Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review

Author(s): Rout George Kerry, Gitishree Das, Upendarrao Golla, Maria del Pilar Rodriguez-Torres, Han-Seung Shin and Jayanta Kumar Patra*

Volume 23, Issue 1, 2022

Published on: 13 October, 2020

Page: [72 - 97] Pages: 26

DOI: 10.2174/1389201021666201013153142

Price: $65

conference banner
Abstract

Nutritional supplementations are a form of nutrition sources that may help in improving the health complexities of a person throughout his or her life span. Being also categorized as food supplementations, nutraceuticals are products that are extracted from edible sources with medical benefits as well as primary nutritional values. Nutraceuticals can be considered as functional foods. There are evidences that nutraceutical supplementations can alter the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults, including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson’s disease [PD], Multiple sclerosis [MS]) and metabolic disorders (Type-II diabetes, obesity and non-alcoholic fatty liver disease). They can even lessen the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) as well as bronchopulmonary dysplasia. Molecular perception of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. In this study, the pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways in the above non-communicable diseases is briefly described. This work also gives an overall introduction of the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks.

Keywords: Nutraceutical supplementation, probiotics, prebiotics, genome editing, delivery systems, diabetes.

« Previous
Graphical Abstract
[1]
Dwyer, J.T.; Coates, P.M.; Smith, M.J. Dietary supplements: Regulatory challenges and research resources. Nutrients, 2018, 10(1)E41
[http://dx.doi.org/10.3390/nu10010041 ] [PMID: 29300341]
[2]
Sirico, F.; Miressi, S.; Castaldo, C.; Spera, R.; Montagnani, S.; Di Meglio, F.; Nurzynska, D. Habits and beliefs related to food supplements: Results of a survey among Italian students of different education fields and levels. PLoS One, 2018, 13(1)e0191424
[http://dx.doi.org/10.1371/journal.pone.0191424 ] [PMID: 29351568]
[3]
FDA. Tainted Products Marketed as Dietary Supplements_CDER. U.S. Food and Drug Administration,. https://www.accessdata.fda.gov/scripts/sda/sdNavigation.cfm?sd=tainted_supplements_cder&displayAll=false&page=6
[4]
Parker, E.A.; Roy, T.; D’Adamo, C.R.; Wieland, L.S. Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, 2018, 45, 125-134.
[http://dx.doi.org/10.1016/j.nut.2017.06.024 ] [PMID: 28870406]
[5]
Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr., 2013, 2013481651
[http://dx.doi.org/10.5402/2013/481651 ] [PMID: 24959545]
[6]
George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H-S.; Das, G. Benefaction of probiotics for human health: A review. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 927-939.
[http://dx.doi.org/10.1016/j.jfda.2018.01.002 ] [PMID: 29976412]
[7]
Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756 ] [PMID: 28165863]
[8]
Tufarelli, V.; Laudadio, V. An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J. Exp. Biol. Agric. Sci., 2016, 4(3)(Suppl.), 273-278.
[http://dx.doi.org/10.18006/2016.4(3S).273.278]
[9]
Maeder, M.L.; Gersbach, C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther., 2016, 24(3), 430-446.
[http://dx.doi.org/10.1038/mt.2016.10 ] [PMID: 26755333]
[10]
Caneus, D. Nanotechnology and its partnership with synbiotics. J. Nanomed. Res., 2017, 6(1), 00142.
[http://dx.doi.org/10.15406/jnmr.2017.06.00142]
[11]
Karavolos, M.; Holban, A. Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals (Basel), 2016, 9(4), 62.
[http://dx.doi.org/10.3390/ph9040062 ] [PMID: 27690060]
[12]
Chen, H.; Weiss, J.; Shahidi, F. Nanotechnology in nutraceuticals and functional foods. Food Technol., 2006, 60, 30-36.
[13]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66 ] [PMID: 24912386]
[14]
Serban, D.E. Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Lett., 2014, 345(2), 258-270.
[http://dx.doi.org/10.1016/j.canlet.2013.08.013 ] [PMID: 23981580]
[15]
Mizock, B.A. Probiotics. Dis. Mon., 2015, 61(7), 259-290.
[http://dx.doi.org/10.1016/j.disamonth.2015.03.011 ] [PMID: 25921792]
[16]
Olivo, L. Focus on probiotics.Nutraceuticals World. Rodman Media Corporation,, https://www.nutraceuticalsworld.com/contents/view_online-exclusives/2017-11-30/focus-on-probiotics/
[17]
Kobyliak, N.; Falalyeyeva, T.; Boyko, N.; Tsyryuk, O.; Beregova, T.; Ostapchenko, L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res. Clin. Pract., 2018, 141, 190-199.
[http://dx.doi.org/10.1016/j.diabres.2018.05.005 ] [PMID: 29772287]
[18]
Álvarez, B.; Fernández, L.Á. Sustainable therapies by engineered bacteria. Microb. Biotechnol., 2017, 10(5), 1057-1061.
[http://dx.doi.org/10.1111/1751-7915.12778 ] [PMID: 28696008]
[19]
Mathipa, M.G.; Thantsha, M.S. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog., 2017, 9, 28.
[http://dx.doi.org/10.1186/s13099-017-0178-9 ] [PMID: 28491143]
[20]
DeBoer, M.D.; Gurka, M.J. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab. Syndr. Obes., 2017, 10, 65-72.
[http://dx.doi.org/10.2147/DMSO.S101624 ] [PMID: 28255250]
[21]
Saltiel, A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell, 2001, 104(4), 517-529.
[http://dx.doi.org/10.1016/S0092-8674(01)00239-2 ] [PMID: 11239409]
[22]
Cersosimo, E.; Triplitt, C.; Solis-Herrera, C.; Mandarino, L.J. DeFronzo, R.A. Pathogenesis of Type 2 Diabetes Mellitus. Endotext Feingold, K. R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W. W., Dungan, K., Grossman, A., Hershman, J. M., Hofland, H. J., Kaltsas, G., Koch, C., Kopp, P., Korbonits, M., McLachlan, R., Morley, J. E., New, M., Purnell, J., Singer, F., Stratakis, C. A., Trence, D. L., Wilson, D. P., Eds.;; MDText.com, Inc.: South Dartmouth (MA), . , 2018.
[23]
Gloyn, A.L.; Drucker, D.J. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol., 2018, 6(11), 891-900.
[http://dx.doi.org/10.1016/S2213-8587(18)30052-4 ] [PMID: 29699867]
[24]
Pereira, T.M.C.; Pimenta, F.S.; Porto, M.L.; Baldo, M.P.; Campagnaro, B.P.; Gava, A.L.; Meyrelles, S.S.; Vasquez, E.C. Coadjuvants in the diabetic complications: Nutraceuticals and drugs with pleiotropic effects. Int. J. Mol. Sci., 2016, 17(8)E1273
[http://dx.doi.org/10.3390/ijms17081273 ] [PMID: 27527163]
[25]
Lim, S-M.; Jeong, J-J.; Woo, K.H.; Han, M.J.; Kim, D-H. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr. Res., 2016, 36(4), 337-348.
[http://dx.doi.org/10.1016/j.nutres.2015.12.001 ] [PMID: 27001279]
[26]
Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O.; Santos, A.; Saad, S.T.O.; Saad, M.J.A. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem., 2017, 50, 16-25.
[http://dx.doi.org/10.1016/j.jnutbio.2017.08.006 ] [PMID: 28968517]
[27]
Jamilian, M.; Amirani, E.; Asemi, Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(5), 2098-2105.
[http://dx.doi.org/10.1016/j.clnu.2018.10.028 ] [PMID: 30459099]
[28]
Noce, A.; Marrone, G.; Di Daniele, F.; Ottaviani, E.; Wilson Jones, G.; Bernini, R.; Romani, A.; Rovella, V. Impact of gut microbiota composition on onset and progression of chronic non-communicable diseases. Nutrients, 2019, 11(5)E1073
[http://dx.doi.org/10.3390/nu11051073 ] [PMID: 31091761]
[29]
Singh, S.; Sharma, R.K.; Malhotra, S.; Pothuraju, R.; Shandilya, U.K. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes, 2017, 8(2), 243-255.
[http://dx.doi.org/10.3920/BM2016.0090 ] [PMID: 28008783]
[30]
Mihailović, M.; Živković, M.; Jovanović, J.A.; Tolinački, M.; Sinadinović, M.; Rajić, J.; Uskoković, A.; Dinić, S.; Grdović, N.; Golić, N.; Vidaković, M. Oral Administration of Probiotic Lactobacillus Paraplantarum BGCG11 Attenuates Diabetes-Induced Liver and Kidney Damage in Rats. J. Funct. Foods, 2017, 38, 427-437.
[http://dx.doi.org/10.1016/j.jff.2017.09.033]
[31]
Li, K-K.; Tian, P-J.; Wang, S-D.; Lei, P.; Qu, L.; Huang, J-P.; Shan, Y-J.; Li, B. Targeting Gut Microbiota: Lactobacillus Alleviated Type 2 Diabetes via Inhibiting LPS Secretion and Activating GPR43 Pathway. J. Funct. Foods, 2017, 38, 561-570.
[http://dx.doi.org/10.1016/j.jff.2017.09.049]
[32]
Miraghajani, M.; Zaghian, N.; Mirlohi, M.; Feizi, A.; Ghiasvand, R. The impact of probiotic soy milk consumption on oxidative stress among type 2 diabetic kidney disease patients: A randomized controlled clinical trial. J. Ren. Nutr., 2017, 27(5), 317-324.
[http://dx.doi.org/10.1053/j.jrn.2017.04.004 ] [PMID: 28579313]
[33]
Tonucci, L.B.; Olbrich Dos Santos, K.M.; Licursi de Oliveira, L.; Rocha Ribeiro, S.M.; Duarte Martino, H.S. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clin. Nutr., 2017, 36(1), 85-92.
[http://dx.doi.org/10.1016/j.clnu.2015.11.011 ] [PMID: 26732026]
[34]
Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K.; Mohan, V.; Balasubramanyam, M. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr., 2018, 57(1), 279-295.
[http://dx.doi.org/10.1007/s00394-016-1317-7 ] [PMID: 27757592]
[35]
Jamilian, M.; Mansury, S.; Bahmani, F.; Heidar, Z.; Amirani, E.; Asemi, Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J. Ovarian Res., 2018, 11(1), 80.
[http://dx.doi.org/10.1186/s13048-018-0457-1 ] [PMID: 30217229]
[36]
Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ahmed Ansari, M.G.; Masoud, M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(4), 1561-1569.
[http://dx.doi.org/10.1016/j.clnu.2018.08.009 ] [PMID: 30170781]
[37]
Raygan, F.; Ostadmohammadi, V.; Bahmani, F.; Asemi, Z. The effects of vitamin d and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 84(A), 50-55.,
[38]
Razmpoosh, E.; Javadi, A.; Ejtahed, H.S.; Mirmiran, P.; Javadi, M.; Yousefinejad, A. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab. Syndr., 2019, 13(1), 175-182.
[http://dx.doi.org/10.1016/j.dsx.2018.08.008 ] [PMID: 30641692]
[39]
Lin, Y-C.; Chen, Y-T.; Hsieh, H-H.; Chen, M-J. Effect of Lactobacillus mali APS1 and L. Kefiranofaciens M1 on obesity and glucose homeostasis in diet-induced obese mice. J. Funct. Foods, 2016, 23, 580-589.
[http://dx.doi.org/10.1016/j.jff.2016.03.015]
[40]
Karimi, G.; Jamaluddin, R.; Mohtarrudin, N.; Ahmad, Z.; Khazaai, H.; Parvaneh, M. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutr. Metab. Cardiovasc. Dis., 2017, 27(10), 910-918.
[http://dx.doi.org/10.1016/j.numecd.2017.06.020 ] [PMID: 28821417]
[41]
Caimari, A.; del Bas, J.M.; Boqué, N.; Crescenti, A.; Puiggròs, F.; Chenoll, E.; Martorell, P.; Ramón, D.; Genovés, S.; Arola, L. Heat-Killed Bifidobacterium animalis Subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J. Funct. Foods, 2017, 38, 251-263.
[http://dx.doi.org/10.1016/j.jff.2017.09.029]
[42]
Marchesin, J.C.; Celiberto, L.S.; Orlando, A.B.; de Medeiros, A.I.; Pinto, R.A.; Zuanon, J.A.S.; Spolidorio, L.C.; dos Santos, A.; Taranto, M.P.; Cavallini, D.C.U. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J. Funct. Foods, 2018, 48, 302-313.
[http://dx.doi.org/10.1016/j.jff.2018.07.010]
[43]
Roselli, M.; Finamore, A.; Brasili, E.; Rami, R.; Nobili, F.; Orsi, C.; Zambrini, A.V.; Mengheri, E. Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. J. Funct. Foods, 2018, 45, 321-329.
[http://dx.doi.org/10.1016/j.jff.2018.03.039]
[44]
Thiennimitr, P.; Yasom, S.; Tunapong, W.; Chunchai, T.; Wanchai, K.; Pongchaidecha, A.; Lungkaphin, A.; Sirilun, S.; Chaiyasut, C.; Chattipakorn, N.; Chattipakorn, S.C. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition, 2018, 54, 40-47.
[http://dx.doi.org/10.1016/j.nut.2018.03.005 ] [PMID: 29705500]
[45]
Westfall, S.; Lomis, N.; Prakash, S. A polyphenol-rich prebiotic in combination with a novel probiotic formulation alleviates markers of obesity and diabetes in drosophila. J. Funct. Foods, 2018, 48, 374-386.
[http://dx.doi.org/10.1016/j.jff.2018.07.012]
[46]
Yazdani, B.; Shidfar, F.; Salehi, E.; Baghbani-arani, F.; Razmpoosh, E.; Asemi, Z.; Cheshmazar, E.; Zarrati, M. Probiotic plus low-calorie diet increase gene expression of toll-like receptor 2 and FOXP3 in overweight and obese participants. J. Funct. Foods, 2018, 43, 180-185.
[http://dx.doi.org/10.1016/j.jff.2018.02.013]
[47]
Avolio, E.; Fazzari, G.; Zizza, M.; De Lorenzo, A.; Di Renzo, L.; Alò, R.; Facciolo, R.M.; Canonaco, M. Probiotics modify body weight together with anxiety states via pro-inflammatory factors in HFD-treated Syrian golden hamster. Behav. Brain Res., 2019, 356, 390-399.
[http://dx.doi.org/10.1016/j.bbr.2018.09.010 ] [PMID: 30223002]
[48]
Jangra, S.; Sharma, R.K.; Pothuraju, R.; Bhakri, G. Milk fermented with Lactobacillus casei NCDC19 improves high fat and sucrose diet alters gene expression in obese mice. Int. Dairy J., 2019, 90, 15-22.
[http://dx.doi.org/10.1016/j.idairyj.2018.11.002]
[49]
Kong, C.; Gao, R.; Yan, X.; Huang, L.; Qin, H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 2019, 60, 175-184.
[http://dx.doi.org/10.1016/j.nut.2018.10.002 ] [PMID: 30611080]
[50]
In Kim, H.; Kim, J-K.; Kim, J-Y.; Jang, S-E.; Han, M.J.; Kim, D-H. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr. Res., 2019, 67, 78-89.
[http://dx.doi.org/10.1016/j.nutres.2019.03.008 ] [PMID: 30982555]
[51]
Wagnerberger, S.; Spruss, A.; Kanuri, G.; Stahl, C.; Schröder, M.; Vetter, W.; Bischoff, S.C.; Bergheim, I. Lactobacillus casei Shirota protects from fructose-induced liver steatosis: A mouse model. J. Nutr. Biochem., 2013, 24(3), 531-538.
[http://dx.doi.org/10.1016/j.jnutbio.2012.01.014 ] [PMID: 22749137]
[52]
Nabavi, S.; Rafraf, M.; Somi, M.H.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J. Dairy Sci., 2014, 97(12), 7386-7393.
[http://dx.doi.org/10.3168/jds.2014-8500 ] [PMID: 25306266]
[53]
Raso, G.M.; Simeoli, R.; Iacono, A.; Santoro, A.; Amero, P.; Paciello, O.; Russo, R.; D’Agostino, G.; Di Costanzo, M.; Canani, R.B.; Calignano, A.; Meli, R. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet. J. Nutr. Biochem., 2014, 25(1), 81-90.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.006 ] [PMID: 24314869]
[54]
Reichold, A.; Brenner, S.A.; Spruss, A.; Förster-Fromme, K.; Bergheim, I.; Bischoff, S.C. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J. Nutr. Biochem., 2014, 25(2), 118-125.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.011 ] [PMID: 24445036]
[55]
Nabavi, S.; Rafraf, M.; Somi, M.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Probiotic yogurt improves body mass index and fasting insulin levels without affecting serum leptin and adiponectin levels in Non-Alcoholic Fatty Liver Disease (NAFLD). J. Funct. Foods, 2015, 18, 684-691.
[http://dx.doi.org/10.1016/j.jff.2015.08.031]
[56]
Cortez-Pinto, H.; Borralho, P.; Machado, J.; Lopes, M.T.; Gato, I.V.; Santos, A.M.; Guerreiro, A.S. Microbiota modulation with synbiotic decreases liver fibrosis in a high fat choline deficient diet mice model of Non-Alcoholic Steatohepatitis (NASH). GE Port. J. Gastroenterol., 2016, 23(3), 132-141.
[http://dx.doi.org/10.1016/j.jpge.2016.01.004 ] [PMID: 28868449]
[57]
Kim, D-H.; Kim, H.; Jeong, D.; Kang, I-B.; Chon, J-W.; Kim, H-S.; Song, K-Y.; Seo, K-H. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J. Nutr. Biochem., 2017, 44, 35-43.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.014 ] [PMID: 28384519]
[58]
Zhang, X.; Wu, Y.; Wang, Y.; Wang, X.; Piao, C.; Liu, J.; Liu, Y.; Wang, Y. The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury. J. Funct. Foods, 2017, 30, 220-227.
[http://dx.doi.org/10.1016/j.jff.2017.01.002]
[59]
Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; Liu, S-J.; Liu, H. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep., 2019, 26(1), 222-235.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.028 ] [PMID: 30605678]
[60]
Bray, G.A.; Frühbeck, G.; Ryan, D.H.; Wilding, J.P.H. Management of obesity. Lancet, 2016, 387(10031), 1947-1956.
[http://dx.doi.org/10.1016/S0140-6736(16)00271-3 ] [PMID: 26868660]
[61]
Gadde, K.M.; Martin, C.K.; Berthoud, H-R.; Heymsfield, S.B. Obesity: Pathophysiology and management. J. Am. Coll. Cardiol., 2018, 71(1), 69-84.
[http://dx.doi.org/10.1016/j.jacc.2017.11.011 ] [PMID: 29301630]
[62]
Grandone, A.; Di Sessa, A.; Umano, G.R.; Toraldo, R.; Miraglia Del Giudice, E. New treatment modalities for obesity. Best Pract. Res. Clin. Endocrinol. Metab., 2018, 32(4), 535-549.
[http://dx.doi.org/10.1016/j.beem.2018.06.007 ] [PMID: 30086873]
[63]
Stahl, E.P.; Dhindsa, D.S.; Lee, S.K.; Sandesara, P.B.; Chalasani, N.P.; Sperling, L.S. Nonalcoholic fatty liver disease and the heart: JACC state-of-the-art review. J. Am. Coll. Cardiol., 2019, 73(8), 948-963.
[http://dx.doi.org/10.1016/j.jacc.2018.11.050 ] [PMID: 30819364]
[64]
Lebensztejn, D.M.; Flisiak-Jackiewicz, M.; Białokoz-Kalinowska, I.; Bobrus-Chociej, A.; Kowalska, I. Hepatokines and non-alcoholic fatty liver disease. Acta Biochim. Pol., 2016, 63(3), 459-467.
[http://dx.doi.org/10.18388/abp.2016_1252 ] [PMID: 27262842]
[65]
Adolph, T.E.; Grander, C.; Grabherr, F.; Tilg, H. Adipokines and non-alcoholic fatty liver disease: Multiple interactions. Int. J. Mol. Sci., 2017, 18(8)E1649
[http://dx.doi.org/10.3390/ijms18081649 ] [PMID: 28758929]
[66]
Arab, J.P.; Arrese, M.; Trauner, M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu. Rev. Pathol., 2018, 13, 321-350.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043617 ] [PMID: 29414249]
[67]
Mazhar, K. The future of nonalcoholic fatty liver disease treatment. Med. Clin. North Am., 2019, 103(1), 57-69.
[http://dx.doi.org/10.1016/j.mcna.2018.08.005 ] [PMID: 30466676]
[69]
Beghi, E.; Giussani, G.; Nichols, E.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abraha, H.N.; Adib, M.G.; Agrawal, S.; Alahdab, F.; Awasthi, A.; Ayele, Y.; Barboza, M.A.; Belachew, A.B.; Biadgo, B.; Bijani, A.; Bitew, H.; Carvalho, F.; Chaiah, Y.; Daryani, A.; Do, H.P.; Dubey, M.; Endries, A.Y.Y.; Eskandarieh, S.; Faro, A.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Fijabi, D.O.; Filip, I.; Fischer, F.; Gebre, A.K.; Tsadik, A.G.; Gebremichael, T.G.; Gezae, K.E.; Ghasemi-Kasman, M.; Weldegwergs, K.G.; Degefa, M.G.; Gnedovskaya, E.V.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hassen, H.Y.; Hay, S.I.; Jakovljevic, M.; Kasaeian, A.; Kassa, T.D.; Khader, Y.S.; Khalil, I.; Khan, E.A.; Khubchandani, J.; Kisa, A.; Krohn, K.J.; Kulkarni, C.; Nirayo, Y.L.; Mackay, M.T.; Majdan, M.; Majeed, A.; Manhertz, T.; Mehndiratta, M.M.; Mekonen, T.; Meles, H.G.; Mengistu, G.; Mohammed, S.; Naghavi, M.; Mokdad, A.H.; Mustafa, G.; Irvani, S.S.N.; Nguyen, L.H.; Nixon, M.R.; Ogbo, F.A.; Olagunju, A.T.; Olagunju, T.O.; Owolabi, M.O.; Phillips, M.R.; Pinilla-Monsalve, G.D.; Qorbani, M.; Radfar, A.; Rafay, A.; Rahimi-Movaghar, V.; Reinig, N.; Sachdev, P.S.; Safari, H.; Safari, S.; Safiri, S.; Sahraian, M.A.; Samy, A.M.; Sarvi, S.; Sawhney, M.; Shaikh, M.A.; Sharif, M.; Singh, G.; Smith, M.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Temsah, M-H.; Temsah, O.; Tortajada-Girbés, M.; Tran, B.X.; Tsegay, A.A.T.; Ullah, I.; Venketasubramanian, N.; Westerman, R.; Winkler, A.S.; Yimer, E.M.; Yonemoto, N.; Feigin, V.L.; Vos, T.; Murray, C.J.L. GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(4), 357-375.
[http://dx.doi.org/10.1016/S1474-4422(18)30454-X ] [PMID: 30773428]
[70]
Milligan, T.A. Diagnosis in neurologic disease. Med. Clin. North Am., 2019, 103(2), 173-190.
[http://dx.doi.org/10.1016/j.mcna.2018.10.011 ] [PMID: 30704675]
[71]
Khan, R.S.; Ahmed, M.R.; Khalid, B.; Mahmood, A.; Hassan, R.H. Biomarker detection of neurological disorders through spectroscopy analysis. Int. Dental Medical J. Adv. Res., 2018, 4, 1-9.
[http://dx.doi.org/10.15713/ins.idmjar.86]
[72]
Burgos, R.; Bretón, I. Nutritional Therapeutics: Neurological Disorders.Encyclopedia of Food Security and Sustainability; Ferranti, P.; Berry, E.M.; Anderson, J.R., Eds.; Elsevier: Oxford, 2019, pp. 90-96.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21924-0]
[73]
Umbrello, G.; Esposito, S. Microbiota and neurologic diseases: potential effects of probiotics. J. Transl. Med., 2016, 14(1), 298.
[http://dx.doi.org/10.1186/s12967-016-1058-7 ] [PMID: 27756430]
[74]
Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol. Ther., 2018, 190, 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.007 ] [PMID: 29763648]
[75]
Lord, C.; Risi, S.; DiLavore, P.S.; Shulman, C.; Thurm, A.; Pickles, A. Autism from 2 to 9 years of age. Arch. Gen. Psychiatry, 2006, 63(6), 694-701.
[http://dx.doi.org/10.1001/archpsyc.63.6.694 ] [PMID: 16754843]
[76]
Nicolaidis, C.; Kripke, C.C.; Raymaker, D. Primary care for adults on the autism spectrum. Med. Clin. North Am., 2014, 98(5), 1169-1191.
[http://dx.doi.org/10.1016/j.mcna.2014.06.011 ] [PMID: 25134878]
[77]
Harris, J.C. Autism spectrum disorder.Neurobiology of Brain Disorders; Zigmond, M.J.; Rowland, L.P.; Coyle, J.T., Eds.; Academic Press: San Diego, 2015, pp. 78-97.
[78]
Volkmar, F.R.; Wolf, J.M. When children with autism become adults. World Psychiatry, 2013, 12(1), 79-80.
[http://dx.doi.org/10.1002/wps.20020 ] [PMID: 23471806]
[79]
Gregory, S.G.; Connelly, J.J.; Towers, A.J.; Johnson, J.; Biscocho, D.; Markunas, C.A.; Lintas, C.; Abramson, R.K.; Wright, H.H.; Ellis, P.; Langford, C.F.; Worley, G.; Delong, G.R.; Murphy, S.K.; Cuccaro, M.L.; Persico, A.; Pericak-Vance, M.A. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med., 2009, 7, 62.
[http://dx.doi.org/10.1186/1741-7015-7-62 ] [PMID: 19845972]
[80]
Li, X.; Zou, H.; Brown, W.T. Genes associated with autism spectrum disorder. Brain Res. Bull., 2012, 88(6), 543-552.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.017 ] [PMID: 22688012]
[81]
Maurer, M.H. Genomic and proteomic advances in autism research. Electrophoresis, 2012, 33(24), 3653-3658.
[http://dx.doi.org/10.1002/elps.201200382 ] [PMID: 23160986]
[82]
Corbett, B.A.; Kantor, A.B.; Schulman, H.; Walker, W.L.; Lit, L.; Ashwood, P.; Rocke, D.M.; Sharp, F.R. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol. Psychiatry, 2007, 12(3), 292-306.
[http://dx.doi.org/10.1038/sj.mp.4001943 ] [PMID: 17189958]
[83]
Marí-Bauset, S.; Zazpe, I.; Mari-Sanchis, A.; Llopis-González, A.; Morales-Suárez-Varela, M. Food selectivity in autism spectrum disorders: A systematic review. J. Child Neurol., 2014, 29(11), 1554-1561.
[http://dx.doi.org/10.1177/0883073813498821 ] [PMID: 24097852]
[84]
Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40.
[http://dx.doi.org/10.3389/fnut.2018.00040 ] [PMID: 29868601]
[85]
Shaaban, S.Y.; El Gendy, Y.G.; Mehanna, N.S.; El-Senousy, W.M.; El-Feki, H.S.A.; Saad, K.; El-Asheer, O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci., 2018, 21(9), 676-681.
[http://dx.doi.org/10.1080/1028415X.2017.1347746 ] [PMID: 28686541]
[86]
Mehl-Madrona, L.; Leung, B.; Kennedy, C.; Paul, S.; Kaplan, B.J. Micronutrients versus standard medication management in autism: a naturalistic case-control study. J. Child Adolesc. Psychopharmacol., 2010, 20(2), 95-103.
[http://dx.doi.org/10.1089/cap.2009.0011 ] [PMID: 20415604]
[87]
Raghavan, R.; Riley, A.W.; Volk, H.; Caruso, D.; Hironaka, L.; Sices, L.; Hong, X.; Wang, G.; Ji, Y.; Brucato, M.; Wahl, A.; Stivers, T.; Pearson, C.; Zuckerman, B.; Stuart, E.A.; Landa, R.; Fallin, M.D.; Wang, X. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr. Perinat. Epidemiol., 2018, 32(1), 100-111.
[http://dx.doi.org/10.1111/ppe.12414 ] [PMID: 28984369]
[88]
Wang, M.; Li, K.; Zhao, D.; Li, L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: A meta-analysis. Mol. Autism, 2017, 8, 51.
[http://dx.doi.org/10.1186/s13229-017-0170-8 ] [PMID: 29026508]
[89]
Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.W.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism, 2018, 9, 35.
[http://dx.doi.org/10.1186/s13229-018-0218-4 ] [PMID: 29854372]
[90]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3 ] [PMID: 25904081]
[91]
Perez-Pardo, P.; Kliest, T.; Dodiya, H.B.; Broersen, L.M.; Garssen, J.; Keshavarzian, A.; Kraneveld, A.D. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur. J. Pharmacol., 2017, 817, 86-95.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.042 ] [PMID: 28549787]
[92]
Lin, M.K.; Farrer, M.J. Genetics and genomics of Parkinson’s disease. Genome Med., 2014, 6(6), 48.
[http://dx.doi.org/10.1186/gm566 ] [PMID: 25061481]
[93]
Licker, V.; Kövari, E.; Hochstrasser, D.F.; Burkhard, P.R. Proteomics in human Parkinson’s disease research. J. Proteomics, 2009, 73(1), 10-29.
[http://dx.doi.org/10.1016/j.jprot.2009.07.007 ] [PMID: 19632367]
[94]
Su, A.; Gandhy, R.; Barlow, C.; Triadafilopoulos, G. A practical review of gastrointestinal manifestations in Parkinson’s disease. Parkinsonism Relat. Disord., 2017, 39, 17-26.
[http://dx.doi.org/10.1016/j.parkreldis.2017.02.029 ] [PMID: 28258927]
[95]
Lange, K.W.; Nakamura, Y.; Chen, N.; Guo, J.; Kanaya, S.; Lange, K.M.; Li, S. Diet and medical foods in Parkinson’s Disease. Food Sci. Hum. Wellness, 2019, 8(2), 83-95.
[http://dx.doi.org/10.1016/j.fshw.2019.03.006]
[96]
Fasano, A.; Visanji, N.P.; Liu, L.W.C.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol., 2015, 14(6), 625-639.
[http://dx.doi.org/10.1016/S1474-4422(15)00007-1 ] [PMID: 25987282]
[97]
Kannappan, R.; Gupta, S.C.; Kim, J.H.; Reuter, S.; Aggarwal, B.B. Neuroprotection by spice-derived nutraceuticals: You are what you eat! Mol. Neurobiol., 2011, 44(2), 142-159.
[http://dx.doi.org/10.1007/s12035-011-8168-2 ] [PMID: 21360003]
[98]
Wang, M.S.; Boddapati, S.; Emadi, S.; Sierks, M.R. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci., 2010, 11, 57.
[http://dx.doi.org/10.1186/1471-2202-11-57 ] [PMID: 20433710]
[99]
Mischley, L.K.; Lau, R.C.; Bennett, R.D. Role of diet and nutritional supplements in Parkinson’s Disease progression. Oxid. Med. Cell. Longev., 2017, 20176405278
[http://dx.doi.org/10.1155/2017/6405278 ] [PMID: 29081890]
[100]
Parashar, A.; Udayabanu, M. Gut microbiota: Implications in Parkinson’s disease. Parkinsonism Relat. Disord., 2017, 38, 1-7.
[http://dx.doi.org/10.1016/j.parkreldis.2017.02.002 ] [PMID: 28202372]
[101]
Cunningham, E. Are there evidence-based dietary interventions for multiple sclerosis? J. Acad. Nutr. Diet., 2013, 113(7), 1004.
[http://dx.doi.org/10.1016/j.jand.2013.05.010 ] [PMID: 23790414]
[102]
Bhattacharya, A.; Mishra, R.; Tiwari, P. Multiple sclerosis: An overview. Asian Pac. J. Trop. Biomed., 2012, 2(3)(Suppl.), S1954-S1962.
[http://dx.doi.org/10.1016/S2221-1691(12)60525-5]
[103]
Farias, A.S.; Pradella, F.; Schmitt, A.; Santos, L.M.B.; Martins-de-Souza, D. Ten years of proteomics in multiple sclerosis. Proteomics, 2014, 14(4-5), 467-480.
[http://dx.doi.org/10.1002/pmic.201300268 ] [PMID: 24339438]
[104]
Biedermann, L.; Zeitz, J.; Mwinyi, J.; Sutter-Minder, E.; Rehman, A.; Ott, S.J.; Steurer-Stey, C.; Frei, A.; Frei, P.; Scharl, M.; Loessner, M.J.; Vavricka, S.R.; Fried, M.; Schreiber, S.; Schuppler, M.; Rogler, G. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One, 2013, 8(3)e59260
[http://dx.doi.org/10.1371/journal.pone.0059260 ] [PMID: 23516617]
[105]
Yadav, V.; Shinto, L.; Bourdette, D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev. Clin. Immunol., 2010, 6(3), 381-395.
[http://dx.doi.org/10.1586/eci.10.12 ] [PMID: 20441425]
[106]
Schwarz, S.; Leweling, H. Multiple sclerosis and nutrition. Mult. Scler., 2005, 11(1), 24-32.
[http://dx.doi.org/10.1191/1352458505ms1119oa ] [PMID: 15732263]
[107]
Kouchaki, E.; Tamtaji, O.R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, 36(5), 1245-1249.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015 ] [PMID: 27669638]
[108]
Genes and Disease, Bethesda (MD): National Center for Biotechnology Information (US); 1998; National Center for Biotechnology Information: US, 1998.
[109]
Gupta, H.D.; Choudhury, R.G. Neonatal disorders and obstetricians. J. Indian Med. Assoc., 2001, 99(5), 262-264, 266.
[PMID: 11676112]
[110]
Eaton, S.; Rees, C.M.; Hall, N.J. Current research on the epidemiology, pathogenesis, and management of necrotizing enterocolitis. Neonatology, 2017, 111(4), 423-430.
[http://dx.doi.org/10.1159/000458462 ] [PMID: 28538238]
[111]
Cuna, A.; Sampath, V. Genetic alterations in necrotizing enterocolitis. Semin. Perinatol., 2017, 41(1), 61-69.
[http://dx.doi.org/10.1053/j.semperi.2016.09.019 ] [PMID: 27836427]
[112]
Christian, V.J.; Polzin, E.; Welak, S. Nutrition management of necrotizing enterocolitis. Nutr. Clin. Pract., 2018, 33(4), 476-482.
[http://dx.doi.org/10.1002/ncp.10115 ] [PMID: 29940075]
[113]
Patel, R.M.; Underwood, M.A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg., 2018, 27(1), 39-46.
[http://dx.doi.org/10.1053/j.sempedsurg.2017.11.008 ] [PMID: 29275816]
[114]
Veenstra, M.; Danielson, L.; Brownie, E.; Saba, M.; Natarajan, G.; Klein, M. Enteral nutrition and total parenteral nutrition components in the course of total parenteral nutrition-associated cholestasis in neonatal necrotizing enterocolitis. Surgery, 2014, 156(3), 578-583.
[http://dx.doi.org/10.1016/j.surg.2014.04.031 ] [PMID: 24962191]
[115]
Akisü, M.; Baka, M.; Coker, I.; Kültürsay, N.; Hüseyinov, A. Effect of dietary n-3 fatty acids on hypoxia-induced necrotizing enterocolitis in young mice. N-3 fatty acids alter platelet-activating factor and leukotriene B4 production in the intestine. Biol. Neonate, 1998, 74(1), 31-38.
[http://dx.doi.org/10.1159/000014008 ] [PMID: 9657667]
[116]
Caplan, M.S.; Russell, T.; Xiao, Y.; Amer, M.; Kaup, S.; Jilling, T. Effect of Polyunsaturated Fatty Acid (PUFA) supplementation on intestinal inflammation and Necrotizing Enterocolitis (NEC) in a neonatal rat model. Pediatr. Res., 2001, 49(5), 647-652.
[http://dx.doi.org/10.1203/00006450-200105000-00007 ] [PMID: 11328947]
[117]
Amin, H.J.; Zamora, S.A.; McMillan, D.D.; Fick, G.H.; Butzner, J.D.; Parsons, H.G.; Scott, R.B. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J. Pediatr., 2002, 140(4), 425-431.
[http://dx.doi.org/10.1067/mpd.2002.123289 ] [PMID: 12006956]
[118]
Shah, P.S.; Shah, V.S.; Kelly, L.E. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst. Rev., 2017, 4CD004339
[http://dx.doi.org/10.1002/14651858.CD004339.pub4 ] [PMID: 28399330]
[119]
Coverston, C.R.; Schwartz, R. Extrauterine growth restriction: a continuing problem in the NICU. MCN Am. J. Matern. Child Nurs., 2005, 30(2), 101-106.
[http://dx.doi.org/10.1097/00005721-200503000-00006 ] [PMID: 15775804]
[120]
Lunde, D. Extrauterine growth restriction: What is the evidence for better nutritional practices in the neonatal intensive care unit? Newborn Infant Nurs. Rev., 2014, 14(3), 92-98.
[http://dx.doi.org/10.1053/j.nainr.2014.06.008]
[121]
Yu, V.Y.H. Extrauterine growth restriction in preterm infants: Importance of optimizing nutrition in neonatal intensive care units. Croat. Med. J., 2005, 46(5), 737-743.
[PMID: 16158465]
[122]
Tozzi, M.G.; Moscuzza, F.; Michelucci, A.; Lorenzoni, F.; Cosini, C.; Ciantelli, M.; Ghirri, P. ExtraUterine Growth Restriction (EUGR) in preterm infants: Growth patterns, nutrition, and epigenetic markers. A pilot study. Front Pediatr., 2018, 6, 408.
[http://dx.doi.org/10.3389/fped.2018.00408 ] [PMID: 30619799]
[123]
Su, B-H. Optimizing nutrition in preterm infants. Pediatr. Neonatol., 2014, 55(1), 5-13.
[http://dx.doi.org/10.1016/j.pedneo.2013.07.003 ] [PMID: 24050843]
[124]
Samady, W.; Warren, C.; Kohli, S.; Jain, R.; Bilaver, L.; Mancini, A.J.; Gupta, R. The prevalence of atopic dermatitis in children with food allergy. Ann. Allergy Asthma Immunol., 2019, 122(6), 656-657.e1.
[http://dx.doi.org/10.1016/j.anai.2019.03.019 ] [PMID: 30922954]
[125]
Werfel, T.; Breuer, K. Role of food allergy in atopic dermatitis. Curr. Opin. Allergy Clin. Immunol., 2004, 4(5), 379-385.
[http://dx.doi.org/10.1097/00130832-200410000-00009 ] [PMID: 15349037]
[126]
Brown, S.J.; McLean, W.H.I. Eczema genetics: Current state of knowledge and future goals. J. Invest. Dermatol., 2009, 129(3), 543-552.
[http://dx.doi.org/10.1038/jid.2008.413 ] [PMID: 19209157]
[127]
Thijs, J.L.; de Bruin-Weller, M.S.; Hijnen, D. Current and future biomarkers in atopic dermatitis. Immunol. Allergy Clin. North Am., 2017, 37(1), 51-61.
[http://dx.doi.org/10.1016/j.iac.2016.08.008 ] [PMID: 27886910]
[128]
Schlichte, M.J.; Vandersall, A.; Katta, R. Diet and eczema: a review of dietary supplements for the treatment of atopic dermatitis. Dermatol. Pract. Concept., 2016, 6(3), 23-29.
[http://dx.doi.org/10.5826/dpc.0603a06 ] [PMID: 27648380]
[129]
Javaid, A.; Morris, I. Bronchopulmonary dysplasia. Paediatr. Child Health, 2018, 28(1), 22-27.
[http://dx.doi.org/10.1016/j.paed.2017.10.004]
[130]
Kalikkot Thekkeveedu, R.; Guaman, M.C.; Shivanna, B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir. Med., 2017, 132, 170-177.
[http://dx.doi.org/10.1016/j.rmed.2017.10.014 ] [PMID: 29229093]
[131]
Jobe, A.H.; Steinhorn, R. Can we define bronchopulmonary dysplasia? J. Pediatr., 2017, 188, 19-23.
[http://dx.doi.org/10.1016/j.jpeds.2017.06.064 ] [PMID: 28705654]
[132]
Lavoie, P.M.; Dubé, M-P. Genetics of bronchopulmonary dysplasia in the age of genomics. Curr. Opin. Pediatr., 2010, 22(2), 134-138.
[http://dx.doi.org/10.1097/MOP.0b013e328336eb85 ] [PMID: 20087186]
[133]
Bhandari, A.; Bhandari, V. Biomarkers in bronchopulmonary dysplasia. Paediatr. Respir. Rev., 2013, 14(3), 173-179.
[http://dx.doi.org/10.1016/j.prrv.2013.02.008 ] [PMID: 23523392]
[134]
Poindexter, B.B.; Martin, C.R. Impact of Nutrition on bronchopulmonary dysplasia. Clin. Perinatol., 2015, 42(4), 797-806.
[http://dx.doi.org/10.1016/j.clp.2015.08.007 ] [PMID: 26593079]
[135]
Yadav, R.; Kumar, V.; Baweja, M.; Shukla, P. Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(10), 1735-1746.
[http://dx.doi.org/10.1080/10408398.2016.1274877 ] [PMID: 28071925]
[136]
Bienenstock, J.; Gibson, G.; Klaenhammer, T.R.; Walker, W.A.; Neish, A.S. New insights into probiotic mechanisms: A harvest from functional and metagenomic studies. Gut Microbes, 2013, 4(2), 94-100.
[http://dx.doi.org/10.4161/gmic.23283 ] [PMID: 23249742]
[137]
Pfeiffer, M.; Quétier, F.; Ricroch, A. Chapter Eight - Genome Editing in Agricultural Biotechnology In: Advances in Botanical Research; Kuntz, M., Ed.; Transgenic Plants; Academic Press, 2018, 86, pp. 245-286;
[138]
Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1156-1160.
[http://dx.doi.org/10.1073/pnas.93.3.1156 ] [PMID: 8577732]
[139]
Zhang, F.; Maeder, M.L.; Unger-Wallace, E.; Hoshaw, J.P.; Reyon, D.; Christian, M.; Li, X.; Pierick, C.J.; Dobbs, D.; Peterson, T.; Joung, J.K.; Voytas, D.F. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. USA, 2010, 107(26), 12028-12033.
[http://dx.doi.org/10.1073/pnas.0914991107 ] [PMID: 20508152]
[140]
Flisikowska, T.; Thorey, I.S.; Offner, S.; Ros, F.; Lifke, V.; Zeitler, B.; Rottmann, O.; Vincent, A.; Zhang, L.; Jenkins, S.; Niersbach, H.; Kind, A.J.; Gregory, P.D.; Schnieke, A.E.; Platzer, J. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One, 2011, 6(6)e21045
[http://dx.doi.org/10.1371/journal.pone.0021045 ] [PMID: 21695153]
[141]
Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther., 2008, 15(22), 1463-1468.
[http://dx.doi.org/10.1038/gt.2008.145 ] [PMID: 18784746]
[142]
Li, H.; Haurigot, V.; Doyon, Y.; Li, T.; Wong, S.Y.; Bhagwat, A.S.; Malani, N.; Anguela, X.M.; Sharma, R.; Ivanciu, L.; Murphy, S.L.; Finn, J.D.; Khazi, F.R.; Zhou, S.; Paschon, D.E.; Rebar, E.J.; Bushman, F.D.; Gregory, P.D.; Holmes, M.C.; High, K.A. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature, 2011, 475(7355), 217-221.
[http://dx.doi.org/10.1038/nature10177 ] [PMID: 21706032]
[143]
Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G.; Holmes, M.C.; Gregory, P.D.; Ando, D.G.; Kalos, M.; Collman, R.G.; Binder-Scholl, G.; Plesa, G.; Hwang, W-T.; Levine, B.L.; June, C.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 2014, 370(10), 901-910.
[http://dx.doi.org/10.1056/NEJMoa1300662 ] [PMID: 24597865]
[144]
Batista, A.C.; Pacheco, L.G.C. Detecting pathogens with Zinc-Finger, TALE and CRISPR- based programmable nucleic acid binding proteins. J. Microbiol. Methods, 2018, 152, 98-104.
[http://dx.doi.org/10.1016/j.mimet.2018.07.024 ] [PMID: 30076867]
[145]
Saha, S.K.; Saikot, F.K.; Rahman, M.S.; Jamal, M.A.H.M.; Rahman, S.M.K.; Islam, S.M.R.; Kim, K-H. Programmable molecular scissors: Applications of a new tool for genome editing in biotech. Mol. Ther. Nucleic Acids, 2019, 14, 212-238.
[http://dx.doi.org/10.1016/j.omtn.2018.11.016 ] [PMID: 30641475]
[146]
Khan, S.H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids, 2019, 16, 326-334.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027 ] [PMID: 30965277]
[147]
Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959), 1509-1512.
[http://dx.doi.org/10.1126/science.1178811 ] [PMID: 19933107]
[148]
Boch, J.; Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol., 2010, 48, 419-436.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081936 ] [PMID: 19400638]
[149]
Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 49-55.
[http://dx.doi.org/10.1038/nrm3486 ] [PMID: 23169466]
[150]
Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol., 2012, 30(5), 460-465.
[http://dx.doi.org/10.1038/nbt.2170 ] [PMID: 22484455]
[151]
Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys., 2005, 38(1), 49-95.
[http://dx.doi.org/10.1017/S0033583505004063 ] [PMID: 16336743]
[152]
Epinat, J-C.; Arnould, S.; Chames, P.; Rochaix, P.; Desfontaines, D.; Puzin, C.; Patin, A.; Zanghellini, A.; Pâques, F.; Lacroix, E. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res., 2003, 31(11), 2952-2962.
[http://dx.doi.org/10.1093/nar/gkg375 ] [PMID: 12771221]
[153]
Arnould, S.; Chames, P.; Perez, C.; Lacroix, E.; Duclert, A.; Epinat, J-C.; Stricher, F.; Petit, A-S.; Patin, A.; Guillier, S.; Rolland, S.; Prieto, J.; Blanco, F.J.; Bravo, J.; Montoya, G.; Serrano, L.; Duchateau, P.; Pâques, F. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol., 2006, 355(3), 443-458.
[http://dx.doi.org/10.1016/j.jmb.2005.10.065 ] [PMID: 16310802]
[154]
Boissel, S.; Jarjour, J.; Astrakhan, A.; Adey, A.; Gouble, A.; Duchateau, P.; Shendure, J.; Stoddard, B.L.; Certo, M.T.; Baker, D.; Scharenberg, A.M. megaTALs: A rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res., 2014, 42(4), 2591-2601.
[http://dx.doi.org/10.1093/nar/gkt1224 ] [PMID: 24285304]
[155]
Goh, Y.J.; Barrangou, R. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr. Opin. Biotechnol., 2019, 56, 163-171.
[http://dx.doi.org/10.1016/j.copbio.2018.11.009 ] [PMID: 30530241]
[156]
Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213)1258096
[http://dx.doi.org/10.1126/science.1258096 ] [PMID: 25430774]
[157]
Selle, K.; Barrangou, R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol., 2015, 23(4), 225-232.
[http://dx.doi.org/10.1016/j.tim.2015.01.008 ] [PMID: 25698413]
[158]
Ledford, H. CRISPR, the disruptor. Nature, 2015, 522(7554), 20-24.
[http://dx.doi.org/10.1038/522020a ] [PMID: 26040877]
[159]
Hille, F.; Charpentier, E. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1707), 371.,
[http://dx.doi.org/10.1098/rstb.2015.0496] [PMID: 27672148]
[160]
Lo, A.; Qi, L. Genetic and epigenetic control of gene expression by CRISPR-Cas Systems. F1000 Res., 2017, 6.
[http://dx.doi.org/10.12688/f1000research.11113.1]
[161]
Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5), 1173-1183.
[http://dx.doi.org/10.1016/j.cell.2013.02.022 ] [PMID: 23452860]
[162]
Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res., 2013, 41(15), 7429-7437.
[http://dx.doi.org/10.1093/nar/gkt520 ] [PMID: 23761437]
[163]
Peters, J.M.; Silvis, M.R.; Zhao, D.; Hawkins, J.S.; Gross, C.A.; Qi, L.S. Bacterial CRISPR: Accomplishments and prospects. Curr. Opin. Microbiol., 2015, 27, 121-126.
[http://dx.doi.org/10.1016/j.mib.2015.08.007 ] [PMID: 26363124]
[164]
Kearns, N.A.; Genga, R.M.J.; Enuameh, M.S.; Garber, M.; Wolfe, S.A.; Maehr, R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 2014, 141(1), 219-223.
[http://dx.doi.org/10.1242/dev.103341 ] [PMID: 24346702]
[165]
Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; Qi, L.S.; Kampmann, M.; Weissman, J.S. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3), 647-661.
[http://dx.doi.org/10.1016/j.cell.2014.09.029 ] [PMID: 25307932]
[166]
Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem. Biol., 2018, 13(2), 406-416.
[http://dx.doi.org/10.1021/acschembio.7b00657 ] [PMID: 29035510]
[167]
Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2), 442-451.
[http://dx.doi.org/10.1016/j.cell.2013.06.044 ] [PMID: 23849981]
[168]
Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 2013, 31(3), 233-239.
[http://dx.doi.org/10.1038/nbt.2508 ] [PMID: 23360965]
[169]
Jiang, Y.; Chen, B.; Duan, C.; Sun, B.; Yang, J.; Yang, S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol., 2015, 81(7), 2506-2514.
[http://dx.doi.org/10.1128/AEM.04023-14 ] [PMID: 25636838]
[170]
Zerbini, F.; Zanella, I.; Fraccascia, D.; König, E.; Irene, C.; Frattini, L.F.; Tomasi, M.; Fantappiè, L.; Ganfini, L.; Caproni, E.; Parri, M.; Grandi, A.; Grandi, G. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb. Cell Fact., 2017, 16(1), 68.
[http://dx.doi.org/10.1186/s12934-017-0681-1 ] [PMID: 28438207]
[171]
Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681), 464-471.
[http://dx.doi.org/10.1038/nature24644 ] [PMID: 29160308]
[172]
Eid, A.; Alshareef, S.; Mahfouz, M.M. CRISPR base editors: Genome editing without double-stranded breaks. Biochem. J., 2018, 475, pp. (11)1955-1964;
[173]
Yao, R.; Liu, D.; Jia, X.; Zheng, Y.; Liu, W.; Xiao, Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth. Syst. Biotechnol., 2018, 3(3), 135-149.
[http://dx.doi.org/10.1016/j.synbio.2018.09.004 ] [PMID: 30345399]
[174]
Tajkarimi, M.; Wexler, H.M. CRISPR-Cas systems in Bacteroides fragilis, an important pathobiont in the human gut microbiome. Front. Microbiol., 2017, 8, 2234.
[http://dx.doi.org/10.3389/fmicb.2017.02234 ] [PMID: 29218031]
[175]
Li, Q.; Chen, J.; Minton, N.P.; Zhang, Y.; Wen, Z.; Liu, J.; Yang, H.; Zeng, Z.; Ren, X.; Yang, J.; Gu, Y.; Jiang, W.; Jiang, Y.; Yang, S. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. J., 2016, 11(7), 961-972.
[http://dx.doi.org/10.1002/biot.201600053 ] [PMID: 27213844]
[176]
Donohoue, P.D.; Barrangou, R.; May, A.P. Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol., 2018, 36(2), 134-146.
[http://dx.doi.org/10.1016/j.tibtech.2017.07.007 ] [PMID: 28778606]
[177]
Durrer, K.E.; Allen, M.S.; Hunt von Herbing, I. Genetically engineered probiotic for the treatment of Phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One, 2017, 12(5)e0176286
[http://dx.doi.org/10.1371/journal.pone.0176286 ] [PMID: 28520731]
[178]
Liu, J-J.; Kong, I.I.; Zhang, G-C.; Jayakody, L.N.; Kim, H.; Xia, P-F.; Kwak, S.; Sung, B.H.; Sohn, J-H.; Walukiewicz, H.E.; Rao, C.V.; Jin, Y-S. Metabolic engineering of probiotic Saccharomyces boulardii. Appl. Environ. Microbiol., 2016, 82(8), 2280-2287.
[http://dx.doi.org/10.1128/AEM.00057-16 ] [PMID: 26850302]
[179]
Singh, B.; Mal, G.; Marotta, F. Designer probiotics: Paving the way to living therapeutics. Trends Biotechnol., 2017, 35(8), 679-682.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.001 ] [PMID: 28483159]
[180]
Fujimori, M. Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer, 2006, 13(1), 27-31.
[http://dx.doi.org/10.2325/jbcs.13.27 ] [PMID: 16518059]
[181]
Oh, J-H.; van Pijkeren, J-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res., 2014, 42(17)e131
[http://dx.doi.org/10.1093/nar/gku623 ] [PMID: 25074379]
[182]
Spinler, J.K.; Taweechotipatr, M.; Rognerud, C.L.; Ou, C.N.; Tumwasorn, S.; Versalovic, J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 2008, 14(3), 166-171.
[http://dx.doi.org/10.1016/j.anaerobe.2008.02.001 ] [PMID: 18396068]
[183]
Lin, Y.P.; Thibodeaux, C.H.; Peña, J.A.; Ferry, G.D.; Versalovic, J. Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm. Bowel Dis., 2008, 14(8), 1068-1083.
[http://dx.doi.org/10.1002/ibd.20448 ] [PMID: 18425802]
[184]
Selle, K.; Klaenhammer, T.R.; Barrangou, R. CRISPR-based screening of genomic island excision events in bacteria. Proc. Natl. Acad. Sci. USA, 2015, 112(26), 8076-8081.
[http://dx.doi.org/10.1073/pnas.1508525112 ] [PMID: 26080436]
[185]
van der Els, S.; James, J.K.; Kleerebezem, M.; Bron, P.A. Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Appl. Environ. Microbiol., 2018, 84(8), e02752-e17.
[http://dx.doi.org/10.1128/AEM.02752-17 ] [PMID: 29453254]
[186]
Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rohksar, D.; Lucas, S.; Huang, K.; Goodstein, D.M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J-H.; Díaz-Muñiz, I.; Dosti, B.; Smeianov, V.; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O’Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA, 2006, 103(42), 15611-15616.
[http://dx.doi.org/10.1073/pnas.0607117103 ] [PMID: 17030793]
[187]
Hidalgo-Cantabrana, C.; Goh, Y.J.; Pan, M.; Sanozky-Dawes, R.; Barrangou, R. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc. Natl. Acad. Sci. USA, 2019, 116(32), 15774-15783.
[http://dx.doi.org/10.1073/pnas.1905421116 ] [PMID: 31341082]
[188]
Song, X.; Huang, H.; Xiong, Z.; Ai, L.; Yang, S. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Appl. Environ. Microbiol., 2017, 83(22), e01259-e17.
[http://dx.doi.org/10.1128/AEM.01259-17 ] [PMID: 28864652]
[189]
Leenay, R.T.; Vento, J.M.; Shah, M.; Martino, M.E.; Leulier, F.; Beisel, C.L. Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods. Biotechnol. J., 2019, 14(3)e1700583
[http://dx.doi.org/10.1002/biot.201700583 ] [PMID: 30156038]
[190]
Ojala, T.; Kankainen, M.; Castro, J.; Cerca, N.; Edelman, S.; Westerlund-Wikström, B.; Paulin, L.; Holm, L.; Auvinen, P. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics, 2014, 15, 1070.
[http://dx.doi.org/10.1186/1471-2164-15-1070 ] [PMID: 25480015]
[191]
Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis., 2011, 52(10), 1212-1217.
[http://dx.doi.org/10.1093/cid/cir183 ] [PMID: 21498386]
[192]
Berlec, A.; Škrlec, K.; Kocjan, J.; Olenic, M.; Štrukelj, B. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci. Rep., 2018, 8(1), 1009.
[http://dx.doi.org/10.1038/s41598-018-19402-1 ] [PMID: 29343791]
[193]
Ni, R.; Zhou, J.; Hossain, N.; Chau, Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv. Drug Deliv. Rev., 2016, 106(A), 3-26.,
[194]
Karimi, M.; Mirshekari, H.; Moosavi Basri, S.M.; Bahrami, S.; Moghoofei, M.; Hamblin, M.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev., 2016, 106(A), 45-62.,
[http://dx.doi.org/10.1016/j.addr.2016.03.003]
[195]
Ly, M.; Jones, M.B.; Abeles, S.R.; Santiago-Rodriguez, T.M.; Gao, J.; Chan, I.C.; Ghose, C.; Pride, D.T. Transmission of viruses via our microbiomes. Microbiome, 2016, 4(1), 64.
[http://dx.doi.org/10.1186/s40168-016-0212-z ] [PMID: 27912785]
[196]
Elmer, J.J.; Christensen, M.D.; Rege, K. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J. Control. Release, 2013, 172(1), 246-257.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.025 ] [PMID: 23994344]
[197]
Huh, H.; Wong, S.; St Jean, J.; Slavcev, R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv. Drug Deliv. Rev., 2019, 145, 4-17.
[http://dx.doi.org/10.1016/j.addr.2019.01.003 ] [PMID: 30659855]
[198]
Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1, 27.
[http://dx.doi.org/10.4103/2277-9175.98152 ] [PMID: 23210086]
[199]
Kerry, R.G.; Malik, S.; Redda, Y.T.; Sahoo, S.; Patra, J.K.; Majhi, S. Nano-Based Approach to Combat Emerging Viral (NIPAH virus) infection. Nanomedicine (Lond.), 2019, 18, 196-220.
[http://dx.doi.org/10.1016/j.nano.2019.03.004 ] [PMID: 30904587]
[200]
Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond.), 2013, 9(4), 474-491.
[http://dx.doi.org/10.1016/j.nano.2012.11.010 ] [PMID: 23261500]
[201]
Labatut, A.E.; Mattheolabakis, G. Non-viral based miR delivery and recent developments. Eur. J. Pharm. Biopharm., 2018, 128, 82-90.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.018 ] [PMID: 29679644]
[202]
Youngblood, R.L.; Truong, N.F.; Segura, T.; Shea, L.D. It’s all in the delivery: Designing hydrogels for cell and non-viral gene therapies. Mol. Ther., 2018, 26(9), 2087-2106.
[http://dx.doi.org/10.1016/j.ymthe.2018.07.022 ] [PMID: 30107997]
[203]
Lee, C.H.; Ingrole, R.S.J.; Gill, H.S. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4)165405
[http://dx.doi.org/10.1016/j.bbadis.2019.01.031 ] [PMID: 30753882]
[204]
Mashal, M.; Attia, N.; Martínez-Navarrete, G.; Soto-Sánchez, C.; Fernández, E.; Grijalvo, S.; Eritja, R.; Puras, G.; Pedraz, J.L. Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. J. Control. Release, 2019, 304, 181-190.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.010 ] [PMID: 31071372]
[205]
Herma, R.; Wrobel, D.; Liegertová, M.; Müllerová, M.; Strašák, T.; Maly, M.; Semerádtová, A.; Štofik, M.; Appelhans, D.; Maly, J. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int. J. Pharm., 2019, 562, 51-65.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.018 ] [PMID: 30877030]
[206]
Singh, P.; Medronho, B.; Valente, A.J.M.; Miguel, M.G.; Lindman, B. Exploring the prebiotic effect of cyclodextrins on probiotic bacteria entrapped in carboxymetyl cellulose-chitosan particles. Colloids Surf. B Biointerfaces, 2018, 168, 156-162.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.014 ] [PMID: 29307721]
[207]
Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. L W. T, 2019, 110, 102-109.
[http://dx.doi.org/10.1016/j.lwt.2019.04.040]
[208]
Song, X.; Zhong, L.; Lyu, N.; Liu, F.; Li, B.; Hao, Y.; Xue, Y.; Li, J.; Feng, Y.; Ma, Y.; Hu, Y.; Zhu, B. Inulin can alleviate metabolism disorders in ob/ob mice by partially restoring leptin-related pathways mediated by gut microbiota. Genomics Proteomics Bioinform, 2019, 17(1), 64-75.
[http://dx.doi.org/10.1016/j.gpb.2019.03.001 ] [PMID: 31026583]
[209]
Sheridan, P.O.; Bindels, L.B.; Saulnier, D.M.; Reid, G.; Nova, E.; Holmgren, K.; O’Toole, P.W.; Bunn, J.; Delzenne, N.; Scott, K.P. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes, 2014, 5(1), 74-82.
[http://dx.doi.org/10.4161/gmic.27252 ] [PMID: 24637591]
[210]
Llewellyn, A.; Foey, A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients, 2017, 9(10)E1156
[http://dx.doi.org/10.3390/nu9101156 ] [PMID: 29065562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy