr.256] [PMID: 11921420]
[244]
Nogueira, E.; Hamour, S.; Sawant, D.; Henderson, S.; Mansfield, N.; Chavele, K-M.; Pusey, C.D.; Salama, A.D. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant., 2010, 25(7), 2209-2217.
[http://dx.doi.org/10.1093/ndt/gfp783] [PMID: 20100727]
[245]
Arican, O.; Aral, M.; Sasmaz, S.; Ciragil, P. Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm., 2005, 2005(5), 273-279.
[http://dx.doi.org/10.1155/MI.2005.273] [PMID: 16258194]
[246]
Caproni, M.; Antiga, E.; Melani, L.; Volpi, W.; Del Bianco, E.; Fabbri, P. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J. Clin. Immunol., 2009, 29(2), 210-214.
[http://dx.doi.org/10.1007/s10875-008-9233-0] [PMID: 18763027]
[247]
Roohi, A.; Tabrizi, M.; Abbasi, F.; Ataie-Jafari, A.; Nikbin, B.; Larijani, B.; Qorbani, M.; Meysamie, A.; Asgarian-Omran, H.; Nikmanesh, B.; Bajouri, A.; Shafiey, N.; Maleki, A. Serum IL-17, IL-23, and TGF-β levels in type 1 and type 2 diabetic patients and age-matched healthy controls. BioMed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/718946] [PMID: 24995325]
[248]
English, K.; Barry, F.P.; Field-Corbett, C.P.; Mahon, B.P. IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett., 2007, 110(2), 91-100.
[http://dx.doi.org/10.1016/j.imlet.2007.04.001] [PMID: 17507101]
[249]
Van Antwerp, D.J.; Martin, S.J.; Kafri, T.; Green, D.R.; Verma, I.M. Suppression of TNF-α-induced apoptosis by NF-kappaB. Science, 1996, 274(5288), 787-789.
[http://dx.doi.org/10.1126/science.274.5288.787] [PMID: 8864120]
[250]
Caux, C.; Dezutter-Dambuyant, C.; Schmitt, D.; Banchereau, J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature, 1992, 360(6401), 258-261.
[http://dx.doi.org/10.1038/360258a0] [PMID: 1279441]
[251]
Sankaran, D.; Asderakis, A.; Ashraf, S.; Roberts, I.S.; Short, C.D.; Dyer, P.A.; Sinnott, P.J.; Hutchinson, I.V. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int., 1999, 56(1), 281-288.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00536.x] [PMID: 10411704]
[252]
Roman, J.; Fernandez, F.; Velasco, F.; Rojas, R.; Roldan, M.R.; Torres, A. Serum TNF levels in neonatal sepsis and septic shock. Acta Paediatr., 1993, 82(4), 352-354.
[http://dx.doi.org/10.1111/j.1651-2227.1993.tb12695.x] [PMID: 8318801]
[253]
Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract., 2005, 69(1), 29-35.
[http://dx.doi.org/10.1016/j.diabres.2004.11.007] [PMID: 15955385]
[254]
Gratacós, J.; Collado, A.; Filella, X.; Sanmartí, R.; Cañete, J.; Llena, J.; Molina, R.; Ballesta, A.; Muñoz-Gómez, J. Serum cytokines (IL-6, TNF-α, IL-1 β and IFN-γ) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br. J. Rheumatol., 1994, 33(10), 927-931.
[http://dx.doi.org/10.1093/rheumatology/33.10.927] [PMID: 7921752]
[255]
Jablonska, E.; Piotrowski, L.; Grabowska, Z. Serum Levels of IL-lβ, IL-6, TNF-α, sTNF-RI and CRP in Patients with oral cavity cancer. Pathol. Oncol. Res., 1997, 3(2), 126-129.
[http://dx.doi.org/10.1007/BF02907807] [PMID: 11173639]
[256]
Liu, N.; Chen, R.; Du, H.; Wang, J.; Zhang, Y.; Wen, J. Expression of IL-10 and TNF-α in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell. Mol. Immunol., 2009, 6(3), 207-213.
[http://dx.doi.org/10.1038/cmi.2009.28] [PMID: 19567204]
[257]
Yang, S-H.; Park, M-J.; Yoon, I-H.; Kim, S-Y.; Hong, S-H.; Shin, J-Y.; Nam, H.Y.; Kim, Y.H.; Kim, B.; Park, C.G. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp. Mol. Med., 2009, 41(5), 315-324.
[http://dx.doi.org/10.3858/emm.2009.41.5.035] [PMID: 19307751]
[258]
Charles, K.A.; Kulbe, H.; Soper, R.; Escorcio-Correia, M.; Lawrence, T.; Schultheis, A.; Chakravarty, P.; Thompson, R.G.; Kollias, G.; Smyth, J.F.; Balkwill, F.R.; Hagemann, T. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest., 2009, 119(10), 3011-3023.
[http://dx.doi.org/10.1172/JCI39065] [PMID: 19741298]
[259]
Raziuddin, S.; al-Dalaan, A.; Bahabri, S.; Siraj, A.K.; al-Sedairy, S. Divergent cytokine production profile in Behçet’s disease. Altered Th1/Th2 cell cytokine pattern. J. Rheumatol., 1998, 25(2), 329-333.
[PMID: 9489829]
[260]
Mosmann, T.R.; Moore, K.W. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol. Today, 1991, 12(3), A49-A53.
[http://dx.doi.org/10.1016/S0167-5699(05)80015-5] [PMID: 1648926]
[261]
Katsikis, P.D.; Cohen, S.B.; Londei, M.; Feldmann, M. Are CD4+ Th1 cells pro-inflammatory or anti-inflammatory? The ratio of IL-10 to IFN-γ or IL-2 determines their function. Int. Immunol., 1995, 7(8), 1287-1294.
[http://dx.doi.org/10.1093/intimm/7.8.1287] [PMID: 7495735]
[262]
Luz-Crawford, P.; Kurte, M.; Bravo-Alegría, J.; Contreras, R.; Nova-Lamperti, E.; Tejedor, G.; Noël, D.; Jorgensen, C.; Figueroa, F.; Djouad, F.; Carrión, F. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res. Ther., 2013, 4(3), 65.
[http://dx.doi.org/10.1186/scrt216] [PMID: 23734780]
[263]
Luz-Crawford, P.; Djouad, F.; Toupet, K.; Bony, C.; Franquesa, M.; Hoogduijn, M.J. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells, 2015.
[PMID: 26661518]
[264]
Ma, O.K-F.; Chan, K.H. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J. Stem Cells, 2016, 8(9), 268-278.
[http://dx.doi.org/10.4252/wjsc.v8.i9.268] [PMID: 27679683]
[265]
Nathan, C. Points of control in inflammation. Nature, 2002, 420(6917), 846-852.
[http://dx.doi.org/10.1038/nature01320] [PMID: 12490957]
[266]
Leng, SX; McElhaney, JE; Walston, JD; Xie, D; Fedarko, NS; Kuchel, GA ELISA and Multiplex Technologies for Cytokine Measurement in Inflammation and Aging Research. The Journals of Gerontology: Series A., 2008, 63(8), 879-84.
[http://dx.doi.org/10.1093/gerona/63.8.879]
[267]
Leng, S.X.; McElhaney, J.E.; Walston, J.D.; Xie, D.; Fedarko, N.S.; Kuchel, G.A. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J. Gerontol. A Biol. Sci. Med. Sci., 2008, 63(8), 879-884.
[http://dx.doi.org/10.1093/gerona/63.8.879] [PMID: 18772478]
[268]
Elshal, M.F.; McCoy, J.P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods, 2006, 38(4), 317-323.
[http://dx.doi.org/10.1016/j.ymeth.2005.11.010] [PMID: 16481199]
[269]
Trune, D.R.; Larrain, B.E.; Hausman, F.A.; Kempton, J.B.; MacArthur, C.J. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays. Hear. Res., 2011, 275(1-2), 1-7.
[http://dx.doi.org/10.1016/j.heares.2010.11.009] [PMID: 21144888]
[270]
Irvine, W.J.; Al-Khateeb, S.F.; Di Mario, U.; Feek, C.M.; Gray, R.S.; Edmond, B.; Duncan, L.J. Soluble immune complexes in the sera of newly diagnosed insulin-dependent diabetics and in treated diabetics. Clin. Exp. Immunol., 1977, 30(1), 16-21.
[PMID: 606435]
[271]
Ivankiv, Y.I.; Oleshchuk, O.M. Immunomodulatory effect of melatonin supplementation in experimental diabetes. Pharmacia., 2020, 67, 223.
[http://dx.doi.org/10.3897/pharmacia.67.e55437]
[272]
Di Mario, U.; Iavicoli, M.; Ventriglia, L.; Galfo, C.; Bellagamba, C.; Trionfera, G. Immune complexes, microangiopathy and metabolic control in diabetes. Diabetes, 1979, 379-382.
[273]
Irvine, W.J.; Di Mario, U.; Guy, K.; Iavicoli, M.; Pozzilli, P.; Lumbroso, B.; Andreani, D. Immune complexes and diabetic microangiopathy. J. Clin. Lab. Immunol., 1978, 1(3), 187-191.
[PMID: 756468]
[274]
Di Mario, U.; Iavicoli, M.; Andreani, D. Circulating immune complexes in diabetes. Diabetologia, 1980, 19(2), 89-92.
[http://dx.doi.org/10.1007/BF00421850] [PMID: 6998823]
[275]
Kahan, B.W.; Jacobson, L.M.; Hullett, D.A.; Ochoada, J.M.; Oberley, T.D.; Lang, K.M.; Odorico, J.S. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes, 2003, 52(8), 2016-2024.
[http://dx.doi.org/10.2337/diabetes.52.8.2016] [PMID: 12882918]
[276]
Segev, H.; Fishman, B.; Ziskind, A.; Shulman, M.; Itskovitz-Eldor, J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells, 2004, 22(3), 265-274.
[http://dx.doi.org/10.1634/stemcells.22-3-265] [PMID: 15153604]
[277]
Ren, M.; Yan, L.; Shang, C.Z.; Cao, J.; Lu, L.H.; Min, J.; Cheng, H. Effects of sodium butyrate on the differentiation of pancreatic and hepatic progenitor cells from mouse embryonic stem cells. J. Cell. Biochem., 2010, 109(1), 236-244.
[PMID: 19911386]
[278]
Jafarian, A.; Taghikhani, M.; Abroun, S.; Pourpak, Z.; Allahverdi, A.; Soleimani, M. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol. Biol. Rep., 2014, 41(7), 4783-4794.
[http://dx.doi.org/10.1007/s11033-014-3349-5] [PMID: 24718781]
[279]
Belame Shivakumar, S.; Bharti, D.; Baregundi Subbarao, R.; Park, J.M.; Son, Y.B.; Ullah, I.; Choe, Y.H.; Lee, H.J.; Park, B.W.; Lee, S.L.; Rho, G.J. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton’s jelly mesenchymal stem cells using small molecules. J. Cell. Physiol., 2019, 234(4), 3933-3947.
[http://dx.doi.org/10.1002/jcp.27184] [PMID: 30343506]
[280]
Cañibano-Hernández, A.; Saenz Del Burgo, L.; Espona-Noguera, A.; Orive, G.; Hernández, R.M.; Ciriza, J.; Pedraz, J.L. Hyaluronic Acid Promotes Differentiation of Mesenchymal Stem Cells from Different Sources toward Pancreatic Progenitors within Three-Dimensional Alginate Matrixes. Mol. Pharm., 2019, 16(2), 834-845.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01126] [PMID: 30601665]
[281]
Laporte, C.; Tubbs, E.; Cristante, J.; Gauchez, A-S.; Pesenti, S.; Lamarche, F.; Cottet-Rousselle, C.; Garrel, C.; Moisan, A.; Moulis, J.M.; Fontaine, E.; Benhamou, P.Y.; Lablanche, S. Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. Stem Cell Res. Ther., 2019, 10(1), 85.
[http://dx.doi.org/10.1186/s13287-019-1190-4] [PMID: 30867050]
[282]
Yasumizu, R.; Sugiura, K.; Iwai, H.; Inaba, M.; Makino, S.; Ida, T.; Imura, H.; Hamashima, Y.; Good, R.A.; Ikehara, S. Treatment of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue. Proc. Natl. Acad. Sci. USA, 1987, 84(18), 6555-6557.
[http://dx.doi.org/10.1073/pnas.84.18.6555] [PMID: 3114751]
[283]
Soria, B.; Roche, E.; Berná, G.; León-Quinto, T.; Reig, J.A.; Martín, F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 2000, 49(2), 157-162.
[http://dx.doi.org/10.2337/diabetes.49.2.157] [PMID: 10868930]
[284]
Castaing, M.; Péault, B.; Basmaciogullari, A.; Casal, I.; Czernichow, P.; Scharfmann, R. Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia, 2001, 44(11), 2066-2076.
[http://dx.doi.org/10.1007/s001250100012] [PMID: 11719839]
[285]
Zalzman, M.; Gupta, S.; Giri, R.K.; Berkovich, I.; Sappal, B.S.; Karnieli, O.; Zern, M.A.; Fleischer, N.; Efrat, S. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 7253-7258.
[http://dx.doi.org/10.1073/pnas.1136854100] [PMID: 12756298]
[286]
Beilhack, G.F.; Scheffold, Y.C.; Weissman, I.L.; Taylor, C.; Jerabek, L.; Burge, M.J.; Masek, M.A.; Shizuru, J.A. Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes, 2003, 52(1), 59-68.
[http://dx.doi.org/10.2337/diabetes.52.1.59] [PMID: 12502494]
[287]
Hess, D.; Li, L.; Martin, M.; Sakano, S.; Hill, D.; Strutt, B.; Thyssen, S.; Gray, D.A.; Bhatia, M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol., 2003, 21(7), 763-770.
[http://dx.doi.org/10.1038/nbt841] [PMID: 12819790]
[288]
Ianus, A.; Holz, G.G.; Theise, N.D.; Hussain, M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest., 2003, 111(6), 843-850.
[http://dx.doi.org/10.1172/JCI200316502] [PMID: 12639990]
[289]
Zorina, T.D.; Subbotin, V.M.; Bertera, S.; Alexander, A.M.; Haluszczak, C.; Gambrell, B.; Bottino, R.; Styche, A.J.; Trucco, M. Recovery of the endogenous β cell function in the NOD model of autoimmune diabetes. Stem Cells, 2003, 21(4), 377-388.
[http://dx.doi.org/10.1634/stemcells.21-4-377] [PMID: 12832692]
[290]
Ende, N.; Chen, R.; Reddi, A.S. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem. Biophys. Res. Commun., 2004, 325(3), 665-669.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.091] [PMID: 15541340]
[291]
Oh, S-H.; Muzzonigro, T.M.; Bae, S-H.; LaPlante, J.M.; Hatch, H.M.; Petersen, B.E. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest., 2004, 84(5), 607-617.
[http://dx.doi.org/10.1038/labinvest.3700074] [PMID: 15034596]
[292]
Chen, L-B.; Jiang, X-B.; Yang, L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J. Gastroenterol., 2004, 10(20), 3016-3020.
[http://dx.doi.org/10.3748/wjg.v10.i20.3016] [PMID: 15378785]
[293]
Banerjee, M.; Kumar, A.; Bhonde, R.R. Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem. Biophys. Res. Commun., 2005, 328(1), 318-325.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.176] [PMID: 15670786]
[294]
Beilhack, G.F.; Landa, R.R.; Masek, M.A.; Shizuru, J.A. Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes, 2005, 54(6), 1770-1779.
[http://dx.doi.org/10.2337/diabetes.54.6.1770] [PMID: 15919799]
[295]
Kang, E.M.; Zickler, P.P.; Burns, S.; Langemeijer, S.M.; Brenner, S.; Phang, O.A.; Patterson, N.; Harlan, D.; Tisdale, J.F. Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp. Hematol., 2005, 33(6), 699-705.
[http://dx.doi.org/10.1016/j.exphem.2005.03.008] [PMID: 15911094]
[296]
Lee, R.H.; Seo, M.J.; Reger, R.L.; Spees, J.L.; Pulin, A.A.; Olson, S.D.; Prockop, D.J. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl. Acad. Sci. USA, 2006, 103(46), 17438-17443.
[http://dx.doi.org/10.1073/pnas.0608249103] [PMID: 17088535]
[297]
Li, Y.; Zhang, R.; Qiao, H.; Zhang, H.; Wang, Y.; Yuan, H.; Liu, Q.; Liu, D.; Chen, L.; Pei, X. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J. Cell. Physiol., 2007, 211(1), 36-44.
[http://dx.doi.org/10.1002/jcp.20897] [PMID: 17226789]
[298]
Wu, X-H.; Liu, C-P.; Xu, K-F.; Mao, X-D.; Zhu, J.; Jiang, J-J.; Cui, D.; Zhang, M.; Xu, Y.; Liu, C. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J. Gastroenterol., 2007, 13(24), 3342-3349.
[http://dx.doi.org/10.3748/wjg.v13.i24.3342] [PMID: 17659673]
[299]
Ezquer, F.E.; Ezquer, M.E.; Parrau, D.B.; Carpio, D.; Yañez, A.J.; Conget, P.A. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood Marrow Transplant., 2008, 14(6), 631-640.
[http://dx.doi.org/10.1016/j.bbmt.2008.01.006] [PMID: 18489988]
[300]
Urbán, V.S.; Kiss, J.; Kovács, J.; Gócza, E.; Vas, V.; Monostori, E.; Uher, F. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 2008, 26(1), 244-253.
[http://dx.doi.org/10.1634/stemcells.2007-0267] [PMID: 17932424]
[301]
Dong, Q.Y.; Chen, L.; Gao, G.Q.; Wang, L.; Song, J.; Chen, B.; Xu, Y.X.; Sun, L. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin. Invest. Med., 2008, 31(6), E328-E337.
[http://dx.doi.org/10.25011/cim.v31i6.4918] [PMID: 19032902]
[302]
Madec, A.M.; Mallone, R.; Afonso, G.; Abou Mrad, E.; Mesnier, A.; Eljaafari, A.; Thivolet, C. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009, 52(7), 1391-1399.
[http://dx.doi.org/10.1007/s00125-009-1374-z] [PMID: 19421731]
[303]
Alipio, Z.; Liao, W.; Roemer, E.J.; Waner, M.; Fink, L.M.; Ward, D.C.; Ma, Y. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13426-13431.
[http://dx.doi.org/10.1073/pnas.1007884107] [PMID: 20616080]
[304]
Kajiyama, H.; Hamazaki, T.S.; Tokuhara, M.; Masui, S.; Okabayashi, K.; Ohnuma, K.; Yabe, S.; Yasuda, K.; Ishiura, S.; Okochi, H.; Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol., 2010, 54(4), 699-705.
[http://dx.doi.org/10.1387/ijdb.092953hk] [PMID: 19757377]
[305]
Jeon, K.; Lim, H.; Kim, J-H.; Thuan, N.V.; Park, S.H.; Lim, Y-M.; Choi, H.Y.; Lee, E.R.; Kim, J.H.; Lee, M.S.; Cho, S.G. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev., 2012, 21(14), 2642-2655.
[http://dx.doi.org/10.1089/scd.2011.0665] [PMID: 22512788]
[306]
Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’Neil, J.J.; Ao, Z.; Warnock, G.L.; Kieffer, T.J. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes, 2012, 61(8), 2016-2029.
[http://dx.doi.org/10.2337/db11-1711] [PMID: 22740171]
[307]
Guimarães, E.T.; Cruz, Gda.S.; Almeida, T.F.; Souza, B.S.; Kaneto, C.M.; Vasconcelos, J.F.; Santos, W.L.; Santos, R.R.; Villarreal, C.F.; Soares, M.B. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model. Cell Transplant., 2013, 22(12), 2345-2354.
[http://dx.doi.org/10.3727/096368912X657972] [PMID: 23068779]
[308]
Aali, E.; Mirzamohammadi, S.; Ghaznavi, H.; Madjd, Z.; Larijani, B.; Rayegan, S.; Sharifi, A.M. A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J. Diabetes Metab. Disord., 2014, 13(1), 76.
[http://dx.doi.org/10.1186/2251-6581-13-76] [PMID: 25688339]
[309]
Nojehdehi, S.; Soudi, S.; Hesampour, A.; Rasouli, S.; Soleimani, M.; Hashemi, S.M. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J. Cell. Biochem., 2018, 119(11), 9433-9443.
[http://dx.doi.org/10.1002/jcb.27260] [PMID: 30074271]
[310]
Fiorina, P.; Jurewicz, M.; Augello, A.; Vergani, A.; Dada, S.; La Rosa, S.; Selig, M.; Godwin, J.; Law, K.; Placidi, C.; Smith, R.N.; Capella, C.; Rodig, S.; Adra, C.N.; Atkinson, M.; Sayegh, M.H.; Abdi, R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol., 2009, 183(2), 993-1004.
[http://dx.doi.org/10.4049/jimmunol.0900803] [PMID: 19561093]
[311]
Haller, C.; Piccand, J.; De Franceschi, F.; Ohi, Y.; Bhoumik, A.; Boss, C.; De Marchi, U.; Jacot, G.; Metairon, S.; Descombes, P.; Wiederkehr, A.; Palini, A.; Bouche, N.; Steiner, P.; Kelly, O.G.; R-C Kraus, M. Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice. Stem Cell Reports, 2019, 12(4), 787-800.
[http://dx.doi.org/10.1016/j.stemcr.2019.02.002] [PMID: 30853374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy