[2]
Washington PM, Villapol S. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Burns MPJEn 2016; 275: 381-8.
[18]
Baker DJ. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. Petersen RCJTJoci 2018; 128(4): 1208-6.
[20]
Zhao Y. Oxidative stress and the pathogenesis of Alzheimer's disease. Zhao BJOm, longevity c 2013.
[22]
Slivka A. Hydroxyl radical attack on dopamine. Cohen GJJoBC 1985; 260(29): 15466-72.
[23]
Rottlaender A. Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research. Kuerten SJIjoms 2015; 16(7): 14850-65.
[24]
Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases-a mechanistic approach. Carvalho FJTl 2014; 230(2): 85-103.
[25]
Dhillon VS. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Fenech MJMRRiMR 2014; 759: 1-3.
[26]
Chauhan NBJRn. Chronic neurodegenerative consequences of traumatic brain injury. 2014; 32(2): 337-65.
[27]
Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, et al. Traumatic spinal cord injury. 2017; 3(1): 1-21.
[29]
Schneider RC, Thompson JM. The syndrome of acute central cervical spinal cord injury. 1958; 21(3): 216.
[30]
Kriegstein A. The glial nature of embryonic and adult neural stem cells. Alvarez-Buylla AJAron 2009; 32: 149-84.
[32]
Zhang W, Wang Y, Kong J, Dong M, Duan H. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Chen SJSr 2017; 7(1): 1-8.
[33]
Wolpert D, Pearson K, Ghez C, Kandel EJTO. Principles of Neural Science. McGraw-Hill PoMteNY 2013; 475-97.
[35]
Chung W-S, Allen NJ. Astrocytes control synapse formation, function, and elimination. Eroglu CJCSHpib 2015; 7(9) a020370.
[39]
Fischbach MA, Bluestone JA. Cell-based therapeutics: The next pillar of medicine. Lim WAJStm 2013; 5(179): 179ps7-ps7.
[40]
Garzón I, Pérez-Köhler B, Garrido-Gómez J, Carriel V, Nieto-Aguilar R, Martín-Piedra MA, et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. 2012; 18(6): 408-19.
[43]
Kinzebach S, Bieback K. Mesenchymal stem cells - basics and clinical application I.Berlin, Heidelberg: Springer Berlin Heidelberg 2013; pp. 33-57.
[57]
Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115.
[111]
Kandalam S, Sindji L, Delcroix GJ-R, Violet F, Garric X, André EM, et al. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. 2017; 49: 167-80.
[113]
Rafieemehr H, Kheyrandish M. Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. 2015; 14(6): 596-604.
[115]
Popova N, Ilchibaeva T, Naumenko VJB. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. 2017; 82(3): 308-17.
[116]
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ. The non-survival effects of glial cell line-derived neurotrophic factor on neural cells. Velasco IJFimn 2017; 10: 258.
[117]
Ko KR, Lee J, Lee D, Nho B. Hepatocyte growth factor (HGF) promotes peripheral nerve regeneration by activating repair schwann cells. Kim SJSr 2018; 8(1): 1-14.
[120]
Niu H, Gou R, Xu Q. Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells. Duan DJNl 2017; 642: 71-6.
[124]
Chun SY, Soker S, Jang Y-J, Kwon TG. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. Yoo ESJJoKms 2016; 31(2): 171-7.
[126]
Ishii Y, Hamashima T, Yamamoto S. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Sasahara MJPi 2017; 67(5): 235-46.
[128]
Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M, Khalil W. In vitro non-viral murine pro-neurotrophin 3 gene transfer into rat bone marrow stromal cells. Taheri TJJotns 2017; 375: 137-45.
[129]
Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, et al. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. 2018; 72: 266-77.
[130]
Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Bartsch UJEer 2018; 176: 258-65.
[131]
Chirivella L, Kirstein M, Ferrón SR, Domingo Muelas A, Durupt FC, Acosta Umanzor C, et al. Cyclin dependent kinase 4 regulates adult neural stem cell proliferation and differentiation in response to insulin. 2017; 35(12): 2403-16.
[132]
Shi Y, Hu Y, Lv C. Tu GJAot. Effects of reactive oxygen species on differentiation of bone marrow mesenchymal stem cells 2016; 21: 695-700.
[133]
Maeda MA-SAM, Almzaien Aous K, Hamad Mohammed A, Hassan Ayman A, Shaker Hiba K, Yaseen Nahi Y. Induction of mesenchymal stem cells into neuronal cells via two formulas. Res J Biotechnol 2019; 14(I): 265-82.
[136]
Xu J, Lu H, Miao Z, Wu W, Jiang Y, Ge F, et al. Immunoregulatory effect of neuronal-like cells in inducting differentiation of bone marrow mesenchymal stem cells. 2016; 20(24): 5041-8.
[137]
Thompson R, Casali C. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Chan CJSr 2019; 9(1): 1-10.
[141]
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. Steiner BJJon 2018; 15(1): 162.
[142]
Zemel'Ko V, Kozhukharova I, Kovaleva Z, Domnina A, Pugovkina N, Fridlianskaia I, et al. BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. 2014; 56(3)(204): 11.
[146]
Tio M, Tan KH, Lee W, Wang TT. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. Udolph GJPo 2010; 5(2): e9398.
[153]
Qian D-X, Zhang H-T, Ma X, Jiang X-D. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. 2010; 35(4): 572-9.
[154]
Zarrinpour V, Hajebrahimi Z. Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition. Jafarinia MJIjobms 2017; 20(2): 178.
[155]
Wang Y, Huang Y-Y, Wang Y, Lyu P. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Hamblin MRJSr 2017; 7(1): 1-10.
[161]
Rosso MPdO. Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: A systematic review. Bioengineering (Basel) 2018; 5(2): 1-12.
[174]
Wang Y, Huang Y-Y, Wang Y, Lyu P. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Hamblin MRJBeBA-GS 2017; 1861(2): 441-9.
[177]
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Kaka GJLims 2012; 27(2): 423-30.
[179]
Mirhosseini M, Shiari R, Motlagh PE. Farivar SJJoLiMS. Cerebrospinal fluid and photobiomodulation effects on neural gene expression in dental pulp stem cells 2019; 10(Suppl. 1): S30.