Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Stem Cells: In Sickness and in Health

Author(s): Hisham F. Bahmad, Mohamad K. Elajami, Reem Daouk, Hiba Jalloul, Batoul Darwish, Reda M. Chalhoub, Sahar Assi, Farah Chamaa* and Wassim Abou-Kheir*

Volume 16, Issue 3, 2021

Published on: 31 August, 2020

Page: [262 - 276] Pages: 15

DOI: 10.2174/1574888X15999200831160710

Price: $65

conference banner
Abstract

Abstract: Stem cells are undifferentiated cells with the ability to proliferate and convert to different types of differentiated cells that make up the various tissues and organs in the body. They exist both in embryos as pluripotent stem cells that can differentiate into the three germ layers and as multipotent or unipotent stem cells in adult tissues to aid in repair and homeostasis. Perturbations in these cells’ normal functions can give rise to a wide variety of diseases. In this review, we discuss the origin of different stem cell types, their properties and characteristics, their role in tissue homeostasis, current research, and their potential applications in various life-threatening diseases. We focus on neural stem cells, their role in neurogenesis and how they can be exploited to treat diseases of the brain including neurodegenerative diseases and cancer. Next, we explore current research in Induced Pluripotent Stem Cells (iPSC) techniques and their clinical applications in regenerative and personalized medicine. Lastly, we tackle a special type of stem cells called Cancer Stem Cells (CSCs) and how they can be responsible for therapy resistance and tumor recurrence and explore ways to target them.

Keywords: Stem cells, differentiation, induced pluripotent stem cells, cancer stem cells, neurogenesis, regenerative medicine.

[1]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[2]
Ludwig TE, Kujak A, Rauti A, et al. 20 years of human pluripotent stem cell research: It all started with five lines. Cell Stem Cell 2018; 23(5): 644-8.
[http://dx.doi.org/10.1016/j.stem.2018.10.009] [PMID: 30388422]
[3]
Melton D. ‘Stemness’: Definitions, criteria, and standards. Essentials of Stem Cell Biology. (3rd ed.). Boston: Academic Press 2014; pp. 7-17.
[http://dx.doi.org/10.1016/B978-0-12-409503-8.00002-0]
[4]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[5]
Chen X, Ye S, Ying Q-L. Stem cell maintenance by manipulating signaling pathways: Past, current and future. BMB Rep 2015; 48(12): 668-76.
[http://dx.doi.org/10.5483/BMBRep.2015.48.12.215] [PMID: 26497581]
[6]
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78(12): 7634-8.
[http://dx.doi.org/10.1073/pnas.78.12.7634] [PMID: 6950406]
[7]
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the stem cell potency: The various methods of functional assessment and In silico diagnostics. Front Cell Dev Biol 2016; 4: 134.
[http://dx.doi.org/10.3389/fcell.2016.00134] [PMID: 27921030]
[8]
Latos PA, Hemberger M. From the stem of the placental tree: Trophoblast stem cells and their progeny. Development 2016; 143(20): 3650-60.
[http://dx.doi.org/10.1242/dev.133462] [PMID: 27802134]
[9]
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Chapter One - Adult stem cells for regenerative therapy. Progress in molecular biology and translational science 160. Academic Press 2018; pp. 1-22.
[10]
Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116(5): 639-48.
[http://dx.doi.org/10.1016/S0092-8674(04)00208-9] [PMID: 15006347]
[11]
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505(7483): 327-34.
[http://dx.doi.org/10.1038/nature12984] [PMID: 24429631]
[12]
Gonzales KAU, Fuchs E. Skin and its regenerative powers: An alliance between stem cells and their niche. Dev Cell 2017; 43(4): 387-401.
[http://dx.doi.org/10.1016/j.devcel.2017.10.001] [PMID: 29161590]
[13]
Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev 2013; 93(1): 23-67.
[http://dx.doi.org/10.1152/physrev.00043.2011] [PMID: 23303905]
[14]
Beumer J, Clevers H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 2016; 143(20): 3639-49.
[http://dx.doi.org/10.1242/dev.133132] [PMID: 27802133]
[15]
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, et al. Heterogeneity of adult cardiac stem cells. Stem Cells Heterogeneity in Different Organs. Cham: Springer International Publishing 2019; pp. 141-78.
[http://dx.doi.org/10.1007/978-3-030-24108-7_8]
[16]
Bergmann O, Spalding KL, Frisén J. Adult Neurogenesis in Humans Cold Spring Harb Perspect Biol 2015; 7(7): a018994-.
[http://dx.doi.org/10.1101/cshperspect.a018994]
[17]
van der Flier LG, Clevers H. Flier LGvd. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71(1): 241-60.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163145] [PMID: 18808327]
[18]
Nurzynska D, Di Meglio F, Romano V, et al. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: Genetic and phenotypic study. Basic Res Cardiol 2013; 108(1): 320.
[http://dx.doi.org/10.1007/s00395-012-0320-2] [PMID: 23224139]
[19]
Nassar D, Blanpain C. Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol 2016; 11: 47-76.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450]
[20]
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance Drug resistance updates: Reviews and commentaries in antimicrobial and anticancer chemotherapy 2016; 28: 1-12.
[21]
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer stem cells in neuroblastoma: Expanding the therapeutic frontier. Front Mol Neurosci 2019; 12: 131.
[http://dx.doi.org/10.3389/fnmol.2019.00131] [PMID: 31191243]
[22]
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39(1): 127-48.
[http://dx.doi.org/10.1007/s10555-019-09840-2] [PMID: 31919619]
[23]
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: Molecular signatures and therapeutic targets. J Clin Pathol 2020; 73(5)
[http://dx.doi.org/10.1136/jclinpath-2019-206246]
[24]
Malaeb W, Bahmad HF, Abou-Kheir W, Mhanna R. The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomater Sci 2019; 7(10): 4283-98.
[http://dx.doi.org/10.1039/C9BM00964G] [PMID: 31407727]
[25]
Bahmad HF, Mouhieddine TH, Chalhoub RM, et al. The Akt/mTOR pathway in cancer stem/progenitor cells is a potential therapeutic target for glioblastoma and neuroblastoma. Oncotarget 2018; 9(71): 33549-61.
[http://dx.doi.org/10.18632/oncotarget.26088] [PMID: 30323898]
[26]
Mouhieddine TH, Nokkari A, Itani MM, et al. Metformin and Ara-a effectively suppress brain cancer by targeting cancer stem/progenitor cells. Front Neurosci 2015; 9: 442.
[http://dx.doi.org/10.3389/fnins.2015.00442] [PMID: 26635517]
[27]
Daouk R, Hassane M, Bahmad HF, et al. Genome-wide and phenotypic evaluation of stem cell progenitors derived from Gprc5a-deficient murine lung adenocarcinoma with somatic Kras mutations. Front Oncol 2019; 9: 207.
[http://dx.doi.org/10.3389/fonc.2019.00207] [PMID: 31001473]
[28]
Bahmad HF, Samman H, Monzer A, et al. The synthetic retinoid ST1926 attenuates prostate cancer growth and potentially targets prostate cancer stem-like cells. Mol Carcinog 2019; 58(7): 1208-20.
[http://dx.doi.org/10.1002/mc.23004] [PMID: 30883933]
[29]
Bahmad HF, Cheaito K, Chalhoub RM, et al. Sphere-formation assay: Three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol 2018; 8: 347.
[http://dx.doi.org/10.3389/fonc.2018.00347] [PMID: 30211124]
[30]
Tsai YC, Chen WY, Abou-Kheir W, et al. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis 2018; 1864(5 Pt A): 1717-27.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.016] [PMID: 29477409]
[31]
Daoud G, Monzer A, Bahmad H, et al. Primary versus castration-resistant prostate cancer: Modeling through novel murine prostate cancer cell lines. Oncotarget 2016; 7(20): 28961-75.
[http://dx.doi.org/10.18632/oncotarget.8436] [PMID: 27036046]
[32]
Bodgi L, Bahmad HF, Araji T, et al. Assessing radiosensitivity of bladder cancer in vitro: A 2D vs. 3D approach. Front Oncol 2019; 9: 153.
[http://dx.doi.org/10.3389/fonc.2019.00153] [PMID: 30941305]
[33]
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective American journal of medical genetics Part B, Neuropsychiatric genetics: The official publication of the International Society of Psychiatric Genetics 2017; 174(1): 93-112.
[http://dx.doi.org/10.1002/ajmg.b.32429]
[34]
Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI. Neural stem cells: Therapeutic potential for neurodegenerative diseases. Br Med Bull 2012; 104: 7-19.
[http://dx.doi.org/10.1093/bmb/lds024] [PMID: 22988303]
[35]
Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Curr Opin Neurobiol 2018; 48: 131-8.
[http://dx.doi.org/10.1016/j.conb.2017.12.005] [PMID: 29287246]
[36]
Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011; 306(18): 2001-10.
[http://dx.doi.org/10.1001/jama.2011.1638] [PMID: 22068992]
[37]
Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: A novel theory of depression. Mol Psychiatry 2000; 5(3): 262-9.
[http://dx.doi.org/10.1038/sj.mp.4000712] [PMID: 10889528]
[38]
Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301(5634): 805-9.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[39]
Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 2007; 8(5): 368-78.
[http://dx.doi.org/10.1038/nrn2124] [PMID: 17453017]
[40]
Ranganathan S, Scudiere S, Bowser R. Hyperphosphorylation of the retinoblastoma gene product and altered subcellular distribution of E2F-1 during Alzheimer’s disease and amyotrophic lateral sclerosis. J Alzheimers Dis 2001; 3(4): 377-85.
[http://dx.doi.org/10.3233/JAD-2001-3403] [PMID: 12214040]
[41]
Burns KA, Ayoub AE, Breunig JJ, Adhami F, Weng WL, Colbert MC, et al. Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cerebral cortex (New York, NY : 1991) 2007; 17: pp. (11)2585-92.
[http://dx.doi.org/10.1093/cercor/bhl164]
[42]
Höglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 2007; 104(9): 3585-90.
[http://dx.doi.org/10.1073/pnas.0611671104] [PMID: 17360686]
[43]
Nguyen MD, Boudreau M, Kriz J, Couillard-Després S, Kaplan DR, Julien JP. Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 2003; 23(6): 2131-40.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02131.2003] [PMID: 12657672]
[44]
Ranganathan S, Bowser R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol 2003; 162(3): 823-35.
[http://dx.doi.org/10.1016/S0002-9440(10)63879-5] [PMID: 12598317]
[45]
Frade JM, Ovejero-Benito MC. Neuronal cell cycle: The neuron itself and its circumstances. Cell Cycle 2015; 14(5): 712-20.
[http://dx.doi.org/10.1080/15384101.2015.1004937] [PMID: 25590687]
[46]
Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153(6): 1219-27.
[http://dx.doi.org/10.1016/j.cell.2013.05.002] [PMID: 23746839]
[47]
Chamaa F, Bitar L, Darwish B, Saade NE, Abou-Kheir W. Intracerebroventricular injections of endotoxin (ET) reduces hippocampal neurogenesis. J Neuroimmunol 2018; 315: 58-67.
[http://dx.doi.org/10.1016/j.jneuroim.2017.12.013] [PMID: 29306407]
[48]
Darwish B, Chamaa F, Al-Chaer ED, Saadé NE, Abou-Kheir W. Intranigral injection of endotoxin suppresses proliferation of hippocampal progenitor cells. Front Neurosci 2019; 13: 687.
[http://dx.doi.org/10.3389/fnins.2019.00687] [PMID: 31333405]
[49]
Ghazale H, Ramadan N, Mantash S, et al. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav Brain Res 2018; 340: 1-13.
[http://dx.doi.org/10.1016/j.bbr.2017.11.007] [PMID: 29126932]
[50]
Kuhn HG, Toda T, Gage FH. Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38(49): 10401-10.
[http://dx.doi.org/10.1523/JNEUROSCI.2144-18.2018] [PMID: 30381404]
[51]
Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: Five Decades Later. Cell Stem Cell 2015; 17(4): 385-95.
[http://dx.doi.org/10.1016/j.stem.2015.09.003] [PMID: 26431181]
[52]
Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8.
[http://dx.doi.org/10.1126/science.287.5457.1433] [PMID: 10688783]
[53]
Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132(4): 645-60.
[http://dx.doi.org/10.1016/j.cell.2008.01.033] [PMID: 18295581]
[54]
Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417(6884): 39-44.
[http://dx.doi.org/10.1038/417039a] [PMID: 11986659]
[55]
Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004; 27(8): 447-52.
[http://dx.doi.org/10.1016/j.tins.2004.05.013] [PMID: 15271491]
[56]
Förster E, Tielsch A, Saum B, et al. Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 2002; 99(20): 13178-83.
[http://dx.doi.org/10.1073/pnas.202035899] [PMID: 12244214]
[57]
Zhang J, Jiao J. Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. BioMed Res Int 2015; 2015: 727542.
[http://dx.doi.org/10.1155/2015/727542] [PMID: 26421301]
[58]
Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 2006; 26(1): 3-11.
[http://dx.doi.org/10.1523/JNEUROSCI.3648-05.2006] [PMID: 16399667]
[59]
Toni N, Laplagne DA, Zhao C, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 2008; 11(8): 901-7.
[http://dx.doi.org/10.1038/nn.2156] [PMID: 18622400]
[60]
Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 2009; 25: 253-75.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113256] [PMID: 19575663]
[61]
Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[62]
Mira H, Andreu Z, Suh H, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010; 7(1): 78-89.
[http://dx.doi.org/10.1016/j.stem.2010.04.016] [PMID: 20621052]
[63]
Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W. Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 2011; 29(6): 907-12.
[http://dx.doi.org/10.1002/stem.644] [PMID: 21557389]
[64]
Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2013; 75: 339-63.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183731] [PMID: 23190074]
[65]
Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97(6): 703-16.
[http://dx.doi.org/10.1016/S0092-8674(00)80783-7] [PMID: 10380923]
[66]
Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell 2014; 156(5): 1072-83.
[http://dx.doi.org/10.1016/j.cell.2014.01.044] [PMID: 24561062]
[67]
Chamaa F, Bahmad HF, Makkawi A-K, et al. Nitrous oxide induces prominent cell proliferation in adult rat hippocampal dentate gyrus. Front Cell Neurosci 2018; 12: 135.
[http://dx.doi.org/10.3389/fncel.2018.00135] [PMID: 29867368]
[68]
Chamaa F, Sweidan W, Nahas Z, Saade N, Abou-Kheir W. Thalamic stimulation in awake rats induces neurogenesis in the hippocampal formation. Brain Stimul 2016; 9(1): 101-8.
[http://dx.doi.org/10.1016/j.brs.2015.09.006] [PMID: 26460201]
[69]
Trinchero MF, Herrero M, Schinder AF. Rejuvenating the brain with chronic exercise through adult neurogenesis. Front Neurosci 2019; 13(1000): 1000.
[http://dx.doi.org/10.3389/fnins.2019.01000] [PMID: 31619959]
[70]
Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 2006; 27(10): 1505-13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.016] [PMID: 16271278]
[71]
Marlatt MW, Potter MC, Lucassen PJ, van Praag H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 2012; 72(6): 943-52.
[http://dx.doi.org/10.1002/dneu.22009] [PMID: 22252978]
[72]
Chae CH, Jung SL, An SH, et al. Swimming exercise stimulates neuro-genesis in the subventricular zone via increase in synapsin I and nerve growth factor levels. Biol Sport 2014; 31(4): 309-14.
[http://dx.doi.org/10.5604/20831862.1132130] [PMID: 25609889]
[73]
Leiter O, Seidemann S, Overall RW, et al. Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Reports 2019; 12(4): 667-79.
[http://dx.doi.org/10.1016/j.stemcr.2019.02.009] [PMID: 30905740]
[74]
El Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci 2019; 39(13): 2369-82.
[http://dx.doi.org/10.1523/JNEUROSCI.1661-18.2019] [PMID: 30692222]
[75]
Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A, et al. L-lactate promotes adult hippocampal neurogenesis. Front Neurosci 2019; 13: 403.
[http://dx.doi.org/10.3389/fnins.2019.00403] [PMID: 31178678]
[76]
Eriksdotter Jönhagen M, Nordberg A, Amberla K, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 1998; 9(5): 246-57.
[http://dx.doi.org/10.1159/000017069] [PMID: 9701676]
[77]
Isaacson LG, Saffran BN, Crutcher KA. Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol Aging 1990; 11(1): 51-5.
[http://dx.doi.org/10.1016/0197-4580(90)90062-5] [PMID: 2183082]
[78]
Williams LR. Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 1991; 113(1): 31-7.
[http://dx.doi.org/10.1016/0014-4886(91)90143-Z] [PMID: 2044677]
[79]
Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 2018; 7: 4.
[http://dx.doi.org/10.1186/s40035-018-0109-9] [PMID: 29484176]
[80]
Poulose SM, Miller MG, Scott T, Shukitt-Hale B. Nutritional factors affecting adult neurogenesis and cognitive function. Adv Nutr 2017; 8(6): 804-11.
[http://dx.doi.org/10.3945/an.117.016261] [PMID: 29141966]
[81]
Conboy L, Foley AG, O’Boyle NM, et al. Curcumin-induced degradation of PKC delta is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats. Biochem Pharmacol 2009; 77(7): 1254-65.
[http://dx.doi.org/10.1016/j.bcp.2008.12.011] [PMID: 19161989]
[82]
Matsuoka Y. Clearance of fear memory from the hippocampus through neurogenesis by omega-3 fatty acids: A novel preventive strategy for posttraumatic stress disorder? Biopsychosoc Med 2011; 5: 3.
[http://dx.doi.org/10.1186/1751-0759-5-3] [PMID: 21303552]
[83]
Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: Mind the gap. Neural Plast 2014; 2014: 563160.
[http://dx.doi.org/10.1155/2014/563160] [PMID: 24900924]
[84]
Valente T, Hidalgo J, Bolea I, et al. A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J Alzheimers Dis 2009; 18(4): 849-65.
[http://dx.doi.org/10.3233/JAD-2009-1188] [PMID: 19661617]
[85]
Zhao YN, Li WF, Li F, et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun 2013; 435(4): 597-602.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.025] [PMID: 23685142]
[86]
Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19(18): 8114-21.
[http://dx.doi.org/10.1523/JNEUROSCI.19-18-08114.1999] [PMID: 10479711]
[87]
Hou Y, Aboukhatwa MA, Lei D-L, Manaye K, Khan I, Luo Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 2010; 58(6): 911-20.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.002] [PMID: 19917299]
[88]
Segi-Nishida E. The effect of serotonin-targeting antidepressants on neurogenesis and neuronal maturation of the hippocampus mediated via 5-HT1A and 5-HT4 receptors. Front Cell Neurosci 2017; 11: 142.
[http://dx.doi.org/10.3389/fncel.2017.00142] [PMID: 28559799]
[89]
Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143: 181-93.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.002] [PMID: 30236533]
[90]
Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology 2009; 34(11): 2376-89.
[http://dx.doi.org/10.1038/npp.2009.75]
[91]
Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 2008; 28(6): 1374-84.
[http://dx.doi.org/10.1523/JNEUROSCI.3632-07.2008] [PMID: 18256257]
[92]
Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 2006; 103(21): 8233-8.
[http://dx.doi.org/10.1073/pnas.0601992103] [PMID: 16702546]
[93]
Potts MB, Lim DA. An old drug for new ideas: Metformin promotes adult neurogenesis and spatial memory formation. Cell Stem Cell 2012; 11(1): 5-6.
[http://dx.doi.org/10.1016/j.stem.2012.06.003] [PMID: 22770236]
[94]
Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302(5651): 1760-5.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[95]
Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 2003; 100(23): 13632-7.
[http://dx.doi.org/10.1073/pnas.2234031100] [PMID: 14581618]
[96]
Šišková Z, Tremblay ME. Microglia and synapse: Interactions in health and neurodegeneration. Neural Plast 2013; 2013: 425845.
[http://dx.doi.org/10.1155/2013/425845] [PMID: 24392228]
[97]
Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: Actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36(4): 209-17.
[http://dx.doi.org/10.1016/j.tins.2012.11.007] [PMID: 23260014]
[98]
Stone SS, Teixeira CM, Devito LM, et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011; 31(38): 13469-84.
[http://dx.doi.org/10.1523/JNEUROSCI.3100-11.2011] [PMID: 21940440]
[99]
Zhen J, Qian Y, Fu J, et al. Deep brain magnetic stimulation promotes neurogenesis and restores cholinergic activity in a transgenic mouse model of Alzheimer’s disease. Front Neural Circuits 2017; 11: 48.
[http://dx.doi.org/10.3389/fncir.2017.00048] [PMID: 28713248]
[100]
Lv Q, Du A, Wei W, Li Y, Liu G, Wang XP. Deep brain stimulation: A potential treatment for dementia in Alzheimer’s disease (AD) and Parkinson’s disease dementia (PDD). Front Neurosci 2018; 12(360): 360.
[http://dx.doi.org/10.3389/fnins.2018.00360] [PMID: 29896085]
[101]
Liu A, Jain N, Vyas A, Lim LW. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. eLife 2015; 4: 4.
[http://dx.doi.org/10.7554/eLife.04803] [PMID: 25768425]
[102]
Temel Y, Visser-Vandewalle V. Surgery in Tourette syndrome. Mov Disord 2004; 19(1): 3-14.
[http://dx.doi.org/10.1002/mds.10649] [PMID: 14743354]
[103]
Mallet L, Mesnage V, Houeto JL, et al. Compulsions, Parkinson’s disease, and stimulation. Lancet 2002; 360(9342): 1302-4.
[http://dx.doi.org/10.1016/S0140-6736(02)11339-0] [PMID: 12414208]
[104]
Kuhn J, Gründler TO, Lenartz D, Sturm V, Klosterkötter J, Huff W. Deep brain stimulation for psychiatric disorders. Dtsch Arztebl Int 2010; 107(7): 105-13.
[PMID: 20221269]
[105]
Kempermann G, Gage FH, Aigner L, et al. Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell 2018; 23(1): 25-30.
[http://dx.doi.org/10.1016/j.stem.2018.04.004] [PMID: 29681514]
[106]
Scharfman HE, Hen R. Neuroscience. Is more neurogenesis always better? Science 2007; 315(5810): 336-8.
[http://dx.doi.org/10.1126/science.1138711] [PMID: 17234934]
[107]
Pechnick RN, Chesnokova V. Adult neurogenesis, cell cycle and drug discovery in psychiatry Neuropsychopharmacology : Official publication of the American College of Neuropsychopharmacology 2009; 34(1): 244.
[http://dx.doi.org/10.1038/npp.2008.164]
[108]
Yao B, Christian KM, He C, Jin P, Ming GL, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016; 17(9): 537-49.
[http://dx.doi.org/10.1038/nrn.2016.70] [PMID: 27334043]
[109]
Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986; 321(6067): 209-13.
[http://dx.doi.org/10.1038/321209a0] [PMID: 2423876]
[110]
Guo JU, Ma DK, Mo H, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 2011; 14(10): 1345-51.
[http://dx.doi.org/10.1038/nn.2900] [PMID: 21874013]
[111]
Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009; 323(5917): 1074-7.
[http://dx.doi.org/10.1126/science.1166859] [PMID: 19119186]
[112]
Merson TD, Dixon MP, Collin C, et al. The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 2006; 26(44): 11359-70.
[http://dx.doi.org/10.1523/JNEUROSCI.2247-06.2006] [PMID: 17079664]
[113]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[114]
Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010; 143(4): 508-25.
[http://dx.doi.org/10.1016/j.cell.2010.10.008] [PMID: 21074044]
[115]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[116]
Papaetrou EP. Author Correction: Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 2019; 25(5): 861.
[http://dx.doi.org/10.1038/s41591-019-0435-1] [PMID: 30944418]
[117]
Chun YS, Byun K, Lee B. Induced pluripotent stem cells and personalized medicine: Current progress and future perspectives. Anat Cell Biol 2011; 44(4): 245-55.
[http://dx.doi.org/10.5115/acb.2011.44.4.245] [PMID: 22254153]
[118]
Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012; 10(6): 678-84.
[http://dx.doi.org/10.1016/j.stem.2012.05.005] [PMID: 22704507]
[119]
Bahmad H, Hadadeh O, Chamaa F, et al. Modeling human neurological and neurodegenerative diseases: From induced pluripotent stem cells to neuronal differentiation and its applications in neurotrauma. Front Mol Neurosci 2017; 10: 50.
[http://dx.doi.org/10.3389/fnmol.2017.00050] [PMID: 28293168]
[120]
Byers B, Lee HL, Reijo Pera R. Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012; 12(3): 237-42.
[http://dx.doi.org/10.1007/s11910-012-0270-y] [PMID: 22538490]
[121]
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73: 13-31.
[http://dx.doi.org/10.1016/j.mcn.2015.11.010] [PMID: 26657644]
[122]
Fujiwara N, Shimizu J, Takai K, Arimitsu N, Saito A, Kono T, et al. Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells Neuroscience letters 2013; 557(Pt B): 129-34.
[http://dx.doi.org/10.1016/j.neulet.2013.10.043]
[123]
Marin Navarro A, Day K, Kogner P, Wilhelm M, Falk A. Generation of induced pluripotent stem cell lines from two Neuroblastoma patients carrying a germline ALK R1275Q mutation. Stem Cell Res (Amst) 2019; 34: 101356.
[http://dx.doi.org/10.1016/j.scr.2018.11.017] [PMID: 30605844]
[124]
Pan XY, Tsai MH, Wuputra K, et al. Application of cancer cell reprogramming technology to human cancer research. Anticancer Res 2017; 37(7): 3367-77.
[http://dx.doi.org/10.21873/anticanres.11703] [PMID: 28668824]
[125]
Kim JJ. Applications of iPSCs in Cancer Research. Biomark Insights 2015; 10(Suppl. 1): 125-31.
[PMID: 26279620]
[126]
Miyoshi N, Ishii H, Nagai K, et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA 2010; 107(1): 40-5.
[http://dx.doi.org/10.1073/pnas.0912407107] [PMID: 20018687]
[127]
Kahounová Z, Slabáková E, Binó L, et al. Generation of human iPSCs from human prostate cancer-associated fibroblasts IBPi002-A. Stem Cell Res (Amst) 2018; 33: 255-9.
[http://dx.doi.org/10.1016/j.scr.2018.11.006] [PMID: 30481741]
[128]
Griscelli F, Oudrhiri N, Feraud O, et al. Generation of induced pluripotent stem cell (iPSC) line from a patient with triple negative breast cancer with hereditary exon 17 deletion of BRCA1 gene. Stem Cell Res (Amst) 2017; 24: 135-8.
[http://dx.doi.org/10.1016/j.scr.2017.09.003] [PMID: 29034880]
[129]
Shi Y. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies. Curr Mol Pharmacol 2009; 2(1): 15-8.
[http://dx.doi.org/10.2174/1874467210902010015] [PMID: 20021441]
[130]
Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008; 2(3): 230-40.
[http://dx.doi.org/10.1016/j.stem.2008.02.001] [PMID: 18371448]
[131]
Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev Rep 2019.
[132]
Kazuki Y, Hiratsuka M, Takiguchi M, et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 2010; 18(2): 386-93.
[http://dx.doi.org/10.1038/mt.2009.274] [PMID: 19997091]
[133]
Mauritz C, Martens A, Rojas SV, et al. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 2011; 32(21): 2634-41.
[http://dx.doi.org/10.1093/eurheartj/ehr166] [PMID: 21596799]
[134]
Mandai M, Kurimoto Y, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 2017; 377(8): 792-3.
[http://dx.doi.org/10.1056/NEJMc1706274] [PMID: 28834478]
[135]
Takahashi J. Strategies for bringing stem cell-derived dopamine neurons to the clinic: The Kyoto trial. Prog Brain Res 2017; 230: 213-26.
[http://dx.doi.org/10.1016/bs.pbr.2016.11.004] [PMID: 28552230]
[136]
Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015; 17(1): 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[137]
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov 2017; 16(2): 115-30.
[http://dx.doi.org/10.1038/nrd.2016.245] [PMID: 27980341]
[138]
Burkhardt MF, Martinez FJ, Wright S, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2013; 56: 355-64.
[http://dx.doi.org/10.1016/j.mcn.2013.07.007] [PMID: 23891805]
[139]
Höing S, Rudhard Y, Reinhardt P, et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell 2012; 11(5): 620-32.
[http://dx.doi.org/10.1016/j.stem.2012.07.005] [PMID: 23064101]
[140]
Xu X, Lei Y, Luo J, et al. Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res (Amst) 2013; 10(2): 213-27.
[http://dx.doi.org/10.1016/j.scr.2012.11.005] [PMID: 23305945]
[141]
Yamanaka S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 2010; 7(1): 1-2.
[http://dx.doi.org/10.1016/j.stem.2010.06.009] [PMID: 20621038]
[142]
Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 2004; 51(1): 1-28.
[http://dx.doi.org/10.1016/j.critrevonc.2004.04.007] [PMID: 15207251]
[143]
Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8(7): 545-54.
[http://dx.doi.org/10.1038/nrc2419] [PMID: 18511937]
[144]
Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: A new understanding of tumor development and treatment. Expert Opin Ther Targets 2010; 14(6): 621-32.
[http://dx.doi.org/10.1517/14712598.2010.485186] [PMID: 20426697]
[145]
Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 1847.
[146]
Cooper M. Regenerative pathologies: Stem cells, teratomas and theories of cancer. Med Stud 2008; 1(1): 55.
[http://dx.doi.org/10.1007/s12376-008-0002-4]
[147]
Maehle A-H. Ambiguous cells: The emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 2011; 65(4): 359-78.
[http://dx.doi.org/10.1098/rsnr.2011.0023] [PMID: 22332468]
[148]
Moore MA, Williams N, Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst 1973; 50(3): 603-23.
[http://dx.doi.org/10.1093/jnci/50.3.603] [PMID: 4513522]
[149]
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-8.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[150]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[151]
Huntly BJP, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5(4): 311-21.
[http://dx.doi.org/10.1038/nrc1592] [PMID: 15803157]
[152]
Dawood S, Austin L, Cristofanilli M. Cancer stem cells: Implications for cancer therapy. Oncology (Williston Park) 2014; 28(12): 1101-1107, 1110.
[PMID: 25510809]
[153]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[154]
Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
[http://dx.doi.org/10.1038/nature03128] [PMID: 15549107]
[155]
Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8.
[PMID: 14522905]
[156]
Dalerba P, Dylla SJ, Park I-K, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104(24): 10158-63.
[http://dx.doi.org/10.1073/pnas.0703478104] [PMID: 17548814]
[157]
Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15(3): 504-14.
[http://dx.doi.org/10.1038/sj.cdd.4402283] [PMID: 18049477]
[158]
Ma S, Chan K-W, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132(7): 2542-56.
[http://dx.doi.org/10.1053/j.gastro.2007.04.025] [PMID: 17570225]
[159]
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1(3): 313-23.
[http://dx.doi.org/10.1016/j.stem.2007.06.002] [PMID: 18371365]
[160]
Buhagiar A, Ayers D. Chemoresistance, cancer stem cells, and miRNA influences: The case for neuroblastoma. Anal Cell Pathol (Amst) 2015; 2015: 150634.
[http://dx.doi.org/10.1155/2015/150634] [PMID: 26258008]
[161]
Kim Y, Lin Q, Zelterman D, Yun Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res 2009; 69(24): 9271-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1605] [PMID: 19934310]
[162]
Holmquist-Mengelbier L, Fredlund E, Löfstedt T, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006; 10(5): 413-23.
[http://dx.doi.org/10.1016/j.ccr.2006.08.026] [PMID: 17097563]
[163]
Hsu DM, Agarwal S, Benham A, et al. G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy-resistant or relapsed tumors and are highly tumorigenic. Cancer Res 2013; 73(13): 4134-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4056] [PMID: 23687340]
[164]
Siapati EK, Rouka E, Kyriakou D, Vassilopoulos G. Neuroblastoma cells negative for CD44 possess tumor-initiating properties. Cell Oncol (Dordr) 2011; 34(3): 189-97.
[http://dx.doi.org/10.1007/s13402-011-0022-z] [PMID: 21424816]
[165]
Flahaut M, Jauquier N, Chevalier N, et al. Aldehyde dehydrogenase activity plays a Key role in the aggressive phenotype of neuroblastoma. BMC Cancer 2016; 16(1): 781.
[http://dx.doi.org/10.1186/s12885-016-2820-1] [PMID: 27724856]
[166]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[167]
Abdullah LN, Chow EK-H. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2(1): 3.
[http://dx.doi.org/10.1186/2001-1326-2-3] [PMID: 23369605]
[168]
Yang Z, Li C, Fan Z, et al. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur Urol 2017; 71(1): 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[169]
Li Y, Lin K, Yang Z, et al. Bladder cancer stem cells: Clonal origin and therapeutic perspectives. Oncotarget 2017; 8(39): 66668-79.
[http://dx.doi.org/10.18632/oncotarget.19112] [PMID: 29029546]
[170]
Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise review: Prostate cancer stem cells: Current understanding. Stem Cells 2018; 36(10): 1457-74.
[http://dx.doi.org/10.1002/stem.2859] [PMID: 29845679]
[171]
Qin J, Liu X, Laffin B, et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 2012; 10(5): 556-69.
[http://dx.doi.org/10.1016/j.stem.2012.03.009] [PMID: 22560078]
[172]
Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 2016; 95(1)(Suppl. 1): S20-5.
[http://dx.doi.org/10.1097/MD.0000000000004766] [PMID: 27611935]
[173]
Bao L, Cardiff RD, Steinbach P, Messer KS, Ellies LG. Multipotent luminal mammary cancer stem cells model tumor heterogeneity. Breast Cancer Res 2015; 17(1): 137.
[http://dx.doi.org/10.1186/s13058-015-0615-y] [PMID: 26467658]
[174]
Sharifi N, Kawasaki BT, Hurt EM, Farrar WL. Stem cells in prostate cancer: Resolving the castrate-resistant conundrum and implications for hormonal therapy. Cancer Biol Ther 2006; 5(8): 901-6.
[http://dx.doi.org/10.4161/cbt.5.8.2949] [PMID: 16855379]
[175]
El-Merahbi R, Liu YN, Eid A, et al. Berberis libanotica Ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS One 2014; 9(11): e112453.
[http://dx.doi.org/10.1371/journal.pone.0112453] [PMID: 25380390]
[176]
Ocasio JK, Bates RDP, Rapp CD, Gershon TR. GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma. Development 2019; 146(20): dev177550.
[http://dx.doi.org/10.1242/dev.177550] [PMID: 31540917]
[177]
Zhou A, Lin K, Zhang S, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 2016; 18(9): 954-66.
[http://dx.doi.org/10.1038/ncb3396] [PMID: 27501329]
[178]
Mertens J, Marchetto MC, Bardy C, Gage FH. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 2016; 17(7): 424-37.
[http://dx.doi.org/10.1038/nrn.2016.46] [PMID: 27194476]
[179]
Falkner S, Grade S, Dimou L, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 2016; 539(7628): 248-53.
[http://dx.doi.org/10.1038/nature20113] [PMID: 27783592]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy