Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Potential of Combination of Bone Marrow Nucleated and Mesenchymal Stem Cells in Complete Spinal Cord Injury

Author(s): Shojiro Katoh, Vidyasagar D. Dedeepiya, Satoshi Kuroda, Masaru Iwasaki, Rajappa Senthilkumar, Senthilkumar Preethy and Samuel J.K. Abraham*

Volume 16, Issue 4, 2021

Published on: 29 October, 2020

Page: [385 - 399] Pages: 15

DOI: 10.2174/1574888X15666201029160542

Price: $65

conference banner
Abstract

Background: Cell-based therapies represent one of the definitive treatment approaches to SCI which, to become a routine clinical application, is marred by several known unknowns. The Bone Marrow Mononuclear Cells (BMMNCs) and Mesenchymal Stem Cells (MSCs) represent the most clinically applied cell types for SCI in humans, with safety established, and to an extent, efficacy reported.

Methods: In this review, we have analysed the clinical studies performed using BMMNC and MSC for complete SCI separately, and the potential for applying those cells in combination. We have also analysed those factors whose outcome in animal studies of SCI could be evaluated in depth but the clinical outcome cannot be evaluated intrinsically owing to practical difficulties.

Conclusion: A combination of these two cell types, BMMNC and MSC, has been proven to be advantageous than applying them separately. Therefore, a thorough evaluation including the rationale and potential implications of applying these two therapies has been presented here, and we hypothesize that such a combination is likely to improvise the outcome of a wholesome approach to spinal cord regeneration after SCI.

Keywords: Bone Marrow Mononuclear Cells (BMMNC), Mesenchymal Stem Cells (MSC), Spinal Cord Injury (SCI), noncell based regenerative therapies, spinal cord regeneration, animal studies.

[1]
Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 2014; 6(6): 309-31.
[PMID: 25278785]
[2]
Spinal Cord Injury Levels & Classification http://www.sci-info-pages.com/levels.html
[3]
Burns S, Biering-Sørensen F, Donovan W, et al. Committee Membership. International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil 2012; 18(1): 85-99.
[http://dx.doi.org/10.1310/sci1801-85] [PMID: 23460761]
[4]
Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011; 34(6): 535-46.
[http://dx.doi.org/10.1179/204577211X13207446293695] [PMID: 22330108]
[5]
Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012; 7: 6.
[http://dx.doi.org/10.1186/1750-1326-7-6] [PMID: 22315999]
[6]
Wardrope J, Wilson DH. Peripheral nerve grafting in the spinal cord: a histological and electrophysiological study. Paraplegia 1986; 24(6): 370-8.
[PMID: 3808748]
[7]
Galabov G. Regeneration of sectioned spinal cord by implanatation of a peripheral nerve. Dokl Bulg Akad Nauk 1966; 19(5): 449-52.
[PMID: 5917004]
[8]
Jouneau A, Ciaudo C, Sismeiro O, et al. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA 2012; 18(2): 253-64.
[http://dx.doi.org/10.1261/rna.028878.111] [PMID: 22201644]
[9]
Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest 2012; 122(11): 3824-34.
[http://dx.doi.org/10.1172/JCI64124] [PMID: 23114605]
[10]
Saberi H, Firouzi M, Habibi Z, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15(5): 515-25.
[http://dx.doi.org/10.3171/2011.6.SPINE10917] [PMID: 21800956]
[11]
Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 2013; 22(9): 1591-612.
[http://dx.doi.org/10.3727/096368912X663532] [PMID: 24007776]
[12]
Oh SK, Jeon SR. Current Concept of Stem Cell Therapy for Spinal Cord Injury: A Review. Korean J Neurotrauma 2016; 12(2): 40-6.
[http://dx.doi.org/10.13004/kjnt.2016.12.2.40] [PMID: 27857906]
[13]
Chen L, Huang H, Xi H, et al. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant 2014; 23(Suppl. 1): S35-44.
[http://dx.doi.org/10.3727/096368914X685014] [PMID: 25333925]
[14]
Scott CT, Magnus D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med 2014; 3(12): 1398-401.
[http://dx.doi.org/10.5966/sctm.2014-0147] [PMID: 25298371]
[15]
Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 2013; 23(1): 70-80.
[http://dx.doi.org/10.1038/cr.2012.171] [PMID: 23229514]
[17]
Varda-Bloom N, Treves AJ, Kroupnik T, Spiegelstein D, Raanani E, Nagler A. Enriching hematopoietic, endothelial and mesenchymal functional progenitors by short-term culture of steady-state peripheral blood mononuclear cells obtained from healthy donors and ischemic patients. Isr Med Assoc J 2014; 16(12): 774-82.
[PMID: 25630208]
[18]
McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 1960; 13: 115-25.
[http://dx.doi.org/10.2307/3570877] [PMID: 13858509]
[19]
Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 2015; 125(17): 2605-13.
[http://dx.doi.org/10.1182/blood-2014-12-570200] [PMID: 25762175]
[20]
Hordyjewska A, Popiołek Ł, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 2015; 67(3): 387-96.
[http://dx.doi.org/10.1007/s10616-014-9796-y] [PMID: 25373337]
[21]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[22]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2): e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[23]
Arai K, Harada Y, Tomiyama H, et al. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury. Res Vet Sci 2016; 107: 88-94.
[http://dx.doi.org/10.1016/j.rvsc.2016.05.011] [PMID: 27473980]
[24]
Kanekiyo K, Nakano N, Homma T, et al. Effects of multiple injection of bone marrow mononuclear cells on spinal cord injury of rats. J Neurotrauma 2017; 34(21): 3003-11.
[http://dx.doi.org/10.1089/neu.2016.4841] [PMID: 28351209]
[25]
Yoshihara T, Ohta M, Itokazu Y, et al. Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma 2007; 24(6): 1026-36.
[http://dx.doi.org/10.1089/neu.2007.132R] [PMID: 17600518]
[26]
Carvalho KA, Vialle EN, Moreira GH, et al. Functional outcome of bone marrow stem cells (CD45(+)/CD34(-)) after cell therapy in chronic spinal cord injury in Wistar rats. Transplant Proc 2008; 40(3): 845-6.
[http://dx.doi.org/10.1016/j.transproceed.2008.02.054] [PMID: 18455033]
[27]
Aghayan HR, Arjmand B, Yaghoubi M, Moradi-Lakeh M, Kashani H, Shokraneh F. Clinical outcome of autologous mononuclear cells transplantation for spinal cord injury: a systematic review and meta-analysis. Med J Islam Repub Iran 2014; 28: 112.
[PMID: 25678991]
[28]
Sigurjonsson OE, Perreault MC, Egeland T, Glover JC. Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci USA 2005; 102(14): 5227-32.
[http://dx.doi.org/10.1073/pnas.0501029102] [PMID: 15790679]
[29]
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells 2014; 6(2): 120-33.
[http://dx.doi.org/10.4252/wjsc.v6.i2.120] [PMID: 24772239]
[30]
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14(2): 227-37.
[http://dx.doi.org/10.4103/1673-5374.244778] [PMID: 30531002]
[31]
Morita T, Sasaki M, Kataoka-Sasaki Y, et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 2016; 335: 221-31.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.037] [PMID: 27586052]
[32]
Oshigiri T, Sasaki T, Sasaki M, et al. Intravenous infusion of mesenchymal stem cells alters motor cortex gene expression in a rat model of acute spinal cord injury. J Neurotrauma 2019; 36(3): 411-20.
[http://dx.doi.org/10.1089/neu.2018.5793] [PMID: 29901416]
[33]
Yang C, Wang G, Ma F, et al. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9(1): 136.
[http://dx.doi.org/10.1186/s13287-018-0879-0] [PMID: 29751769]
[34]
Papa S, Vismara I, Mariani A, et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J Control Release 2018; 278: 49-56.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.034] [PMID: 29621597]
[35]
Park JH, Kim DY, Sung IY, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70(5): 1238-47.
[http://dx.doi.org/10.1227/NEU.0b013e31824387f9] [PMID: 22127044]
[36]
Vaquero J, Zurita M, Rico MA, et al. Neurological Cell Therapy Group. An approach to personalized cell therapy in chronic complete paraplegia: the Puerta de Hierro phase I/II clinical trial. Cytotherapy 2016; 18(8): 1025-36.
[http://dx.doi.org/10.1016/j.jcyt.2016.05.003] [PMID: 27311799]
[37]
Vaquero J, Zurita M, Rico MA, et al. Neurological Cell Therapy Group. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017; 19(3): 349-59.
[http://dx.doi.org/10.1016/j.jcyt.2016.12.002] [PMID: 28089079]
[38]
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002; 99(4): 2199-204.
[http://dx.doi.org/10.1073/pnas.042678299] [PMID: 11854516]
[39]
Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem cells therapy for spinal cord injury: an overview of clinical trials. Int J Mol Sci 2020; 21(2): 659.
[http://dx.doi.org/10.3390/ijms21020659] [PMID: 31963888]
[40]
Fonseca AFB, Scheffer JP, Giraldi-Guimarães A, Coelho BP, Medina RM, Oliveira ALA. Comparison among bone marrow mesenchymal stem and mononuclear cells to promote functional recovery after spinal cord injury in rabbits. Acta Cir Bras 2017; 32(12): 1026-35.
[http://dx.doi.org/10.1590/s0102-865020170120000004] [PMID: 29319731]
[41]
Dedeepiya VD, William JB, Parthiban JK, et al. The known-unknowns in spinal cord injury, with emphasis on cell-based therapies - a review with suggestive arenas for research. Expert Opin Biol Ther 2014; 14(5): 617-34.
[http://dx.doi.org/10.1517/14712598.2014.889676] [PMID: 24660978]
[42]
Akhtar AZ, Pippin JJ, Sandusky CB. Animal models in spinal cord injury: a review. Rev Neurosci 2008; 19(1): 47-60.
[http://dx.doi.org/10.1515/REVNEURO.2008.19.1.47] [PMID: 18561820]
[43]
Lu D, Chen B, Liang Z, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92(1): 26-36.
[http://dx.doi.org/10.1016/j.diabres.2010.12.010] [PMID: 21216483]
[44]
van der Spoel TI, Gathier WA, Koudstaal S, et al. Autologous mesenchymal stem cells show more benefit on systolic function compared to bone marrow mononuclear cells in a porcine model of chronic myocardial infarction. J Cardiovasc Transl Res 2015; 8(7): 393-403.
[http://dx.doi.org/10.1007/s12265-015-9643-3] [PMID: 26382088]
[45]
Urdzíková L, Jendelová P, Glogarová K, Burian M, Hájek M, Syková E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 2006; 23(9): 1379-91.
[http://dx.doi.org/10.1089/neu.2006.23.1379] [PMID: 16958589]
[46]
Ozdemir M, Attar A, Kuzu I, et al. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev 2012; 8(3): 953-62.
[http://dx.doi.org/10.1007/s12015-012-9376-5] [PMID: 22552878]
[47]
Kim Y, Jo SH, Kim WH, Kweon OK. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 2015; 6: 229.
[http://dx.doi.org/10.1186/s13287-015-0236-5] [PMID: 26612085]
[48]
Yin F, Guo L, Meng CY, et al. Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury. Brain Res 2014; 1561: 1-10.
[http://dx.doi.org/10.1016/j.brainres.2014.02.047] [PMID: 24613403]
[49]
Qu J, Zhang H. Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int 2017; 2017: 5251313.
[http://dx.doi.org/10.1155/2017/5251313] [PMID: 28630630]
[50]
Lee MW, Ryu S, Kim DS, Sung KW, Koo HH, Yoo KH. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 2015; 6: 179.
[http://dx.doi.org/10.1186/s13287-015-0178-y] [PMID: 26445096]
[51]
Cofano F, Boido M, Monticelli M, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 2019; 20(11): 2698.
[52]
Kamei N, Kwon SM, Ishikawa M, et al. Endothelial progenitor cells promote astrogliosis following spinal cord injury through Jagged1-dependent Notch signaling. J Neurotrauma 2012; 29(9): 1758-69.
[http://dx.doi.org/10.1089/neu.2011.2139] [PMID: 22452482]
[53]
Ichim TE, Solano F, Lara F, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010; 3: 30.
[http://dx.doi.org/10.1186/1755-7682-3-30] [PMID: 21070647]
[54]
Ali H, Al-Mulla F. Defining umbilical cord blood stem cells. Stem Cell Discovery 2012; 2: 15-23.
[http://dx.doi.org/10.4236/scd.2012.21003]
[55]
Mason C, Dunnill P. Assessing the value of autologous and allogeneic cells for regenerative medicine. Regen Med 2009; 4(6): 835-53.
[http://dx.doi.org/10.2217/rme.09.64] [PMID: 19903003]
[56]
Dedeepiya VD, Rao YY, Jayakrishnan GA, et al. Index of cd34+ cells and mononuclear cells in the bone marrow of spinal cord injury patients of different age groups: a comparative analysis. Bone Marrow Res 2012; 2012: 787414.
[http://dx.doi.org/10.1155/2012/787414] [PMID: 22830032]
[57]
Beltrami AP, Cesselli D, Beltrami CA. Stem cell senescence and regenerative paradigms. Clin Pharmacol Ther 2012; 91(1): 21-9.
[http://dx.doi.org/10.1038/clpt.2011.262] [PMID: 22089268]
[58]
Qu C, Mahmood A, Liu XS, et al. The treatment of TBI with human marrow stromal cells impregnated into collagen scaffold: functional outcome and gene expression profile. Brain Res 2011; 1371: 129-39.
[http://dx.doi.org/10.1016/j.brainres.2010.10.088] [PMID: 21062621]
[59]
Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 2013; 34(15): 3775-83.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.002] [PMID: 23465486]
[60]
Xia L, Wan H, Hao SY, et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord. Chin Med J (Engl) 2013; 126(5): 909-17.
[PMID: 23489801]
[61]
William JB, Prabakaran R, Ayyappan S, et al. Functional recovery of spinal cord injury following application of intralesional bone marrow mononuclear cells embedded in polymer scaffold - two year follow-up in a canine. J Stem Cell Res Ther 2011; 1: 110.
[http://dx.doi.org/10.4172/2157-7633.1000110]
[62]
Jakobsson A, Ottosson M, Zalis MC, O'Carroll D, Johansson UE, Johansson F. MMesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 2017; 20(11): 2698.
[http://dx.doi.org/10.1016/j.nano.2016.12.023]
[63]
Liu H, Yang K, Xin T, Wu W, Chen Y. Implanted electro-acupuncture electric stimulation improves outcome of stem cells’ transplantation in spinal cord injury. Artif Cells Blood Substit Immobil Biotechnol 2012; 40(5): 331-7.
[http://dx.doi.org/10.3109/10731199.2012.659350] [PMID: 22384853]
[64]
Wu W, Zhao H, Xie B, et al. Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats. Neurosci Lett 2011; 491(1): 73-8.
[http://dx.doi.org/10.1016/j.neulet.2011.01.009] [PMID: 21232582]
[65]
Qu Z, Sun D, Young W. Lithium promotes neural precursor cell proliferation: evidence for the involvement of the non-canonical GSK-3β-NF-AT signaling. Cell Biosci 2011; 1(1): 18.
[http://dx.doi.org/10.1186/2045-3701-1-18] [PMID: 21711903]
[66]
Young W. Review of lithium effects on brain and blood. Cell Transplant 2009; 18(9): 951-75.
[http://dx.doi.org/10.3727/096368909X471251] [PMID: 19523343]
[67]
Mao X, Liu J, Chen C, et al. Pcbp2 modulates neural apoptosis and astrocyte proliferation after spinal cord injury. Neurochem Res 2016; 41(9): 2401-14.
[http://dx.doi.org/10.1007/s11064-016-1953-6] [PMID: 27209304]
[68]
Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 2014; 23(7): 741-54.
[http://dx.doi.org/10.1089/scd.2013.0396] [PMID: 24124760]
[69]
Fang KM, Chen JK, Hung SC, et al. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One 2010; 5(12): e15299.
[http://dx.doi.org/10.1371/journal.pone.0015299] [PMID: 21187959]
[70]
Chen J, Liu R, Yang Y, et al. The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci Lett 2011; 505(2): 171-5.
[http://dx.doi.org/10.1016/j.neulet.2011.10.014] [PMID: 22015766]
[71]
Seo DK, Kim JH, Min J, et al. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir (Wien) 2017; 159(5): 947-57.
[http://dx.doi.org/10.1007/s00701-017-3097-0] [PMID: 28160063]
[72]
Li Y, Wang H, Ding X, et al. Human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells combined with erythropoietin can improve acute spinal cord injury. Dose Response 2020; 18(1): 1559325820910930.
[http://dx.doi.org/10.1177/1559325820910930] [PMID: 32284696]
[73]
Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med 2017; 49(5): e332.
[http://dx.doi.org/10.1038/emm.2017.48] [PMID: 28524176]
[74]
Li D, Zhang P, Yao X, et al. Exosomes derived from mir-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front Neurosci 2018; 12: 845.
[http://dx.doi.org/10.3389/fnins.2018.00845] [PMID: 30524227]
[75]
Kim HY, Kumar H, Jo MJ, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment. Nano Lett 2018; 18(8): 4965-75.
[http://dx.doi.org/10.1021/acs.nanolett.8b01816] [PMID: 29995418]
[76]
Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog sirna repairs complete spinal cord injury. ACS Nano 2019; 13(9): 10015-28.
[http://dx.doi.org/10.1021/acsnano.9b01892] [PMID: 31454225]
[77]
Beer L, Mildner M, Gyöngyösi M, Ankersmit HJ. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis 2016; 21(12): 1336-53.
[http://dx.doi.org/10.1007/s10495-016-1292-8] [PMID: 27696124]
[78]
Samdani AF, Paul C, Betz RR, Fischer I, Neuhuber B. Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Spine 2009; 34(24): 2605-12.
[http://dx.doi.org/10.1097/BRS.0b013e3181bdca87] [PMID: 19881401]
[79]
Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15(8-9): 675-87.
[http://dx.doi.org/10.3727/000000006783464381] [PMID: 17269439]
[80]
Moviglia GA, Varela G, Brizuela JA, et al. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients. Spinal Cord 2009; 47(6): 499-503.
[http://dx.doi.org/10.1038/sc.2008.164] [PMID: 19223861]
[81]
Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 2009; 7(4): 241-8.
[PMID: 20353375]
[82]
Kakabadze Z, Kipshidze N, Mardaleishvili K, et al. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury. Stem Cells Int 2016; 2016: 6768274.
[http://dx.doi.org/10.1155/2016/6768274] [PMID: 27433165]
[83]
Sharma A, Sane H, Khopkar D, et al. Functional recovery in chronic stage of spinal cord injury by neurorestorative approach: a case report. Case Rep Surg 2014; 2014: 404207.
[http://dx.doi.org/10.1155/2014/404207] [PMID: 24744950]
[84]
Suzuki Y, Ishikawa N, Omae K, et al. Bone marrow-derived mononuclear cell transplantation in spinal cord injury patients by lumbar puncture. Restor Neurol Neurosci 2014; 32(4): 473-82.
[http://dx.doi.org/10.3233/RNN-130363] [PMID: 24670611]
[85]
Deda H, Inci MC, Kürekçi AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008; 10(6): 565-74.
[http://dx.doi.org/10.1080/14653240802241797] [PMID: 18615345]
[86]
Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007; 25(8): 2066-73.
[http://dx.doi.org/10.1634/stemcells.2006-0807] [PMID: 17464087]
[87]
Satti HS, Waheed A, Ahmed P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: a Phase I pilot study. Cytotherapy 2016; 18(4): 518-22.
[http://dx.doi.org/10.1016/j.jcyt.2016.01.004] [PMID: 26971680]
[88]
Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A phase iii clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery 2016; 78(3): 436-47.
[http://dx.doi.org/10.1227/NEU.0000000000001056] [PMID: 26891377]
[89]
Mendonça MV, Larocca TF, de Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther 2014; 5(6): 126.
[http://dx.doi.org/10.1186/scrt516] [PMID: 25406723]
[90]
Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res 2013; 1533: 73-9.
[http://dx.doi.org/10.1016/j.brainres.2013.08.016] [PMID: 23948102]
[91]
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 2012; 114(7): 935-9.
[http://dx.doi.org/10.1016/j.clineuro.2012.02.003] [PMID: 22464434]
[92]
Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011; 20(8): 1297-308.
[http://dx.doi.org/10.1089/scd.2010.0466] [PMID: 21303266]
[93]
Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009; 11(7): 897-911.
[http://dx.doi.org/10.3109/14653240903253857] [PMID: 19903102]
[94]
Moviglia GA, Fernandez Viña R, Brizuela JA, et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 2006; 8(3): 202-9.
[http://dx.doi.org/10.1080/14653240600736048] [PMID: 16793729]
[95]
Saito F, Nakatani T, Iwase M, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 2012; 30(2): 127-36.
[http://dx.doi.org/10.3233/RNN-2011-0629] [PMID: 22232031]
[96]
Jiang PC, Xiong WP, Wang G, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med 2013; 6(1): 140-6.
[http://dx.doi.org/10.3892/etm.2013.1083] [PMID: 23935735]
[97]
Kim M, Kim KH, Song SU, et al. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 2017; 12(2): e1034-45.
[PMID: 28112873]
[98]
Xue F, Wu EJ, Zhang PX, et al. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation. Neural Regen Res 2015; 10(1): 104-11.
[http://dx.doi.org/10.4103/1673-5374.150715] [PMID: 25788929]
[99]
Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7(6): e39500.
[http://dx.doi.org/10.1371/journal.pone.0039500] [PMID: 22745769]
[100]
Cantinieaux D, Quertainmont R, Blacher S, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 2013; 8(8): e69515.
[http://dx.doi.org/10.1371/journal.pone.0069515] [PMID: 24013448]
[101]
Haider T, Höftberger R, Rüger B, et al. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp Neurol 2015; 267: 230-42.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.013] [PMID: 25797576]
[102]
Takahashi H, Koda M, Hashimoto M, et al. Transplanted peripheral blood stem cells mobilized by granulocyte colony-stimulating factor promoted hindlimb functional recovery after spinal cord injury in mice. Cell Transplant 2016; 25(2): 283-92.
[http://dx.doi.org/10.3727/096368915X688146] [PMID: 25975570]
[103]
Zeng X, Qiu XC, Ma YH, et al. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 2015; 53: 184-201.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.073] [PMID: 25890718]
[104]
Chiba Y, Kuroda S, Maruichi K, et al. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery 2009; 64(5): 991-9.
[http://dx.doi.org/10.1227/01.NEU.0000341905.57162.1D] [PMID: 19404159]
[105]
Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 2012; 29(8): 1614-25.
[http://dx.doi.org/10.1089/neu.2011.2109] [PMID: 22233298]
[106]
Shrestha RP, Qiao JM, Shen FG, Bista KB, Zhao ZN, Yang J. Intra-spinal bone marrow mononuclear cells transplantation inhibits the expression of nuclear factor-κb in acute transection spinal cord injury in rats. J Korean Neurosurg Soc 2014; 56(5): 375-82.
[http://dx.doi.org/10.3340/jkns.2014.56.5.375] [PMID: 25535513]
[107]
Karaoz E, Kabatas S, Duruksu G, et al. Reduction of lesion in injured rat spinal cord and partial functional recovery of motility after bone marrow derived mesenchymal stem cell transplantation. Turk Neurosurg 2012; 22(2): 207-17.
[PMID: 22437296]
[108]
Lettnin KE, Asdrubal F, Terribele VG, et al. Two intrathecal transplants of bone marrow mononuclear cells produce motor improvement in an acute and severe model of spinal cord injury. Coluna/Columna 2013; 12(4): 274-77.
[109]
Chen D, Zeng W, Fu Y, Gao M, Lv G. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model. Int J Clin Exp Pathol 2015; 8(10): 11957-69.
[PMID: 26722382]
[110]
Zhang RP, Xu C, Liu Y, Li JD, Xie J. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury. Neural Regen Res 2015; 10(3): 404-11.
[http://dx.doi.org/10.4103/1673-5374.153688] [PMID: 25878588]
[111]
Chen YB, Jia QZ, Li DJ, et al. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation. Int J Clin Exp Med 2015; 8(6): 9348-54.
[PMID: 26309595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy