Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Stem Cells Derived from Human Exfoliated Deciduous Teeth (SHED) in Neuronal Disorders: A Review

Author(s): Minu Anoop and Indrani Datta*

Volume 16, Issue 5, 2021

Published on: 21 December, 2020

Page: [535 - 550] Pages: 16

DOI: 10.2174/1574888X16666201221151512

Price: $65

conference banner
Abstract

Most conventional treatments for neurodegenerative diseases fail due to their focus on neuroprotection rather than neurorestoration. Stem cell-based therapies are becoming a potential treatment option for neurodegenerative diseases as they can home in, engraft, differentiate and produce factors for CNS recovery. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest origin and neurotrophic property. These include both Dental Pulp Stem Cells (DPSCs) from dental pulp tissues of human permanent teeth and Stem cells from Human Exfoliated Deciduous teeth (SHED). SHED offers many advantages over other types of MSCs, such as good proliferative potential, minimal invasive procurement, neuronal differentiation and neurotrophic capacity, and negligible ethical concerns. The therapeutic potential of SHED is attributed to the paracrine action of extracellularly released secreted factors, specifically the secretome, of which exosomes are a key component. SHED and its conditioned media can be effective in neurodegeneration through multiple mechanisms, including cell replacement, paracrine effects, angiogenesis, synaptogenesis, immunomodulation, and apoptosis inhibition, and SHED exosomes offer an ideal refined bed-to-bench formulation in neurodegenerative disorders. However, in spite of these advantages, there are still some limitations of SHED exosome therapy, such as the effectiveness of long-term storage of SHED and their exosomes, the development of a robust GMP-grade manufacturing protocol, optimization of the route of administration, and evaluation of the efficacy and safety in humans. In this review, we have addressed the isolation, collection and properties of SHED along with its therapeutic potential on in vitro and in vivo neuronal disorder models as evident from the published literature.

Keywords: Mesenchymal stem cells, dental pulp stem cells, SHED, secretome, exosome, Parkinson's disease.

[1]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[2]
Scadden DT. The stem-cell niche as an entity of action. Nature 2006; 441(7097): 1075-9.
[http://dx.doi.org/10.1038/nature04957] [PMID: 16810242]
[3]
Potdar P, Sutar J. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J Stem Cells Regen Med 2010; 6(1): 26-35.
[http://dx.doi.org/10.46582/jsrm.0601005] [PMID: 24693057]
[4]
Potdar PD, D’souza SB. Isolation of Oct4+, Nanog+ and SOX2- mesenchymal cells from peripheral blood of a diabetes mellitus patient. Hum Cell 2011; 24(1): 51-5.
[http://dx.doi.org/10.1007/s13577-011-0011-6] [PMID: 21547696]
[5]
Potdar P, Subedi R. Defining molecular phenotypes of mesenchymal and hematopoietic stem cells derived from peripheral blood of acute lymphocytic leukemia patients for regenerative stem cell therapy. J Stem Cells Regen Med 2011; 7(1): 29-40.
[http://dx.doi.org/10.46582/jsrm.0701004] [PMID: 24693170]
[6]
Luxameechanporn T, Hadlock T, Shyu J, Cowan D, Faquin W, Varvares M. Successful myoblast transplantation in rat tongue reconstruction. Head Neck 2006; 28(6): 517-24.
[http://dx.doi.org/10.1002/hed.20325] [PMID: 16619280]
[7]
Lymperi S, Ligoudistianou C, Taraslia V, Kontakiotis E, Anastasiadou E. Dental Stem Cells and their Applications in Dental Tissue Engineering. Open Dent J 2013; 7: 76-81.
[http://dx.doi.org/10.2174/1874210601307010076] [PMID: 24009647]
[8]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[9]
Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 2001; 29(6): 532-9.
[http://dx.doi.org/10.1016/S8756-3282(01)00612-3] [PMID: 11728923]
[10]
Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[11]
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81(8): 531-5.
[http://dx.doi.org/10.1177/154405910208100806] [PMID: 12147742]
[12]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical- size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[13]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[14]
Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24(2): 155-65.
[http://dx.doi.org/10.1016/j.matbio.2004.12.004] [PMID: 15890265]
[15]
Sonoyama W, Liu Y, Yamaza T, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. J Endod 2008; 34(2): 166-71.
[http://dx.doi.org/10.1016/j.joen.2007.11.021] [PMID: 18215674]
[16]
Gazarian KG, Ramírez-García LR. Human deciduous teeth stem cells (SHED) display neural crest signature characters. PLoS One 2017; 12(1): e0170321.
[http://dx.doi.org/10.1371/journal.pone.0170321] [PMID: 28125654]
[17]
Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000; 127(8): 1671-9.
[http://dx.doi.org/10.1242/dev.127.8.1671] [PMID: 10725243]
[18]
Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 2003; 116(Pt 9): 1647-8.
[http://dx.doi.org/10.1242/jcs.00410] [PMID: 12665545]
[19]
Abzhanov A, Tzahor E, Lassar AB, Tabin CJ. Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 2003; 130(19): 4567-79.
[http://dx.doi.org/10.1242/dev.00673] [PMID: 12925584]
[20]
Stokowski A, Shi S, Sun T, Bartold PM, Koblar SA, Gronthos S. EphB/ephrin-B interaction mediates adult stem cell attachment, spreading, and migration: Implications for dental tissue repair. Stem Cells 2007; 25(1): 156-64.
[http://dx.doi.org/10.1634/stemcells.2006-0373] [PMID: 17204606]
[21]
Kanafi M, Majumdar D, Bhonde R, Gupta P, Datta I. Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. J Cell Physiol 2014; 229(10): 1369-77.
[http://dx.doi.org/10.1002/jcp.24570] [PMID: 24477667]
[22]
Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Braz Dent J 2011; 22(2): 91-8.
[http://dx.doi.org/10.1590/S0103-64402011000200001] [PMID: 21537580]
[23]
Waddington RJ, Youde SJ, Lee CP, Sloan AJ. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 2009; 189(1-4): 268-74.
[http://dx.doi.org/10.1159/000151447] [PMID: 18701814]
[24]
Yu C, Abbott PV. An overview of the dental pulp: Its functions and responses to injury. Aust Dent J 2007; 52(1)(Suppl.): S4-S16.
[http://dx.doi.org/10.1111/j.1834-7819.2007.tb00525.x] [PMID: 17546858]
[25]
Green D. Morphology of the pulp cavity of the permanent teeth. Oral Surg Oral Med Oral Pathol 1955; 8(7): 743-59.
[http://dx.doi.org/10.1016/0030-4220(55)90039-6] [PMID: 14394660]
[26]
Trowbridge HO, Kim SH. Pulp development, structure and function. In: Hargreaves KM, Berman LH, Rotstein I, Eds. Cohen’s pathways of the pulp expert. Netherlands: Elsevier 1998; pp. 386-424.
[27]
Kumar GS. Orban’s Oral Histology & Embryology. (14th ed). India: Elsevier 2015.
[28]
MacNeil RL, Thomas HF. Development of the murine periodontium. I. Role of basement membrane in formation of a mineralized tissue on the developing root dentin surface. J Periodontol 1993; 64(2): 95-102.
[http://dx.doi.org/10.1902/jop.1993.64.2.95] [PMID: 8433258]
[29]
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol 2016; 231(9): 2048-63.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[30]
Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int 2016; 2016: 5957806.
[http://dx.doi.org/10.1155/2016/5957806] [PMID: 27313627]
[31]
Sukarawan W, Osathanon T. Stem cells from human exfoliated deciduous teeth: Biology and therapeutic potential. IntechOpen 2017. Available from: https://www.intechopen.com/books/mesenchymal-stem-cells-isolation-characterization-and-applications/stem-cells-from-human-exfoliated-deciduous-teeth-biology-and-therapeutic-potential
[32]
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9(4): 445-64.
[http://dx.doi.org/10.1002/sctm.19-0398] [PMID: 31943813]
[33]
Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 2006; 24(3): 679-85.
[http://dx.doi.org/10.1634/stemcells.2004-0308] [PMID: 16179428]
[34]
Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 2010; 19(12): 1895-910.
[http://dx.doi.org/10.1089/scd.2009.0485] [PMID: 20367285]
[35]
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21(14): 2724-52.
[http://dx.doi.org/10.1089/scd.2011.0722] [PMID: 22468918]
[36]
Al-Nbaheen M, Vishnubalaji R, Ali D, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 2013; 9(1): 32-43.
[http://dx.doi.org/10.1007/s12015-012-9365-8] [PMID: 22529014]
[37]
Wang H, Zhong Q, Yang T, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep 2018; 17(5): 6551-9.
[http://dx.doi.org/10.3892/mmr.2018.8725] [PMID: 29532869]
[38]
Lu BW, Liu N, Xu LL, Shi HG, Zhang Y, Zhang W. Difference of in vitro osteogenic differentiation and osteoclast capacity between stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Nan Fang Yi Ke Da Xue Xue Bao 2016; 36(2): 180-5.
[PMID: 26922012]
[39]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[40]
Feng X, Xing J, Feng G, et al. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33(8): 1023-31.
[http://dx.doi.org/10.1007/s10571-013-9965-0] [PMID: 24043508]
[41]
Courts FJ, Mueller WA, Tabeling HJ. Milk as an interim storage medium for avulsed teeth. Pediatr Dent 1983; 5(3): 183-6.
[PMID: 6579495]
[42]
Bansal R, Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 2015; 6(1): 29-34.
[http://dx.doi.org/10.4103/0976-9668.149074] [PMID: 25810631]
[43]
Hilkens P, Gervois P, Fanton Y, et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 2013; 353(1): 65-78.
[http://dx.doi.org/10.1007/s00441-013-1630-x] [PMID: 23715720]
[44]
Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 2012; 18(2): 129-38.
[http://dx.doi.org/10.1089/ten.teb.2011.0327] [PMID: 22032258]
[45]
Jeon M, Song JS, Choi BJ, et al. In vitro and in vivo characteristics of stem cells from human exfoliated deciduous teeth obtained by enzymatic disaggregation and outgrowth. Arch Oral Biol 2014; 59(10): 1013-23.
[http://dx.doi.org/10.1016/j.archoralbio.2014.06.002] [PMID: 24960116]
[46]
Bakopoulou A, Leyhausen G, Volk J, et al. Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 2011; 88(2): 130-41.
[http://dx.doi.org/10.1007/s00223-010-9438-0] [PMID: 21153807]
[47]
Ding XL, Chen K, Shen YY. Isolation and identification of stem cells derived from human exfoliated deciduous teeth by magnetic activated cell sorting. Nan Fang Yi Ke Da Xue Xue Bao 2011; 31(5): 849-53.
[PMID: 21602140]
[48]
Lee SY, Huang GW, Shiung JN, et al. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs 2012; 196(1): 23-33.
[http://dx.doi.org/10.1159/000331247] [PMID: 22285908]
[49]
Zeitlin BD. Banking on teeth - Stem cells and the dental office. Biomed J 2020; 43(2): 124-33.
[http://dx.doi.org/10.1016/j.bj.2020.02.003] [PMID: 32381462]
[50]
Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): Saving for the future. J Clin Pediatr Dent 2009; 33(4): 289-94.
[http://dx.doi.org/10.17796/jcpd.33.4.y887672r0j703654] [PMID: 19725233]
[51]
Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009; 35(11): 1536-42.
[http://dx.doi.org/10.1016/j.joen.2009.07.024] [PMID: 19840643]
[52]
Alge DL, Zhou D, Adams LL, et al. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 2010; 4(1): 73-81.
[PMID: 19842108]
[53]
Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 2010; 206(12-6): 715-22.
[http://dx.doi.org/10.1016/j.tcb.2010.09.012]
[54]
Ma L, Makino Y, Yamaza H, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 2012; 7(12): e51777.
[http://dx.doi.org/10.1371/journal.pone.0051777] [PMID: 23251621]
[55]
Papaccio G, Graziano A, d’Aquino R, et al. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 2006; 208(2): 319-25.
[http://dx.doi.org/10.1002/jcp.20667] [PMID: 16622855]
[56]
Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92(11): 970-5.
[http://dx.doi.org/10.1177/0022034513505772] [PMID: 24056227]
[57]
Qiao Y, Zhu LS, Cui SJ. Zhang, Yang RL, Zhou YH. Local Administration of Stem Cells From Human Exfoliated Primary Teeth Attenuate Experimental Periodontitis in Mice. Chin J Dent Res 2019; 22(3): 157-63.
[PMID: 31508603]
[58]
Yamada Y, Nakamura S, Ito K, et al. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 2010; 16(6): 1891-900.
[http://dx.doi.org/10.1089/ten.tea.2009.0732] [PMID: 20067397]
[59]
Cordeiro M, Dong Z. Kaneko, Zhang, Miyazawa, Shi. Dental Pulp Tissue Engineering with Stem Cells from. JOE 2008; 34(8): 962-9.
[PMID: 18634928]
[60]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[61]
Fu X, Jin L, Ma P, Fan Z, Wang S. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol 2014; 85(6): 845-51.
[http://dx.doi.org/10.1902/jop.2013.130254] [PMID: 24001042]
[62]
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics 2019; 9(9): 2694-711.
[http://dx.doi.org/10.7150/thno.31801] [PMID: 31131062]
[63]
Novais A, Lesieur J, Sadoine J, et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor‐2 enhances mineralization within tissue‐engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med 2019; 8(8): 844-57.
[http://dx.doi.org/10.1002/sctm.18-0182] [PMID: 31016898]
[64]
Behnia A, Haghighat A, Talebi A, Nourbakhsh N, Heidari F. Transplantation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect. World J Stem Cells 2014; 6(4): 505-10.
[http://dx.doi.org/10.4252/wjsc.v6.i4.505] [PMID: 25258673]
[65]
Feitosa ML, Fadel L, Beltrão-Braga PC, et al. Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: Preliminary results. Acta Cir Bras 2010; 25(5): 416-22.
[http://dx.doi.org/10.1590/S0102-86502010000500006] [PMID: 20877951]
[66]
Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6(1): 171.
[http://dx.doi.org/10.1186/s13287-015-0154-6] [PMID: 26358689]
[67]
Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep 2019; 9(1): 1535.
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[68]
Ishkitiev N, Yaegaki K, Imai T, et al. Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 2015; 21(3-4): 586-93.
[http://dx.doi.org/10.1089/ten.tea.2014.0162] [PMID: 25234861]
[69]
Ishkitiev N, Yaegaki K, Calenic B, et al. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 2010; 36(3): 469-74.
[http://dx.doi.org/10.1016/j.joen.2009.12.022] [PMID: 20171365]
[70]
Su WT, Chen XW. Stem cells from human exfoliated deciduous teeth differentiate into functional hepatocyte-like cells by herbal medicine. Biomed Mater Eng 2014; 24(6): 2243-7.
[http://dx.doi.org/10.3233/BME-141036] [PMID: 25226923]
[71]
Yagi Mendoza H, Yokoyama T, Tanaka T, Ii H, Yaegaki K. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system. Regen Med 2018; 13(6): 673-87.
[http://dx.doi.org/10.2217/rme-2018-0074] [PMID: 30028236]
[72]
Rao N, Wang X, Zhai Y, et al. Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats. Diabetol Metab Syndr 2019; 11: 22.
[http://dx.doi.org/10.1186/s13098-019-0417-y] [PMID: 30858895]
[73]
Xie J, Rao N, Zhai Y, et al. Therapeutic effects of stem cells from human exfoliated deciduous teeth on diabetic peripheral neuropathy. Diabetol Metab Syndr 2019; 11: 38.
[http://dx.doi.org/10.1186/s13098-019-0433-y] [PMID: 31131042]
[74]
Monteiro BG, Serafim RC, Melo GB, et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 2009; 42(5): 587-94.
[http://dx.doi.org/10.1111/j.1365-2184.2009.00623.x] [PMID: 19614680]
[75]
Gomes JA, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 2010; 51(3): 1408-14.
[http://dx.doi.org/10.1167/iovs.09-4029] [PMID: 19892864]
[76]
Li X, Xie J, Zhai Y, et al. Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells Int 2019; 2019: 2562981.
[http://dx.doi.org/10.1155/2019/2562981] [PMID: 30906327]
[77]
Gorin C, Rochefort GY, Bascetin R, et al. Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 2016; 5(3): 392-404.
[http://dx.doi.org/10.5966/sctm.2015-0166] [PMID: 26798059]
[78]
Marchionni C, Bonsi L, Alviano F, et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 2009; 22(3): 699-706.
[http://dx.doi.org/10.1177/039463200902200315] [PMID: 19822086]
[79]
Cheung HS. Induction of cardiomyogensis in stem cells isolated from human exfoliated deciduous teeth. Heart And Mind 2020; 4(1): 7-11.
[http://dx.doi.org/10.4103/hm.hm_68_19]
[80]
Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH. Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. ScientificWorldJournal 2014; 2014: 186508.
[http://dx.doi.org/10.1155/2014/186508] [PMID: 25548778]
[81]
Bento LW, Zhang Z, Imai A, et al. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res 2013; 92(1): 51-7.
[http://dx.doi.org/10.1177/0022034512466263] [PMID: 23114032]
[82]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[83]
Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011; 13(5): 598-605.
[http://dx.doi.org/10.3109/14653249.2010.542462] [PMID: 21341975]
[84]
Hattori Y, Kim H, Tsuboi N, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 2015; 10(10): e0140121.
[http://dx.doi.org/10.1371/journal.pone.0140121] [PMID: 26509261]
[85]
Barros MA, Martins JF, Maria DA, et al. Immature dental pulp stem cells showed renotropic and pericyte‐like properties in acute renal failure in rats. Cell Med 2014; 7(3): 95-108.
[http://dx.doi.org/10.3727/215517914X680038] [PMID: 26858898]
[86]
Kerkis I, Ambrosio CE, Kerkis A, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 2008; 6: 35.
[http://dx.doi.org/10.1186/1479-5876-6-35] [PMID: 18598348]
[87]
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 2015; 17(7): 932-9.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.013] [PMID: 25981557]
[88]
Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 2015; 1613: 59-72.
[http://dx.doi.org/10.1016/j.brainres.2015.04.001] [PMID: 25863132]
[89]
Narbute K, Piļipenko V, Pupure J, et al. Intranasal administration of extracellular vesicles derived from human teeth stem cells improves motor symptoms and normalizes tyrosine hydroxylase expression in the substantia nigra and striatum of the 6-hydroxydopamine-treated rats. Stem Cells Transl Med 2019; 8(5): 490-9.
[http://dx.doi.org/10.1002/sctm.18-0162] [PMID: 30706999]
[90]
Simon C, Gan QF, Kathivaloo P, et al. Deciduous DPSCs ameliorate MPTP‐mediated neurotoxicity, sensorimotor coordination and olfactory function in parkinsonian mice. Int J Mol Sci 2019; 20(3): 568.
[http://dx.doi.org/10.3390/ijms20030568] [PMID: 30699944]
[91]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[92]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[93]
Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013; 44(2): 551-4.
[http://dx.doi.org/10.1161/STROKEAHA.112.676759] [PMID: 23238858]
[94]
Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8(1): 198.
[http://dx.doi.org/10.1186/s13287-017-0648-5] [PMID: 28962585]
[95]
Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 synergistically regenerate transected rat peripheral nerves by altering macrophage polarity. Stem Cells 2017; 35(3): 641-53.
[http://dx.doi.org/10.1002/stem.2534] [PMID: 27862629]
[96]
Sugimura-Wakayama Y, Katagiri W, Osugi M, et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev 2015; 24(22): 2687-99.
[http://dx.doi.org/10.1089/scd.2015.0104] [PMID: 26154068]
[97]
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J 2018; 12(5): 785-93.
[http://dx.doi.org/10.31616/asj.2018.12.5.785] [PMID: 30213159]
[98]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[PMID: 22133879]
[99]
Matsubara K, Matsushita Y, Sakai K, et al. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 2015; 35(6): 2452-64.
[http://dx.doi.org/10.1523/JNEUROSCI.4088-14.2015] [PMID: 25673840]
[100]
Taghipour Z, Karbalaie K, Kiani A, et al. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 2012; 21(10): 1794-802.
[http://dx.doi.org/10.1089/scd.2011.0408] [PMID: 21970342]
[101]
Chang CC, Chang KC, Tsai SJ, Chang HH, Lin CP. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J Formos Med Assoc 2014; 113(12): 956-65.
[http://dx.doi.org/10.1016/j.jfma.2014.09.003] [PMID: 25438878]
[102]
Nicola FDC, Marques MR, Odorcyk F, et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 2017; 1663: 95-105.
[http://dx.doi.org/10.1016/j.brainres.2017.03.015] [PMID: 28322752]
[103]
Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant 2019; 28(1): 55-64.
[http://dx.doi.org/10.1177/0963689718809090] [PMID: 30380914]
[104]
Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci 2013; 51: 307-17.
[http://dx.doi.org/10.1007/s12031-013-0046-0] [PMID: 23797732]
[105]
Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss KA. Parkinson’s disease. Subcell Biochem 2012; 65: 389-455.
[http://dx.doi.org/10.1007/978-94-007-5416-4_16] [PMID: 23225012]
[106]
Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx 2004; 1(4): 382-93.
[http://dx.doi.org/10.1602/neurorx.1.4.382] [PMID: 15717042]
[107]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[108]
Chen YR, Lai PL, Chien Y, et al. Improvement of impaired motor functions by human dental exfoliated deciduous teeth stem cell-derived factors in a rat model of Parkinson’s disease. Int J Mol Sci 2020; 21(11): 3807.
[http://dx.doi.org/10.3390/ijms21113807] [PMID: 32471263]
[109]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019; 4: 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[110]
Apel C, Forlenza OV, de Paula VJ, et al. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J Neural Transm (Vienna) 2009; 116(1): 71-8.
[http://dx.doi.org/10.1007/s00702-008-0135-3] [PMID: 18972063]
[111]
Katan M, Luft A. Global burden of stroke. Semin Neurol 2018; 38(2): 208-11.
[http://dx.doi.org/10.1055/s-0038-1649503] [PMID: 29791947]
[112]
Zhu S, Min D, Zeng J, Ju Y, Liu Y, Chen X. Transplantation of stem cells from human exfoliated deciduous teeth decreases cognitive impairment from chronic cerebral ischemia by reducing neuronal apoptosis in rats. Stem Cells Int 2020; 2020: 6393075.
[http://dx.doi.org/10.1155/2020/6393075] [PMID: 32215019]
[113]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[114]
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: Basic research and current clinical treatment options. J Spinal Cord Med 2007; 30(4): 319-30.
[http://dx.doi.org/10.1080/10790268.2007.11753947] [PMID: 17853653]
[115]
Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 2001; 238(1): 120-32.
[http://dx.doi.org/10.1006/dbio.2001.0400] [PMID: 11783998]
[116]
Kumar A, Shukla D, Bhat DI, Devi BI. Iatrogenic peripheral nerve injuries. Neurol India 2019; 67(7)(Suppl.): S135-9.
[http://dx.doi.org/10.4103/0028-3886.250700] [PMID: 30688247]
[117]
Love S. Demyelinating diseases. J Clin Pathol 2006; 59(11): 1151-9.
[http://dx.doi.org/10.1136/jcp.2005.031195] [PMID: 17071802]
[118]
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol 2008; 29(8): 357-65.
[http://dx.doi.org/10.1016/j.it.2008.05.002] [PMID: 18599350]
[119]
Ma DK, Bonaguidi MA, Ming GL, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res 2009; 19(6): 672-82.
[http://dx.doi.org/10.1038/cr.2009.56] [PMID: 19436263]
[120]
Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell 2015; 17(4): 385-95.
[http://dx.doi.org/10.1016/j.stem.2015.09.003] [PMID: 26431181]
[121]
Boucherie C, Hermans E. Adult stem cell therapies for neurological disorders: Benefits beyond neuronal replacement? J Neurosci Res 2009; 87(7): 1509-21.
[http://dx.doi.org/10.1002/jnr.21970] [PMID: 19115417]
[122]
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 2014; 6(1): 21-6.
[PMID: 24551431]
[123]
Huang AH, Snyder BR, Cheng PH, Chan AW. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 2008; 26(10): 2654-63.
[http://dx.doi.org/10.1634/stemcells.2008-0285] [PMID: 18687995]
[124]
Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med 2010; 5(1): 121-43.
[http://dx.doi.org/10.2217/rme.09.74] [PMID: 20017699]
[125]
Tucker KL. Neurotrophins and the control of axonal outgrowth. Panminerva Med 2002; 44(4): 325-33.
[PMID: 12434114]
[126]
Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 2000; 23(12): 639-45.
[http://dx.doi.org/10.1016/S0166-2236(00)01672-6] [PMID: 11137155]
[127]
Lee HT, Chang HT, Lee S, et al. Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep 2016; 6: 32595.
[http://dx.doi.org/10.1038/srep32595] [PMID: 27586516]
[128]
Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M. Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 2001; 13(5): 845-56.
[http://dx.doi.org/10.1046/j.0953-816x.2000.01451.x] [PMID: 11264658]
[129]
Cheng CM, Mervis RF, Niu SL, et al. Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 2003; 73(1): 1-9.
[http://dx.doi.org/10.1002/jnr.10634] [PMID: 12815703]
[130]
Chiu HY, Lin CH, Hsu CY, Yu J, Hsieh CH, Shyu WC. IGF1R dental pulp stem cells enhanced neuroplasticity in hypoxia-ischemia model. Mol Neurobiol 2017; 54(10): 8225-41.
[http://dx.doi.org/10.1007/s12035-016-0210-y] [PMID: 27914008]
[131]
Shen CY, Li L, Feng T, et al. Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia. Tissue Eng Regen Med 2015; 12(1): 59-67.
[http://dx.doi.org/10.1007/s13770-014-9053-7]
[132]
Bronckaers A, Hilkens P, Fanton Y, et al. Angiogenic properties of human dental pulp stem cells. PLoS One 2013; 8(8): e71104.
[http://dx.doi.org/10.1371/journal.pone.0071104] [PMID: 23951091]
[133]
Winderlich JN, Kremer KL, Koblar SA. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression. J Cereb Blood Flow Metab 2016; 36(6): 1087-97.
[http://dx.doi.org/10.1177/0271678X15608392] [PMID: 26661186]
[134]
Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998; 273(21): 13313-6.
[http://dx.doi.org/10.1074/jbc.273.21.13313] [PMID: 9582377]
[135]
Li Z, Jiang CM, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis 2014; 20(1): 25-34.
[http://dx.doi.org/10.1111/odi.12086] [PMID: 23463961]
[136]
Denic A, Wootla B, Pirko I, Mangalam A. Pathophysiology of Experimental Autoimmune Encephalomyelitis. In: Minegar A, Ed. Multiple Sclerosis. MA, USA: Elsevier 2015; pp. 249-80.
[137]
Kuba A, Raida L. Graft versus host disease: From basic pathogenic principles to DNA damage response and cellular senescence. Mediators Inflamm 2018; 2018: 9451950.
[http://dx.doi.org/10.1155/2018/9451950] [PMID: 29785172]
[138]
Silva FdeS, Ramos RN, de Almeida DC, et al. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One 2014; 9(5): e98050.
[http://dx.doi.org/10.1371/journal.pone.0098050] [PMID: 24846008]
[139]
Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A 2018; 24(17-18): 1341-53.
[http://dx.doi.org/10.1089/ten.tea.2018.0016] [PMID: 29652608]
[140]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1(1): 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[141]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]
[142]
Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 2019; 28(7): 801-12.
[http://dx.doi.org/10.1177/0963689719837897] [PMID: 31018669]
[143]
El Moshy S, Radwan IA, Rady D, et al. Dental stem cell-derived secretome/conditioned medium: The future for regenerative therapeutic applications. Stem Cells Int 2020; 2020: 7593402.
[http://dx.doi.org/10.1155/2020/7593402] [PMID: 32089709]
[144]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[145]
Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: A web-based compendium of Exosomal cargo. J Mol Biol 2016; 428(4): 688-92.
[http://dx.doi.org/10.1016/j.jmb.2015.09.019] [PMID: 26434508]
[146]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[147]
Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods 2015; 87: 75-82.
[http://dx.doi.org/10.1016/j.ymeth.2015.03.018] [PMID: 25837312]
[148]
Yu LL, Zhu J, Liu JX, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res Int 2018; 2018: 3634563.
[http://dx.doi.org/10.1155/2018/3634563] [PMID: 30148165]
[149]
Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: A two-edged sword in cancer therapy. Int J Nanomedicine 2019; 14: 2847-59.
[http://dx.doi.org/10.2147/IJN.S200036] [PMID: 31114198]
[150]
Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol 2019; 10: 648.
[http://dx.doi.org/10.3389/fimmu.2019.00648] [PMID: 30984201]
[151]
Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 2018; 9(3-4): 87-100.
[http://dx.doi.org/10.18632/genesandcancer.172] [PMID: 30108680]
[152]
Qin J, Xu Q. Functions and application of exosomes. Acta Pol Pharm 2014; 71(4): 537-43.
[PMID: 25272880]
[153]
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9: 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[154]
Akers JC, Ramakrishnan V, Yang I, et al. Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomark 2016; 17(2): 125-32.
[http://dx.doi.org/10.3233/CBM-160609] [PMID: 27062568]
[155]
Jiang XCX, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 2017; 521(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[156]
Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4): 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[157]
Lakhal S, Wood MJ. Intranasal exosomes for treatment of neuroinflammation? Prospects and limitations. Mol Ther 2011; 19(10): 1754-6.
[http://dx.doi.org/10.1038/mt.2011.198] [PMID: 21964306]
[158]
Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[159]
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav Immun 2012; 26(8): 1191-201.
[http://dx.doi.org/10.1016/j.bbi.2012.06.008] [PMID: 22728326]
[160]
Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3(1): 011503.
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy