Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Thiosemicarbazides: Updates on Antivirals Strategy

Author(s): Alok Kumar Moharana, Rudra Narayan Dash and Bharat Bhusan Subudhi*

Volume 20, Issue 20, 2020

Page: [2135 - 2152] Pages: 18

DOI: 10.2174/1389557520666200818212408

Price: $65

conference banner
Abstract

The challenges of viral infection have increased in recent decades due to the emergence of resistance, cross-resistance and drying up of antiviral drug discovery. Many neglected tropical viruses including the chikungunya virus, dengue virus & Japanese encephalitis virus have gradually become global pathogens. This has further increased the burden of viral infection which necessitates the continuous development of antiviral therapy. The antiviral chemistry began with the development of thiosemicarbazide derived thiosemicarbazones as antiviral. Although very few thiosemicarbazides have progressed into clinical application, it still inspires antiviral development. During last 3 decades (1990- 2020), several efforts have been made to develop suitable antiviral by using thiosemicarbazide scaffold. Its hybridization with other pharmacophores has been used as a strategy to enhance safety and efficacy. Cyclization and substitution of thiosemicarbazides have also been used to develop potent antiviral. With the ability to form coordinate bonds, thiosemicarbazides have been used either as metal complex or chelator against viruses. This work is an attempt to systematically review the research on the use of thiosemicarbazides as an antiviral scaffold. It also reviews the structure-activity relationship and translational suitability of thiosemicarbazide derived compounds.

Keywords: Thiosemicarbazide, thiosemicarbazone, virus, antiviral, chikungunya virus, SAR, viral infection.

Graphical Abstract
[1]
Pfau, C.J. The thiosemicarbazones. Chemotherapy of Viral Infections; Springer: Berlin, Heidelberg, 1982, pp. 147-204.
[http://dx.doi.org/10.1007/978-3-642-68487-6_5]
[2]
Bauer, D.J. Clinical experience with the antiviral drug marboran (1-methylisatin 3-thiosemicarbazone). Ann. N. Y. Acad. Sci., 1965, 130(1), 110-117.
[http://dx.doi.org/10.1111/j.1749-6632.1965.tb12545.x PMID: 5323377]
[3]
Singhal, S.; Arora, S.; Agarwal, S.; Sharma, R.; Singhal, N. A review on potential biological activities of thiosemicarbazides. World J. Pharm. Pharm. Sci., 2013, 2, 4661-4681.
[4]
Siddiqui, E.J.; Azad, I.; Khan, A.R.; Khan, T. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. J. Drug Deliv. Ther., 2019, 9(3), 689-703.
[5]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0 PMID: 11259830]
[6]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[7]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9 PMID: 14554012]
[8]
Vojinovic-Jesic, L.S.; Leovac, V.M.; Lalovic, M.M.; Cesljevic, V.I.; Jovanovic, L.S.; Rodic, M.V.; Divjakovic, V. Transition metal complexes with thiosemicarbazide-based ligands, Part 58. Synthesis, spectral and structural characterization of dioxovanadium (V) complexes with salicylaldehyde thiosemicarbazone. J. Serb. Chem. Soc., 2011, 76(6), 865-877.
[http://dx.doi.org/10.2298/JSC101217078V]
[9]
Shim, J.; Jyothi, N.R.; Farook, N.M. Biological applications of thiosemicarbazones and their metal complexes. Asian J. Chem., 2013, 25(10), 5838.
[http://dx.doi.org/10.14233/ajchem.2013.OH105]
[10]
Hamre, D.; Bernstein, J.; Donovick, R. Activity of p-aminobenzaldehyde, 3-thiosemicarbazone on vaccinia virus in the chick embryo and in the mouse. Proc. Soc. Exp. Biol. Med., 1950, 73(2), 275-278.
[http://dx.doi.org/10.3181/00379727-73-17652] [PMID: 15440791]
[11]
Thompson, R.L.; Davis, J.; Russell, P.B.; Hitchings, G.H. Effect of aliphatic oxime and isatin thisemicarbazones on vaccinia infection in the mouse and in the rabbit. Proc. Soc. Exp. Biol. Med., 1953, 84(2), 496-499.
[http://dx.doi.org/10.3181/00379727-84-20690] [PMID: 13121085]
[12]
Thompson, R.L.; Minton, S.A., Jr; Officer, J.E.; Hitchings, G.H. Effect of heterocyclic and other thiosemicarbazones on vaccinia infection in the mouse. J. Immunol., 1953, 70(3), 229-234.
[PMID: 13035112]
[13]
Bauer, D.J.; Sadler, P.W. Derivatives of isatin beta-thiosemicarbazone with anti-viral chemotherapeutic activity against ectromelia infection. Nature, 1961, 190(4782), 1167-1169.
[http://dx.doi.org/10.1038/1901167a0] [PMID: 13687885]
[14]
Tonew, M.; Tonew, E.; Heinisch, L. Antiviral thiosemicarbazones and related compounds. 2. Antiviral action of substituted isatinisothiosemicarbazones. Acta Virol., 1974, 18(1), 17-24.
[15]
Turk, S.R.; Shipman, C., Jr; Drach, J.C. Structure-activity relationships among α-(N)-heterocyclic acyl thiosemicarbazones and related compounds as inhibitors of herpes simplex virus type 1-specified ribonucleoside diphosphate reductase. J. Gen. Virol., 1986, 67(Pt 8), 1625-1632.
[http://dx.doi.org/10.1099/0022-1317-67-8-1625] [PMID: 3016157]
[16]
Smejkal, F.; Budesinsky, Z.; Sulka, J.; Kuchar, M. Study of antiviral activity of some amantadine, pyrimidine, and isatine analogs. Adv. Antimicrob. Antineoplast. Chemother., 1972, 1(2), 879-883.
[17]
Iwasaki, K.; Nishimura, T.; Igarashi, Y.; Nagaki, D. Studies on the chemotherapy of influenza virus. I. Effect of thiosemicarbazones on influenza and Newcastle disease virus multiplication. Kitasato Arch. Exp. Med., 1955, 28(1-2), 31-44.
[PMID: 13429770]
[18]
O’Sullivan, D.G.; Sa Dler, P.W. Agents with high activity against type 2 poliovirus. Nature, 1961, 192(4800), 341-343.
[http://dx.doi.org/10.1038/192341a0] [PMID: 14480928]
[19]
Brockman, R.W.; Sidwell, R.W.; Arnett, G.; Shaddix, S. Heterocyclic thiosemicarbazones: correlation between structure, inhibition of ribonucleotide reductase, and inhibition of DNA viruses. Proc. Soc. Exp. Biol. Med., 1970, 133(2), 609-614.
[http://dx.doi.org/10.3181/00379727-133-34528] [PMID: 4313146]
[20]
Shipman, C., Jr; Smith, S.H.; Drach, J.C.; Klayman, D.L. Antiviral activity of 2-acetylpyridine thiosemicarbazones against herpes simplex virus. Antimicrob. Agents Chemother., 1981, 19(4), 682-685.
[http://dx.doi.org/10.1128/AAC.19.4.682] [PMID: 6264853]
[21]
Levinson, W.; Rohde, W.; Mikelens, P.; Jackson, J.; Antony, A.; Ramakrishnan, T. Inactivation and inhibition of Rous sarcoma virus by copper-binding ligands: thiosemicarbazones, 8-hydroxyquinolines, and isonicotinic acid hydrazide. Ann. N. Y. Acad. Sci., 1977, 284, 525-532.
[http://dx.doi.org/10.1111/j.1749-6632.1977.tb21985.x PMID: 81642]
[22]
Bauer, D.J. The antiviral and synergic actions of isatin thiosemicarbazone and certain phenoxypyrimidines in vaccinia infection in mice. Br. J. Exp. Pathol., 1955, 36(1), 105-114.
[PMID: 14351641]
[23]
Polatnick, J. Effect of chemical agents on foot-and-mouth disease virus production in cell cultures. Am. J. Vet. Res., 1965, 26(114), 1051-1055.
[PMID: 4287298]
[24]
Gladych, J.M.Z.; Hunt, J.H.; Jack, D.; Haff, R.F.; Boyle, J.J.; Stewart, R.C.; Ferlauto, R.J. Inhibition of rhinovirus by isatin thiosemicarbazone analogues. Nature, 1969, 221(5177), 286-287.
[http://dx.doi.org/10.1038/221286b0] [PMID: 4303131]
[25]
Ronen, D.; Sherman, L.; Bar-Nun, S.; Teitz, Y. N-methylisatin-beta-4′,4′-diethylthiosemicarbazone, an inhibitor of Moloney leukemia virus protein production: Characterization and in vitro translation of viral mRNA. Antimicrob. Agents Chemother., 1987, 31(11), 1798-1802.
[http://dx.doi.org/10.1128/AAC.31.11.1798] [PMID: 3501701]
[26]
Singh, S.P.; Awasthi, L.P. Thiosemicarbazides and triazole derivatives as potential antiviral agents. Zentralbl. Mikrobiol., 1985, 140(2), 155-159.
[http://dx.doi.org/10.1016/S0232-4393(85)80007-X]
[27]
Bolsunova, O.I.; Zaika, L.A.; Potopalsky, A. I.; Voznyuk, A.V. Izatizon, as an izatin-thiosemicarbazone derivative, has antiviral, anti-tumor actions and no side effects. Int. J. Pharm. Sci. Inv, 2017, 6(5), 7-9.
[28]
Mishra, P.; Kumar, A.; Mamidi, P.; Kumar, S.; Basantray, I.; Saswat, T.; Das, I.; Nayak, T.K.; Chattopadhyay, S.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT). Sci. Rep., 2016, 6, 20122.
[http://dx.doi.org/10.1038/srep20122] [PMID: 26843462]
[29]
Kovala-Demertzi, D.; Varadinova, T.; Genova, P.; Souza, P.; Demertzis, M.A. Platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone as alternative antiherpes simplex virus agents. Bioinorg. Chem. Appl., 2007, 2007, 56165.
[30]
Debebe, Z.; Ammosova, T.; Breuer, D.; Lovejoy, D.B.; Kalinowski, D.S.; Kumar, K.; Jerebtsova, M.; Ray, P.; Kashanchi, F.; Gordeuk, V.R.; Richardson, D.R.; Nekhai, S. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit HIV-1 transcription: identification of novel cellular targets--iron, cyclin-dependent kinase (CDK) 2, and CDK9. Mol. Pharmacol., 2011, 79(1), 185-196.
[http://dx.doi.org/10.1124/mol.110.069062] [PMID: 20956357]
[31]
Abbas, S.Y.; Basyouni, W.M.; El-Bayouki, K.A.; Dawood, R.M.; Abdelhafez, T.H.; Elawady, M.K. Efficient synthesis and anti-bovine viral diarrhea virus evaluation of 5 (aryldiazo) salicylaldehyde thiosemicarbazone derivatives. Synth. Commun., 2019, 49(18), 2411-2416.
[http://dx.doi.org/10.1080/00397911.2019.1626893]
[32]
Breman, J.G.; Henderson, D.A. Poxvirus dilemmas--monkeypox, smallpox, and biologic terrorism. N. Engl. J. Med., 1998, 339(8), 556-559.
[http://dx.doi.org/10.1056/NEJM199808203390811 PMID: 9709051]
[33]
Magee, W.C.; Hostetler, K.Y.; Evans, D.H. Mechanism of inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob. Agents Chemother., 2005, 49(8), 3153-3162.
[http://dx.doi.org/10.1128/AAC.49.8.3153-3162.2005 PMID: 16048917]
[34]
Prichard, M.N.; Kern, E.R. Orthopoxvirus targets for the development of antiviral therapies. Curr. Drug Targets Infect. Disord., 2005, 5(1), 17-28.
[http://dx.doi.org/10.2174/1568005053174627] [PMID: 15777195]
[35]
Quenelle, D.C.; Keith, K.A.; Kern, E.R. In vitro and in vivo evaluation of isatin-β-thiosemicarbazone and marboran against vaccinia and cowpox virus infections. Antiviral Res., 2006, 71(1), 24-30.
[http://dx.doi.org/10.1016/j.antiviral.2006.02.010] [PMID: 16621041]
[36]
Pirrung, M.C.; Pansare, S.V.; Sarma, K.D.; Keith, K.A.; Kern, E.R. Combinatorial optimization of isatin-β-thiosemicarbazones as anti-poxvirus agents. J. Med. Chem., 2005, 48(8), 3045-3050.
[http://dx.doi.org/10.1021/jm049147h] [PMID: 15828843]
[37]
Prichard, M.N.; Kern, E.R. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res., 2012, 94(2), 111-125.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.012] [PMID: 22406470]
[38]
Kang, I.J.; Wang, L.W.; Hsu, T.A.; Yueh, A.; Lee, C.C.; Lee, Y.C.; Lee, C.Y.; Chao, Y.S.; Shih, S.R.; Chern, J.H. Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1948-1952.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.037] [PMID: 21356589]
[39]
Cowley, A.R.; Dilworth, J.R.; Donnelly, P.S.; White, J.M. Copper complexes of thiosemicarbazone-pyridylhydrazine (THYNIC) hybrid ligands: A new versatile potential bifunctional chelator for copper radiopharmaceuticals. Inorg. Chem., 2006, 45(2), 496-498.
[http://dx.doi.org/10.1021/ic0514492] [PMID: 16411680]
[40]
Varadinova, T.; Kovala-Demertzi, D.; Rupelieva, M.; Demertzis, M.; Genova, P. Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone. Acta Virol., 2001, 45(2), 87-94.
[PMID: 11719987]
[41]
Genova, P.; Varadinova, T.; Matesanz, A.I.; Marinova, D.; Souza, P. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth. Toxicol. Appl. Pharmacol., 2004, 197(2), 107-112.
[http://dx.doi.org/10.1016/j.taap.2004.02.006] [PMID: 15163546]
[42]
Barth, H. Hepatitis C virus: Is it time to say goodbye yet? Perspectives and challenges for the next decade. World J. Hepatol., 2015, 7(5), 725-737.
[http://dx.doi.org/10.4254/wjh.v7.i5.725] [PMID: 25914773]
[43]
Ghany, M.G.; Strader, D.B.; Thomas, D.L.; Seeff, L.B. American Association for the Study of Liver Diseases. Diagnosis, management, and treatment of hepatitis C: An update. Hepatology, 2009, 49(4), 1335-1374.
[http://dx.doi.org/10.1002/hep.22759] [PMID: 19330875]
[44]
Altamura, S.; Koch, U. Treating hepatitis C viral infections with thiosemicarbazone compounds. U.S. patent application US 10/125,940, 2003 Mar 6;
[45]
Kesel, A.J. Broad-spectrum antiviral activity including human immunodeficiency and hepatitis C viruses mediated by a novel retinoid thiosemicarbazone derivative. Eur. J. Med. Chem., 2011, 46(5), 1656-1664.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.014 PMID: 21376429]
[46]
Çıkla, P.; Arora, P.; Basu, A.; Talele, T.T.; Kaushik-Basu, N.; Küçükgüzel, Ş.G. Etodolac Thiosemicarbazides: A novel class of hepatitis C virus NS5B polymerase inhibitors. Marmara Pharm. J., 2013, 17(2), 138-146.
[http://dx.doi.org/10.12991/201317382] [PMID: 30948924]
[47]
Glisoni, R.J.; Chiappetta, D.A.; Finkielsztein, L.M.; Moglioni, A.G.; Sosnik, A. Self-aggregation behaviour of novel thiosemicarbazone drug candidates with potential antiviral activity. New J. Chem., 2010, 34(9), 2047-2058.
[http://dx.doi.org/10.1039/c0nj00061b]
[48]
Glisoni, R.J.; Cuestas, M.L.; Mathet, V.L.; Oubiña, J.R.; Moglioni, A.G.; Sosnik, A. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci., 2012, 47(3), 596-603.
[http://dx.doi.org/10.1016/j.ejps.2012.07.018] [PMID: 22885176]
[49]
Glisoni, R.J.; Castro, E.F.; Cavallaro, L.V.; Moglioni, A.G.; Sosnik, A. Complexation of a 1-indanone thiosemicarbazone with hydroxypropyl-β-cyclodextrin enhances its activity against a hepatitis C virus surrogate model. J. Nanosci. Nanotechnol., 2015, 15(6), 4224-4228.
[http://dx.doi.org/10.1166/jnn.2015.9613] [PMID: 26369033]
[50]
Pawlotsky, J.M. NS5A inhibitors in the treatment of hepatitis C. J. Hepatol., 2013, 59(2), 375-382.
[http://dx.doi.org/10.1016/j.jhep.2013.03.030] [PMID: 23567084]
[51]
Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. Anti-HIV drug discovery and development: current innovations and future trends. Miniperspective. J. Med. Chem., 2016, 59(7), 2849-2878.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00497] [PMID: 26509831]
[52]
De Clercq, E. Antiretroviral drugs. Curr. Opin. Pharmacol., 2010, 10(5), 507-515.
[http://dx.doi.org/10.1016/j.coph.2010.04.011] [PMID: 20471318]
[53]
De Clercq, E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv. Pharmacol. Academic Press, 2013, 67, 317-358.
[54]
Hamers, R.L.; Rinke de Wit, T.F.; Holmes, C.B. HIV drug resistance in low-income and middle-income countries. Lancet HIV, 2018, 5(10), e588-e596.
[http://dx.doi.org/10.1016/S2352-3018(18)30173-5 PMID: 30193863]
[55]
Beyrer, C.; Pozniak, A. HIV drug resistance—an emerging threat to epidemic control. N. Engl. J. Med., 2017, 377(17), 1605-1607.
[http://dx.doi.org/10.1056/NEJMp1710608] [PMID: 29069566]
[56]
Mishra, V.; Pandeya, S.N.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Anti-HIV activity of thiosemicarbazone and semicarbazone derivatives of (+/-)-3-menthone. Arch. Pharm. (Weinheim), 2002, 335(5), 183-186.
[http://dx.doi.org/10.1002/1521-4184(200205)335:5<183:AID-ARDP183>3.0.CO;2-U] [PMID: 12210774]
[57]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[58]
Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem., 2010, 53(24), 8765-8769.
[http://dx.doi.org/10.1021/jm1007616] [PMID: 21121632]
[59]
Gordeuk, V.R.; Delanghe, J.R.; Langlois, M.R.; Boelaert, J.R. Iron status and the outcome of HIV infection: an overview. J. Clin. Virol., 2001, 20(3), 111-115.
[http://dx.doi.org/10.1016/S1386-6532(00)00134-7 PMID: 11166657]
[60]
Georgiou, N.A.; van der Bruggen, T.; Oudshoorn, M.; Hider, R.C.; Marx, J.J.M.; van Asbeck, B.S. Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur. J. Clin. Invest., 2002, 32(Suppl. 1), 91-96.
[http://dx.doi.org/10.1046/j.1365-2362.2002.0320s1091.x PMID: 11886438]
[61]
Traoré, H.N.; Meyer, D. The effect of iron overload on in vitro HIV-1 infection. J. Clin. Virol., 2004, 31(Suppl. 1), S92-S98.
[http://dx.doi.org/10.1016/j.jcv.2004.09.011] [PMID: 15567100]
[62]
Taubenberger, J.K.; Morens, D.M. Influenza viruses: Breaking all the rules. MBio, 2013, 4(4), e00365-e13.
[http://dx.doi.org/10.1128/mBio.00365-13] [PMID: 23860766]
[63]
Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med., 2009, 360(10), 953-956.
[http://dx.doi.org/10.1056/NEJMp0900648] [PMID: 19258250]
[64]
van der Vries, E.; Schutten, M.; Fraaij, P.; Boucher, C.; Osterhaus, A. Influenza virus resistance to antiviral therapy. Adv. Pharmacol., 2013, 67, 217-246.
[http://dx.doi.org/10.1016/B978-0-12-405880-4.00006-8 PMID: 23886002]
[65]
Ju, H.; Zhang, J.; Huang, B.; Kang, D.; Huang, B.; Liu, X.; Zhan, P. Inhibitors of influenza virus Polymerase Acidic (PA) endonuclease: Contemporary developments and perspectives. J. Med. Chem., 2017, 60(9), 3533-3551.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01227] [PMID: 28118010]
[66]
Karaküçük-İyidoğan, A.; Taşdemir, D.; Oruç-Emre, E.E.; Balzarini, J. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur. J. Med. Chem., 2011, 46(11), 5616-5624.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.031] [PMID: 21993152]
[67]
Rogolino, D.; Bacchi, A.; De Luca, L.; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. J. Biol. Inorg. Chem., 2015, 20(7), 1109-1121.
[http://dx.doi.org/10.1007/s00775-015-1292-0] [PMID: 26323352]
[68]
Figueiredo, L.T.M. The Brazilian flaviviruses. Microbes Infect., 2000, 2(13), 1643-1649.
[http://dx.doi.org/10.1016/S1286-4579(00)01320-4 PMID: 11113383]
[69]
Benchimol, J.L. Febre amarela: A doenca e a vacina, uma historia inacabada; Editora Fiocruz, 2001, p. 470.
[http://dx.doi.org/10.7476/9788575413951]
[70]
Vasconcelos, P.F.; Costa, Z.G.; Travassos Da Rosa, E.S.; Luna, E.; Rodrigues, S.G.; Barros, V.L.R.S.; Dias, J.P.; Monteiro, H.A.O.; Oliva, O.F.P.; Vasconcelos, H.B.; Oliveira, R.C.; Sousa, M.R.; Barbosa Da Silva, J.; Cruz, A.C.; Martins, E.C.; Travassos Da Rosa, J.F. Epidemic of jungle yellow fever in Brazil, 2000: Implications of climatic alterations in disease spread. J. Med. Virol., 2001, 65(3), 598-604.
[http://dx.doi.org/10.1002/jmv.2078] [PMID: 11596099]
[71]
Pacca, C.C.; Marques, R.E.; Espindola, J.W.P.; Filho, G.B.O.O.; Leite, A.C.L.; Teixeira, M.M.; Nogueira, M.L. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus. Biomed. Pharmacother., 2017, 87, 381-387.
[http://dx.doi.org/10.1016/j.biopha.2016.12.112] [PMID: 28068627]
[72]
Sebastian, L.; Desai, A.; Shampur, M.N.; Perumal, Y.; Sriram, D.; Vasanthapuram, R. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol. J., 2008, 5(1), 64.
[http://dx.doi.org/10.1186/1743-422X-5-64] [PMID: 18498627]
[73]
Nsoesie, E.O.; Kraemer, M.U.; Golding, N.; Pigott, D.M.; Brady, O.J.; Moyes, C.L.; Johansson, M.A.; Gething, P.W.; Velayudhan, R.; Khan, K.; Hay, S.I.; Brownstein, J.S. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill., 2016, 21(20)
[http://dx.doi.org/10.2807/1560-7917.ES.2016.21.20.30234 PMID: 27239817]
[74]
Subudhi, B.B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of Chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[75]
Guzmán, M.G.; Kourí, G. Dengue: An update. Lancet Infect. Dis., 2002, 2(1), 33-42.
[http://dx.doi.org/10.1016/S1473-3099(01)00171-2 PMID: 11892494]
[76]
Lim, S.P. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res., 2019, 163, 156-178.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.016] [PMID: 30597183]
[77]
Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S.; Tirichurapalli Sivagnanam, U. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J. Med. Virol., 2017, 89(3), 546-552.
[http://dx.doi.org/10.1002/jmv.24655] [PMID: 27490721]
[78]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Abd Razik, B.M.; Ezzat, M.O.; Mohamad, S.; Sulaiman, O.; Gansau, J.A.; Parumasivam, T. 4-Thiazolidinone coumarin derivatives as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors: Synthesis, molecular docking, biological evaluation and structure-activity relationship studies. Chem. Cent. J., 2018, 12(1), 69.
[http://dx.doi.org/10.1186/s13065-018-0435-0] [PMID: 29896651]
[79]
Mishra, P.; Subudhi, B.B. Molecular docking studies of MBZM-N-IBT on non-structural protein targets of Dengue virus. Der Pharma Chem., 2016, 8(16), 149-153.
[80]
Fields, N.B.; David, M.K.; Robert, M.C.; Joseph, L.M.; Bernard, R.; Robert, E.S. Fields Virology; Raven Press: New York, 1985, pp. 739-794.
[81]
Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[http://dx.doi.org/10.1016/j.bmc.2015.12.008] [PMID: 26707844]
[82]
Grant, A.; Seregin, A.; Huang, C.; Kolokoltsova, O.; Brasier, A.; Peters, C.; Paessler, S. Junín virus pathogenesis and virus replication. Viruses, 2012, 4(10), 2317-2339.
[http://dx.doi.org/10.3390/v4102317] [PMID: 23202466]
[83]
García, C.C.; Brousse, B.N.; Carlucci, M.J.; Moglioni, A.G.; Martins Alho, M.; Moltrasio, G.Y.; D’Accorso, N.B.; Damonte, E.B. Inhibitory effect of thiosemicarbazone derivatives on Junin virus replication in vitro. Antivir. Chem. Chemother., 2003, 14(2), 99-105.
[http://dx.doi.org/10.1177/095632020301400205] [PMID: 12856921]
[84]
Finkielsztein, L.M.; Castro, E.F.; Fabián, L.E.; Moltrasio, G.Y.; Campos, R.H.; Cavallaro, L.V.; Moglioni, A.G. New 1-indanone thiosemicarbazone derivatives active against BVDV. Eur. J. Med. Chem., 2008, 43(8), 1767-1773.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.023] [PMID: 18063227]
[85]
Yeşilbağ, K.; Alpay, G.; Becher, P. Variability and global distribution of subgenotypes of bovine viral diarrhea virus. Viruses, 2017, 9(6), 128.
[http://dx.doi.org/10.3390/v9060128] [PMID: 28587150]
[86]
Baker, J.C. The clinical manifestations of bovine viral diarrhea infection. Vet. Clin. North Am. Food Anim. Pract., 1995, 11(3), 425-445.
[http://dx.doi.org/10.1016/S0749-0720(15)30460-6] [PMID: 8581856]
[87]
Reichel, M.P.; Lanyon, S.R.; Hill, F.I. perspectives on current challenges and opportunities for bovine viral diarrhoea virus eradication in australia and new zealand. Pathogens, 2018, 7(1), 14.
[http://dx.doi.org/10.3390/pathogens7010014] [PMID: 29361748]
[88]
Castro, E.F.; Fabian, L.E.; Caputto, M.E.; Gagey, D.; Finkielsztein, L.M.; Moltrasio, G.Y.; Moglioni, A.G.; Campos, R.H.; Cavallaro, L.V. Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone. J. Virol., 2011, 85(11), 5436-5445.
[http://dx.doi.org/10.1128/JVI.00859-10] [PMID: 21430053]
[89]
Soraires Santacruz, M.C.; Fabiani, M.; Castro, E.F.; Cavallaro, L.V.; Finkielsztein, L.M. Synthesis, antiviral evaluation and molecular docking studies of N4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents. Bioorg. Med. Chem., 2017, 25(15), 4055-4063.
[http://dx.doi.org/10.1016/j.bmc.2017.05.056] [PMID: 28600079]
[90]
Abbas, S.Y.; Basyouni, W.M.; El-Bayouki, K.A.; Dawood, R.M.; Abdelhafez, T.H.; Elawady, M.K. Efficient synthesis and anti-bovine viral diarrhea virus evaluation of 5-(aryldiazo) salicylaldehyde thiosemicarbazone derivatives. Synth. Commun., 2019, 49(18), 2411-2416.
[http://dx.doi.org/10.1080/00397911.2019.1626893]
[91]
García, C.C.; Damonte, E.B. Zn finger containing proteins as targets for the control of viral infections. Infect. Disord. Drug Targets, 2007, 7(3), 204-212.
[http://dx.doi.org/10.2174/187152607782110004] [PMID: 17897056]
[92]
Mohapatra, T.K.; Subudhi, B.B. Repurposing of aspirin: Opportunities and challenges. Res. J. Pharm. Tech., 2019, 12(4), 2037-2044.
[http://dx.doi.org/10.5958/0974-360X.2019.00337.8]
[93]
Swain, R.P.; Subudhi, B.B. Amorphous solid dispersions of pioglitazone hydrochloride using cremophor rh 40 and poloxamer 188: In vitro and in vivo evaluation. Indian Drugs, 2019, 56(1), 45-55.
[94]
Mohapatra, T.K.; Sarkar, P.; Dash, R.N.; Moharana, A.K.; Subudhi, B.B. Evaluation of complementary effects of turmeric, ginger and cinnamon with aspirin. Indian Drugs, 2018, 55(7), 28-35.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy