Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Angiotensin-Converting Enzyme 2 Roles in the Pathogenesis of COVID-19

Author(s): Azra Kenarkoohi, Maryam Maleki, Tahereh Safari, Mohammad Reza Kaffashian, Fateme Saljoughi and Shahla Sohrabipour*

Volume 17, Issue 3, 2021

Published on: 10 August, 2020

Page: [207 - 216] Pages: 10

DOI: 10.2174/1573402116666200810134702

Price: $65

conference banner
Abstract

The new pandemic Coronavirus Disease 2019 (COVID-19) causes a wide range of clinical consequences, from asymptomatic infection to acute respiratory failure, and it is very heterogeneous. The renin-angiotensin system (RAS) is well recognized as a key regulating system in circulatory homeostasis that plays prominent roles in pathophysiological processes in abnormal activation, for instance, renal and cardiovascular diseases, obesity, and stroke. Angiotensin-converting enzyme 2(ACE2) is a component of the RAS system. However, unlike the ACE, its activity is not inhibited by the ACE inhibitors. The major product of ACE2 is Ang1-7, known as a vasodilator peptide and part of the depressant arm of the RAS. There are two forms of ACE2; Transmembrane ACE2 and soluble ACE2. Coronavirus is covered with some proteins in order to help viral attachment to the cell membrane ACE2 as a receptor and then fuse and enter the cells. ACE2 was expressed in the oral cavity, salivary glands of the mouth, esophagus, myocardial cells, kidney, and enterocytes, along with all the respiratory tract, intestine, and blood vessels. In this article, the renin- angiotensin system and its components have been explained. Moreover, the organs involved in COVID-19 disease, and the possible causes of damage to these organs have also been discussed. The probable mechanism of using ACE2 in viral attachment and the probable treatment processes will also be reviewed based on the surface proteins of the virus and ACE2. In addition, we briefly discuss anti-angiotensin drugs and why patients with chronic diseases are more susceptible to COVID-19 infection and show worse progression.

Keywords: COVID-19, renin-angiotensin system, angiotensin-converting enzyme 2, coronavirus, SARS-CoV-2, angiotensinconverting enzyme inhibitors.

Graphical Abstract
[1]
Sahin AR, Erdogan A, Agaoglu PM, et al. 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. EJMO 2020; 4(1): 1-7.
[http://dx.doi.org/10.14744/ejmo.2020.12220]
[2]
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2014; 4(3): 1201-28.
[http://dx.doi.org/10.1002/cphy.c130040] [PMID: 24944035]
[3]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[4]
Wysocki J, Schulze A, Batlle D. Novel variants of angiotensin converting enzyme-2 of shorter molecular size to target the kidney renin angiotensin system. Biomolecules 2019; 9(12): 886.
[http://dx.doi.org/10.3390/biom9120886] [PMID: 31861139]
[5]
Lei C, Fu W, Qian K, et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. bioRxiv 2020.
[6]
Miller AJ, Arnold AC. The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 2019; 29(2): 231-43.
[http://dx.doi.org/10.1007/s10286-018-0572-5] [PMID: 30413906]
[7]
Hassanshahi J, Maleki M, Nematbakhsh M. Renin-angiotensin system and unilateral ureteral obstruction. Physiol Pharmacol 2017; 21(4): 266-78.
[8]
Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev 2018; 98(1): 505-53.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[9]
Lakzaei H, Safari T, Komeili GR. Interaction of sex hormones and the renin-angiotensin system in ovariectomized rats subjected to ischemia-reperfusion induction. Adv Biomed Res 2019; 8(8): 64-8.
[PMID: 31737581]
[10]
Sequeira López ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 2004; 6(5): 719-28.
[http://dx.doi.org/10.1016/S1534-5807(04)00134-0] [PMID: 15130496]
[11]
Passos-Silva DG, Verano-Braga T, Santos RA. Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci (Lond) 2013; 124(7): 443-56.
[http://dx.doi.org/10.1042/CS20120461] [PMID: 23249272]
[12]
Ceconi C, Francolini G, Olivares A, Comini L, Bachetti T, Ferrari R. Angiotensin-converting enzyme (ACE) inhibitors have different selectivity for bradykinin binding sites of human somatic ACE. Eur J Pharmacol 2007; 577(1-3): 1-6.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.061] [PMID: 17716647]
[13]
Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC. ACE polymorphisms. Circ Res 2006; 98(9): 1123-33.
[http://dx.doi.org/10.1161/01.RES.0000223145.74217.e7] [PMID: 16690893]
[14]
Iwai N, Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett 1992; 298(2-3): 257-60.
[http://dx.doi.org/10.1016/0014-5793(92)80071-N] [PMID: 1544458]
[15]
Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277(17): 14838-43.
[http://dx.doi.org/10.1074/jbc.M200581200] [PMID: 11815627]
[16]
Maleki M, Nematbakhsh M. Renal blood flow response to angiotensin 1-7 versus hypertonic sodium chloride 7.5% administration after acute hemorrhagic shock in rats. Int J Vasc Med 2016; 2016
[http://dx.doi.org/10.1155/2016/6562017] [PMID: 27073699]
[17]
Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[18]
Chappell MC. Nonclassical renin-angiotensin system and renal function. Compr Physiol 2012; 2(4): 2733-52.
[PMID: 23720263]
[19]
Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulm Pharmacol Ther 2019; 58
[http://dx.doi.org/10.1016/j.pupt.2019.101833] [PMID: 31376462]
[20]
Ingelfinger JR. Angiotensin-converting enzyme 2: implications for blood pressure and kidney disease. Curr Opin Nephrol Hypertens 2009; 18(1): 79-84.
[http://dx.doi.org/10.1097/MNH.0b013e32831b70ad] [PMID: 19077694]
[21]
Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004; 383(Pt 1): 45-51.
[http://dx.doi.org/10.1042/BJ20040634] [PMID: 15283675]
[22]
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275(43): 33238-43.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[23]
Kuba K, Zhang L, Imai Y, et al. Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ Res 2007; 101(4): e32-42.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158659] [PMID: 17673668]
[24]
Zhang H, Wada J, Hida K, et al. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 2001; 276(20): 17132-9.
[http://dx.doi.org/10.1074/jbc.M006723200] [PMID: 11278314]
[25]
Kowalczuk S, Bröer A, Tietze N, Vanslambrouck JM, Rasko JE, Bröer S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 2008; 22(8): 2880-7.
[http://dx.doi.org/10.1096/fj.08-107300] [PMID: 18424768]
[26]
Lambert DW, Clarke NE, Hooper NM, Turner AJ. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett 2008; 582(2): 385-90.
[http://dx.doi.org/10.1016/j.febslet.2007.11.085] [PMID: 18070603]
[27]
Safari T, Shahraki MR, Miri S, et al. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Res Pharm Sci 2019; 14(5): 441-7.
[http://dx.doi.org/10.4103/1735-5362.268205] [PMID: 31798661]
[28]
Safari T, Nematbakhsh M, Evans RG, Denton KM. High-dose estradiol-replacement therapy enhances the renal vascular response to angiotensin II via an AT2-receptor dependent mechanism. Adv Pharmacol Sci 2015; 2015682745
[http://dx.doi.org/10.1155/2015/682745] [PMID: 26681937]
[29]
Gharaei FK, Safari T, Niazi AA, Bujani MZ. Losartan and magnesium sulfate administration reduce gentamicin-induced nephrotoxicity in rat model. J Nephropathol 2019; 8(2)e16
[http://dx.doi.org/10.15171/jnp.2019.16]
[30]
Young D, Waitches G, Birchmeier C, Fasano O, Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 1986; 45(5): 711-9.
[http://dx.doi.org/10.1016/0092-8674(86)90785-3] [PMID: 3708691]
[31]
Kostenis E, Milligan G, Christopoulos A, et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 2005; 111(14): 1806-13.
[http://dx.doi.org/10.1161/01.CIR.0000160867.23556.7D] [PMID: 15809376]
[32]
Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 2006; 69(12): 2212-8.
[http://dx.doi.org/10.1038/sj.ki.5001509] [PMID: 16672906]
[33]
Alenina N, Xu P, Rentzsch B, Patkin EL, Bader M. Genetically altered animal models for Mas and angiotensin-(1-7). Exp Physiol 2008; 93(5): 528-37.
[http://dx.doi.org/10.1113/expphysiol.2007.040345] [PMID: 18156169]
[34]
Gwathmey TM, Westwood BM, Pirro NT, et al. Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide. Am J Physiol Renal Physiol 2010; 299(5): F983-90.
[http://dx.doi.org/10.1152/ajprenal.00371.2010] [PMID: 20810609]
[35]
van der Wouden EA, Ochodnický P, van Dokkum RP, et al. The role of angiotensin(1-7) in renal vasculature of the rat. J Hypertens 2006; 24(10): 1971-8.
[http://dx.doi.org/10.1097/01.hjh.0000244945.42169.c0] [PMID: 16957556]
[36]
Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of angiotensin(1-7). Peptides 1993; 14(4): 679-84.
[http://dx.doi.org/10.1016/0196-9781(93)90097-Z] [PMID: 8234010]
[37]
Stephenson SL, Kenny AJ. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem J 1987; 241(1): 237-47.
[http://dx.doi.org/10.1042/bj2410237] [PMID: 2436610]
[38]
Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension 1998; 31(1 Pt 2): 362-7.
[http://dx.doi.org/10.1161/01.HYP.31.1.362] [PMID: 9453329]
[39]
Chappell MC, Allred AJ, Ferrario CM. Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transplant 2001; 16(suppl_1): 22-6.
[40]
Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 2005; 45(5): 960-6.
[http://dx.doi.org/10.1161/01.HYP.0000160325.59323.b8] [PMID: 15767466]
[41]
Sampaio WO, Nascimento AnA, Santos RA. Regulation of Cardiovascular Signaling by Kinins and Products of Similar Converting Enzyme Systems Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats system. Am J Physiol Heart Circ Physiol Am J Physiol-Heart C 2003; 11(46): 48.
[42]
Lara LS, Correa JS, Lavelle AB, Lopes AG, Caruso-Neves C. The angiotensin receptor type 1-Gq protein-phosphatidyl inositol phospholipase Cbeta-protein kinase C pathway is involved in activation of proximal tubule Na+-ATPase activity by angiotensin(1-7) in pig kidneys. Exp Physiol 2008; 93(5): 639-47.
[http://dx.doi.org/10.1113/expphysiol.2007.040584] [PMID: 18245203]
[43]
Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol 2008; 295(6): H2373-9.
[http://dx.doi.org/10.1152/ajpheart.00426.2008] [PMID: 18849338]
[44]
Ferreira AJ, Santos RA. Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res 2005; 38(4): 499-507.
[http://dx.doi.org/10.1590/S0100-879X2005000400003] [PMID: 15962175]
[45]
Kassiri Z, Zhong J, Guo D, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail 2009; 2(5): 446-55.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.840124] [PMID: 19808375]
[46]
Huentelman MJ, Grobe JL, Vazquez J, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol 2005; 90(5): 783-90.
[http://dx.doi.org/10.1113/expphysiol.2005.031096] [PMID: 16049057]
[47]
Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7): an update. Regul Pept 2000; 91(1-3): 45-62.
[http://dx.doi.org/10.1016/S0167-0115(00)00138-5] [PMID: 10967201]
[48]
Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl 1990; 591: 48-62.
[PMID: 2220409]
[49]
Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007; 49(1): 185-92.
[http://dx.doi.org/10.1161/01.HYP.0000251865.35728.2f] [PMID: 17116756]
[50]
Pörsti I, Bara AT, Busse R, Hecker M. Release of nitric oxide by angiotensin-(1-7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol 1994; 111(3): 652-4.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14787.x] [PMID: 8019744]
[51]
Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension 2002; 39(3): 799-802.
[http://dx.doi.org/10.1161/hy0302.104673] [PMID: 11897767]
[52]
Ferreira AJ, Moraes PL, Foureaux G, Andrade AB, Santos RA, Almeida AP. The angiotensin-(1-7)/Mas receptor axis is expressed in sinoatrial node cells of rats. J Histochem Cytochem 2011; 59(8): 761-8.
[http://dx.doi.org/10.1369/0022155411411712] [PMID: 21606202]
[53]
Mercure C, Yogi A, Callera GE, et al. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res 2008; 103(11): 1319-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.184911] [PMID: 18845809]
[54]
Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1-7) receptor MAS stimulation improves endothelial function in normotensive rats. Hypertension 2005; 46(4): 948-52.
[http://dx.doi.org/10.1161/01.HYP.0000174594.17052.33] [PMID: 16087780]
[55]
Oliveira MA, Fortes ZB, Santos RA, Kosla MC, De Carvalho MHC. Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo. Peptides 1999; 20(10): 1195-201.
[http://dx.doi.org/10.1016/S0196-9781(99)00123-0] [PMID: 10573291]
[56]
Roks AJ, van Geel PP, Pinto YM, et al. Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension 1999; 34(2): 296-301.
[http://dx.doi.org/10.1161/01.HYP.34.2.296] [PMID: 10454457]
[57]
Almeida AP, Frábregas BC, Madureira MM, Santos RJ, Campagnole-Santos MJ, Santos RA. Angiotensin-(1-7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Braz J Med Biol Res 2000; 33(6): 709-13.
[http://dx.doi.org/10.1590/S0100-879X2000000600012] [PMID: 10829099]
[58]
Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 2013; 46: 26-32.
[http://dx.doi.org/10.1016/j.peptides.2013.04.014] [PMID: 23692861]
[59]
Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 2008; 295(4): H1377-84.
[http://dx.doi.org/10.1152/ajpheart.00331.2008] [PMID: 18660448]
[60]
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545-9.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[61]
Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev 2020; 34(2): 75-80.
[http://dx.doi.org/10.1016/j.tmrv.2020.02.003] [PMID: 32107119]
[62]
Lam TT-Y, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282-5.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[63]
Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA 2020; 323(8): 707-8.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[64]
Poon LLM, Peiris M. Emergence of a novel human coronavirus threatening human health. Nat Med 2020; 26(3): 317-9.
[http://dx.doi.org/10.1038/s41591-020-0796-5] [PMID: 32108160]
[65]
Fauci AS, Lane HC, Redfield RR. Covid-19-navigating the uncharted. N Engl J Med 2020; 382(13): 1268-9.
[http://dx.doi.org/10.1056/NEJMe2002387] [PMID: 32109011]
[66]
Deng Y-Y, Zheng Y, Cai G-Y, Chen X-M, Hong Q. Single-cell RNA sequencing data suggest a role for angiotensin-converting enzyme 2 in kidney impairment in patients infected with 2019-novel coronavirus. Chin Med J (Engl) 2020; 133(9): 1129-31.
[http://dx.doi.org/10.1097/CM9.0000000000000783] [PMID: 32118645]
[67]
Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci (Lond) 2020; 134(5): 543-5.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[68]
Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 2020; 75(6): 1382-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15082] [PMID: 32208987]
[69]
Ji H-L, Zhao R, Matalon S, Matthay MA. Elevated plasmin (ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 2020; 100(3): 1065-75.
[http://dx.doi.org/10.1152/physrev.00013.2020] [PMID: 32216698]
[70]
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res 2020; 9: 72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[71]
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020; 11(7): 995-8.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[72]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[73]
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[74]
Marin GH. Facts and reflections on COVID-19 and anti-hypertensives drugs. Drug Discov Ther 2020; 14(2): 105-6.
[http://dx.doi.org/10.5582/ddt.2020.01017] [PMID: 32213760]
[75]
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125(Pt A): 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005] [PMID: 28619367]
[76]
Wan S, Li M, Ye Z, et al. CT manifestations and clinical characteristics of 1115 patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Acad Radiol 2020; 27(7): 910-21.
[http://dx.doi.org/10.1016/j.acra.2020.04.033] [PMID: 32505599]
[77]
Falahi S, Kenarkoohi A. Sex and gender differences in the outcome of patients with COVID-19. J Med Virol 2020.
[http://dx.doi.org/10.1002/jmv.26243] [PMID: 32603509]
[78]
Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents 2020; 34(2): 71.
[PMID: 32253888]
[79]
Batlle D, Soler MJ, Sparks MA, et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol 2020; 31(7): 1380-3.
[http://dx.doi.org/10.1681/ASN.2020040419] [PMID: 32366514]
[80]
Sepper R, Konttinen YT, Buø L, et al. Potentiative effects of neutral proteinases in an inflamed lung: relationship of neutrophil procollagenase (proMMP-8) to plasmin, cathepsin G and tryptase in bronchiectasis in vivo. Eur Respir J 1997; 10(12): 2788-93.
[http://dx.doi.org/10.1183/09031936.97.10122788] [PMID: 9493662]
[81]
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469(11): 1415-23.
[http://dx.doi.org/10.1007/s00424-017-2014-y] [PMID: 28656379]
[82]
Zheng H, Liu X, Sharma NM, Li Y, Pliquett RU, Patel KP. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure. Hypertension 2016; 67(1): 197-205.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05838] [PMID: 26628676]
[83]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[84]
Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[85]
Liu M, Wang T, Zhou Y, Zhao Y, Zhang Y, Li J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J Transl Int Med 2020; 8(1): 9-19.
[http://dx.doi.org/10.2478/jtim-2020-0003] [PMID: 32435607]
[86]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Am J Respir Crit Care Med 2020; 202(5): 756-9.
[87]
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15): 7264-75.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[88]
Mao L, Wang M, Chen S, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan China: a retrospective case series study. JAMA 2020; 77(6): 683-90.
[89]
Zhang W, Du R-H, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020; 9(1): 386-9.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[90]
Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020; 158(6): 1518-9.
[http://dx.doi.org/10.1053/j.gastro.2020.02.054] [PMID: 32142785]
[91]
Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. Aging Cell 2020; 19(7): e13168.
[http://dx.doi.org/10.1111/acel.13168]
[92]
Muscoli S. Efficacy of dabigatran in pulmonary embolism due to thrombophilia in chronic thromboembolic pulmonary hypertension. JACC: Case Reports 2020; 2(4): 662-3.
[93]
Zhang B, Zhou X, Qiu Y, et al. Clinical characteristics of 82 death cases with COVID-19. PLoS One 2020; 15(7): e0235458.
[94]
Ji H-L, Zhao R, Komissarov AA, Chang Y, Liu Y, Matthay MA. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites. J Biol Chem 2015; 290(9): 5241-55.
[http://dx.doi.org/10.1074/jbc.M114.623496] [PMID: 25555911]
[95]
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7(6): 1012-23.
[http://dx.doi.org/10.1093/nsr/nwaa036]
[96]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[97]
Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 2004; 279(5): 3197-201.
[http://dx.doi.org/10.1074/jbc.C300520200] [PMID: 14670965]
[98]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor Cell 2020; 181(2): 271-80.
[99]
Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020; 38(4): 379-81.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[100]
van Woensel JB, van Aalderen WM, de Weerd W, et al. Dexamethasone for treatment of patients mechanically ventilated for lower respiratory tract infection caused by respiratory syncytial virus. Thorax 2003; 58(5): 383-7.
[http://dx.doi.org/10.1136/thorax.58.5.383] [PMID: 12728156]
[101]
Wysocki J, Ye M, Khattab AM, et al. Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy. Kidney Int 2017; 91(6): 1336-46.
[http://dx.doi.org/10.1016/j.kint.2016.09.032] [PMID: 27927599]
[102]
Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: Protective role in women and children. Front Pediatr 2020; 8: 206.
[http://dx.doi.org/10.3389/fped.2020.00206] [PMID: 32391299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy