Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Developments in the Application of 1,2,3-Triazoles in Cancer Treatment

Author(s): Katerina I. Slavova, Lozan T. Todorov*, Nataliya P. Belskaya, Mauricio A. Palafox and Irena P. Kostova

Volume 15, Issue 2, 2020

Page: [92 - 112] Pages: 21

DOI: 10.2174/1574892815666200717164457

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The impact of cancer on modern society cannot be emphasized enough in terms of both economic and human costs. Cancer treatments are known, unfortunately, for their side effects – frequently numerous and severe. Drug resistance is another issue medical professionals have to tackle when dealing with neoplastic illnesses. Cancer rates are rising worldwide due to various factors - low-quality nutrition, air and water pollution, tobacco use, etc. For those and many other reasons, drug discovery in the field of oncology is a top priority in modern medical science.

Objective: To present the reader with the latest in cancer drug discovery with regard to 1,2,3-triazole- containing molecules in a clear, concise way so as to make the present review a useful tool for researchers.

Methods: Available information present on the role of 1,2,3-triazoles in cancer treatment was collected. Data was collected from scientific literature, as well as from patents.

Results: A vast number of triazole-containing molecules with antiproliferative properties have been proposed, synthesized and tested for anticancer activity both in vitro and in vivo. The substances vary greatly when considering molecular structure, proposed mechanisms of action and affected cancer cell types.

Conclusion: Triazole-containing molecules with anticancer activity are being widely synthesized and extensively tested. They vary significantly in terms of both structure and mechanism of action. The methods for their preparation and administration are well established and with proven reproducibility. These facts suggest that triazoles may play an important role in the discovery of novel antiproliferative medications with improved effectiveness and safety profile.

Keywords: Antiproliferative, cancer, cell lines, in vitro, in vivo, patents, therapy, 1, 2, 3-triazoles.

[1]
World Health Organization – Cancer Fact sheet. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: February 5th, 2020)
[2]
Prajapati S, Goswami K, Patal A. Synthesis and characterisation of 4-Aryl thiazole ring system and its antimicrobial activity. Int J Pharma Bio Sci 2013; 4(1): 803-8.
[3]
Güzeldemirci NU, Küçükbasmaci O. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety. Eur J Med Chem 2010; 45(1): 63-8.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.024] [PMID: 19939519]
[4]
Alaraji YH, Shneine JK, Ahmed ANAA. Synthesis, characterization, and antibacterial activity of new Schiff’s bases with 1,2,4-triazole moiety. J Sci 2015; 5(5): 293-9.
[5]
Abdulrasool MM, Jawad AH, Shneine JK. Synthesis, characterization and evaluation of biological activity of new heterocyclic compounds containing 1,2,4-triazole and 1,3,4-thiadiazole rings. Int J Appl Sci Technol 2012; 2(10): 155-64.
[6]
Hanif M, Saleem M, Hussain MT, et al. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones and their 3,6-disubstituted 1,2,4-triazolo [3, 4-b] 1,3,4-thiadiazole derivatives. J Braz Chem Soc 2012; 23(5): 854-60.
[http://dx.doi.org/10.1590/S0103-50532012000500010]
[7]
Prasad D, Aggarwal N, Kumar R, Nath M. Synthesis of novel heteroarenes based [1,2,3]-triazoles via click chemistry and their evaluation for antibacterial activity. Indian J Chem 2012; 51: 731-8.
[http://dx.doi.org/10.1002/chin.201238123]
[8]
Wang X-L, Wan K, Zhou C-H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 2010; 45(10): 4631-9.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[9]
Yan S-J, Liu Y-J, Chen Y-L, Liu L, Lin J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg Med Chem Lett 2010; 20(17): 5225-8.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.141] [PMID: 20655212]
[10]
Yu J-L, Wu QP, Zhang QS, Liu YH, Li YZ, Zhou ZM. Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues. Bioorg Med Chem Lett 2010; 20(1): 240-3.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.127] [PMID: 19917528]
[11]
Kurumurthy C, Sambasiva Rao P, Veera Swamy B, et al. Synthesis of novel alkyltriazole tagged pyrido[2,3-d]pyrimidine derivatives and their anticancer activity. Eur J Med Chem 2011; 46(8): 3462-8.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.011] [PMID: 21632155]
[12]
Arul K, Smith K. In silico design, synthesis and in vitro anticancer evaluation of some novel 1,2,4-triazole derivatives. Experiment 2014; 21(1): 1439-52.
[13]
Baviskar B, Khadabadia S, Deore S, Shiradkar M. Synthesis of clubbed triazolyl indeno [1, 2-C] isoquinolines as a novel anticancer agent. Pharm Sin 2012; 3(1): 24-30.
[14]
Mandal SK, Saha D, Jain VK, Jain B. Synthesis and antitubercular activity of some triazole derivatives of propyl gallate. Int J Pharm Sci Res 2010; 1: 465-73.
[15]
Mali R, Somani R, Toraskar M, Mali K, Naik P, Shirodkar P. Synthesis of some antifungal and anti-tubercular 1,2,4-triazole analogues. Int J Chemtech Res 2009; 1: 168-73.
[16]
Maste MM, Ainapure R, Patil P, Bhat A. Triazolone and their derivatives for anti-tubercular activities. Asian J Res Chem 2011; 4(7): 1050-4.
[17]
Singh R, Singh D. Novel synthetic approach to some new 1,2,4- triazolothiadiazines and 1,2,4-triazolothiadiazinones and their anti-inflammatory activities. Int J Chemtech Res 2009; 1(4): 1239-43.
[18]
Akhter MW, Hassan MZ, Amir M. Synthesis and pharmacological evaluation of 3-diphenylmethyl-6-substituted-1,2,4-triazolo [3, 4-b]-1,3,4-thiadiazoles: A condensed bridgehead nitrogen heterocyclic system. Arab J Chem 2014; 7(6): 955-63.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.036]
[19]
Schenone S, Bruno O, Ranise A, et al. 3-Arylsulphonyl-5-arylamino-1,3,4-thiadiazol-2(3H)ones as anti-inflammatory and analgesic agents. Bioorg Med Chem 2001; 9(8): 2149-53.
[http://dx.doi.org/10.1016/S0968-0896(01)00121-3] [PMID: 11504651]
[20]
Ilango K, Valentina P. Synthesis and biological activities of novel 1, 2, 4-triazolo-[3, 4-b]-1, 3, 4-thiadiazole. Pharma Chem 2010; 2(2): 16-22.
[21]
Streeter DG, Witkowski JT, Khare GP, et al. Mechanism of action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci USA 1973; 70(4): 1174-8.
[http://dx.doi.org/10.1073/pnas.70.4.1174] [PMID: 4197928]
[22]
Bay HA, Quaddouri B, Guaadaoui A, et al. Synthesis and biological activity of new triazole compounds. Lett Drug Des Discov 2010; 7(1): 41-5.
[http://dx.doi.org/10.2174/157018010789869352]
[23]
Patel NB, Khan IH, Rajani SD. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur J Med Chem 2010; 45(9): 4293-9.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.031] [PMID: 20630629]
[24]
Guan L-P, Sui X, Deng X-Q, Quan Y-C, Quan Z-S. Synthesis and anticonvulsant activity of a new 6-alkoxy-[1,2,4]triazolo[4,3-b]pyridazine. Eur J Med Chem 2010; 45(5): 1746-52.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.077] [PMID: 20116141]
[25]
Siddiqui N, Ahsan W. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening. Eur J Med Chem 2010; 45(4): 1536-43.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.062] [PMID: 20116140]
[26]
Husain A, Naseer MA, Sarafroz M. Synthesis and anticonvulsant activity of some novel fused heterocyclic 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Acta Pol Pharm 2009; 66(2): 135-40.
[PMID: 19719046]
[27]
Alswah M, Ghiaty A, El-Morsy A, El-Gamal K. Synthesis and biological evaluation of some [1, 2, 4] triazolo [4, 3-a] quinoxaline derivatives as novel anticonvulsant agents. ISRN Org Chem 2013; 2013: 587054.
[http://dx.doi.org/10.1155/2013/587054] [PMID: 24198971]
[28]
Kharb R, Sharma PC, Bhandari A, Shaharyar M. Synthesis, spectral characterization and anthelmintic evaluation of some novel imidazole bearing triazole derivatives. Der Pharmacia Lett 2012; 4(2): 652-7.
[29]
Satyendra RV, Vishnumurthy KA, Vagdevi HM, Rajesh KP, Manjunatha H, Shruthi A. Synthesis, in vitro antioxidant, anthelmintic and molecular docking studies of novel dichloro substituted benzoxazole-triazolo-thione derivatives. Eur J Med Chem 2011; 46(7): 3078-84.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.017] [PMID: 21453994]
[30]
Padmaja A, Rajasekhar C, Muralikrishna A, Padmavathi V. Synthesis and antioxidant activity of disubstituted 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazoles. J Chem Pharm Res 2012; 4(1): 294-302.
[31]
Sancak K, Ünver Y, Ünlüer D, et al. Synthesis, characterization, and antioxidant activities of new trisubstituted triazoles. Turk J Chem 2012; 36(3): 457-66.
[32]
Hameed AA, Hassan F. Synthesis, characterization and antioxidant activity of some 4-amino-5-phenyl-4h-1, 2, 4-triazole-3-thiol derivatives. Int J Appl 2014; 4: 202-11.
[33]
Bekircan O, Menteşe E, Ülker S, Kucuk C. Synthesis of some new 1,2,4-triazole derivatives starting from 3-(4-chlorophenyl)-5-(4-methoxybenzyl)-4H-1,2,4-triazol with anti-lipase and anti-urease activities. Arch Pharm (Weinheim) 2014; 347(6): 387-97.
[http://dx.doi.org/10.1002/ardp.201300344] [PMID: 24532369]
[34]
Mhasalkar MY, Shah MH, Pilankar PD, Nikam ST, Anantanarayanan KG, Deliwala CV. Synthesis and hypoglycemic activity of 3-aryl(or pyridyl)-5-alkyl(or aryl)amino-1,3,4-thiadiazoles and some sulfonylurea derivatives of 4H-1,2,4-triazoles. J Med Chem 1971; 14(10): 1000-3.
[http://dx.doi.org/10.1021/jm00292a035] [PMID: 5115675]
[35]
Wuest F, Tang X, Kniess T, Pietzsch J, Suresh M. Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives. Bioorg Med Chem 2009; 17(3): 1146-51.
[http://dx.doi.org/10.1016/j.bmc.2008.12.032] [PMID: 19157881]
[36]
Nierenberg AA, Adler LA, Peselow E, Zornberg G, Rosenthal M. Trazodone for antidepressant-associated insomnia. Am J Psychiatry 1994; 151(7): 1069-72.
[http://dx.doi.org/10.1176/ajp.151.7.1069] [PMID: 8010365]
[37]
da Silva FdeC, de Souza MC, Frugulhetti II, et al. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 2009; 44(1): 373-83.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[38]
Stefely JA, Palchaudhuri R, Miller PA, et al. N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide as a new scaffold that provides rapid access to antimicrotubule agents: Synthesis and evaluation of antiproliferative activity against select cancer cell lines. J Med Chem 2010; 53(8): 3389-95.
[http://dx.doi.org/10.1021/jm1000979] [PMID: 20334421]
[39]
Patpi SR, Pulipati L, Yogeeswari P, et al. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 2012; 55(8): 3911-22.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[40]
da Silva EN Jr, Guimarães TT, Menna-Barreto RF, et al. The evaluation of quinonoid compounds against Trypanosoma cruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1,2,3-triazoles. Bioorg Med Chem 2010; 18(9): 3224-30.
[http://dx.doi.org/10.1016/j.bmc.2010.03.029] [PMID: 20378360]
[41]
Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 2011; 6(10): 2696-718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[42]
Marino JP Jr, Fisher PW, Hofmann GA, et al. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4-triazole pharmacophore. J Med Chem 2007; 50(16): 3777-85.
[http://dx.doi.org/10.1021/jm061182w] [PMID: 17636946]
[43]
Aher NG, Pore VS, Mishra NN, et al. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 2009; 19(3): 759-63.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[44]
Li J, Zheng M, Tang W, et al. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg Med Chem Lett 2006; 16(19): 5009-13.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.047] [PMID: 16876409]
[45]
Catalán J, Sánchez-Cabezudo M, De Paz JLG, Elguero J, Taft RW, Anvia F. The tautomerism of 1,2,3-triazole, 3 (5)-methylpyrazole and their cations. J Comput Chem 1989; 10(3): 426-33.
[http://dx.doi.org/10.1002/jcc.540100318]
[46]
Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 2017; 71: 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[47]
Zhang D-W, Wang H, Li Z-T. Hydrogen Bonding Motifs: New Progresses.Hydrogen Bonded Supramolecular Structures. (1st ed). Springer-Verlag Berlin Heidelberg. 2015; pp. 1-34.
[http://dx.doi.org/10.1007/978-3-662-45756-6_1]
[48]
Urankar D, Pinter B, Pevec A, De Proft F, Turel I, Kosmrlj J. Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg Chem 2010; 49(11): 4820-9.
[http://dx.doi.org/10.1021/ic902354e] [PMID: 20441174]
[49]
Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Reactivity of Heterocycles: Reactivity of Five-membered rings with Two or More Heteroatoms. Reactivity of Heterocyclic Chemistry. (3rd ed). Oxford: Elsevier. 2010; pp. 473-605.
[50]
Raic-Malic S, Mescic A. Recent trends in 1,2,3-Triazolo-nucleosides as promising anti-infective and anticancer agents. Curr Med Chem 2015; 22(12): 1462-99.
[http://dx.doi.org/10.2174/0929867322666150227150127] [PMID: 25723510]
[51]
Kumar R, Yar MS, Chaturvedi S, Srivastava A. Triazole as pharmaceuticals potentials. Int J Pharm Tech Res 2013; 5(4): 1844-69.
[52]
Saini MS, Dwivedi J. Synthesis and biological significances of 1, 2, 4-triazole and its derivatives: A review. Int J Pharm Sci Res 2013; 4(8): 2866.
[53]
Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003; 8(24): 1128-37.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[54]
Kim S, Cho M, Lee T, Lee S, Min H-Y, Lee SK. Design, synthesis, and preliminary biological evaluation of a novel triazole analogue of ceramide. Bioorg Med Chem Lett 2007; 17(16): 4584-7.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.086] [PMID: 17561396]
[55]
Therrien C, Levesque RC. Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: Perspectives and future directions. FEMS Microbiol Rev 2000; 24(3): 251-62.
[http://dx.doi.org/10.1111/j.1574-6976.2000.tb00541.x] [PMID: 10841972]
[56]
Khan FY, Elhiday A, Khudair IF, et al. Evaluation of the use of piperacillin/tazobactam (Tazocin) at Hamad General Hospital, Qatar: are there unjustified prescriptions? Infect Drug Resist 2012; 5: 17-21.
[http://dx.doi.org/10.2147/IDR.S27965] [PMID: 22294859]
[57]
Blackwell CC, Freimer EH, Tuke GC. In vitro evaluation of the new oral cephalosporin cefatrizine: Comparison with other cephalosporins. Antimicrob Agents Chemother 1976; 10(2): 288-92.
[http://dx.doi.org/10.1128/AAC.10.2.288] [PMID: 984771]
[58]
Karadi RL, Gow D, Kellett M, Denning DW, O’Driscoll RB. Itraconazole associated quadriparesis and edema: A case report. J Med Case Reports 2011; 5(1): 140.
[http://dx.doi.org/10.1186/1752-1947-5-140] [PMID: 21477327]
[59]
Heeres J, Backx LJ, Van Cutsem J. Antimycotic azoles. 7. Synthesis and antifungal properties of a series of novel triazol-3-ones. J Med Chem 1984; 27(7): 894-900.
[http://dx.doi.org/10.1021/jm00373a015] [PMID: 6330360]
[60]
Lee YK, Fothergill AW. In vitro antifungal activities of amphotericin B, fluconazole, itraconazole, terbinafine, caspofungin, voriconazole, and posaconazole against 30 clinical isolates of Cryptococcus neoformans var. neoformancs. Mycobiol 2003; 31(2): 95-8.
[http://dx.doi.org/10.4489/MYCO.2003.31.2.095]
[61]
Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II. Posaconazole: A broad-spectrum triazole antifungal. Lancet Infect Dis 2005; 5(12): 775-85.
[http://dx.doi.org/10.1016/S1473-3099(05)70297-8] [PMID: 16310149]
[62]
Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 2006; 3(11): e466.
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[63]
Bryson HM, Brogden RN. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1994; 47(3): 506-35.
[http://dx.doi.org/10.2165/00003495-199447030-00008] [PMID: 7514977]
[64]
Neu HC, Fu KP. Cefatrizine activity compared with that of other cephalosporins. Antimicrob Agents Chemother 1979; 15(2): 209-12.
[http://dx.doi.org/10.1128/AAC.15.2.209] [PMID: 426514]
[65]
Hussain MM, Kotz H, Minasian L, et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol 2003; 21(23): 4356-63.
[http://dx.doi.org/10.1200/JCO.2003.04.136] [PMID: 14645425]
[66]
Das K, Bauman JD, Rim AS, et al. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 2011; 54(8): 2727-37.
[http://dx.doi.org/10.1021/jm101536x] [PMID: 21446702]
[67]
Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008 - 2011). Expert Opin Ther Pat 2013; 23(3): 319-31.
[http://dx.doi.org/10.1517/13543776.2013.749862] [PMID: 23289412]
[68]
Lauria A, Delisi R, Mingoia F, et al. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur J Org Chem 2014; (16): 3289-306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[69]
Akselsen ØW, Odlo K, Cheng J-J, Maccari G, Botta M, Hansen TV. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg Med Chem 2012; 20(1): 234-42.
[http://dx.doi.org/10.1016/j.bmc.2011.11.010] [PMID: 22137934]
[70]
Mur Blanch N, Chabot GG, Quentin L, Scherman D, Bourg S, Dauzonne D. In vitro and in vivo biological evaluation of new 4,5-disubstituted 1,2,3-triazoles as cis-constrained analogs of combretastatin A4. Eur J Med Chem 2012; 54: 22-32.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.017] [PMID: 22647220]
[71]
Odlo K, Hentzen J, dit Chabert JF, et al. 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg Med Chem 2008; 16(9): 4829-38.
[http://dx.doi.org/10.1016/j.bmc.2008.03.049] [PMID: 18396050]
[72]
Madadi NR, Penthala NR, Howk K, et al. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2 3-triazoles as cis-constrained analogues of combretastatin A-4. Eur J Med Chem 2015; 103: 123-32.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.041] [PMID: 26352674]
[73]
Penthala NR, Madhukuri L, Thakkar S, et al. Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anti-cancer agents. MedChemComm 2015; 6(8): 1535-43.
[http://dx.doi.org/10.1039/C5MD00219B] [PMID: 27066215]
[74]
Lee Y-S, Park SM, Kim HM, et al. C5-Modified nucleosides exhibiting anticancer activity. Bioorg Med Chem Lett 2009; 19(16): 4688-91.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.072] [PMID: 19596579]
[75]
Feld JJ, Hoofnagle JH. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 2005; 436(7053): 967-72.
[http://dx.doi.org/10.1038/nature04082] [PMID: 16107837]
[76]
Ostrowski T, Januszczyk P, Cieslak M, et al. 5-Ethynyl-1-β-D-ribofuranosyl-1H-[1,2,3]triazole-4-carboxylic acid amide (ETCAR) and its analogues: synthesis and cytotoxic properties. Bioorg Med Chem 2011; 19(14): 4386-98.
[http://dx.doi.org/10.1016/j.bmc.2011.05.050] [PMID: 21684167]
[77]
El Akri K, Bougrin K, Balzarini J, Faraj A, Benhida R. Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides. Bioorg Med Chem Lett 2007; 17(23): 6656-9.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.077] [PMID: 17931862]
[78]
Driowya M, Puissant A, Robert G, Auberger P, Benhida R, Bougrin K. Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1,2,3-triazole nucleobase under iron-copper catalysis. Ultrason Sonochem 2012; 19(6): 1132-8.
[http://dx.doi.org/10.1016/j.ultsonch.2012.04.007] [PMID: 22595539]
[79]
Cho JH, Bernard DL, Sidwell RW, Kern ER, Chu CK. Synthesis of cyclopentenyl carbocyclic nucleosides as potential antiviral agents against orthopoxviruses and SARS. J Med Chem 2006; 49(3): 1140-8.
[http://dx.doi.org/10.1021/jm0509750] [PMID: 16451078]
[80]
Xia Y, Wang M, Demaria O, et al. A novel bitriazolyl acyclonucleoside endowed with dual antiproliferative and immunomodulatory activity. J Med Chem 2012; 55(11): 5642-6.
[http://dx.doi.org/10.1021/jm300534u] [PMID: 22578090]
[81]
Park SM, Yang H, Park S-K, Kim HM, Kim BH. Design, synthesis, and anticancer activities of novel perfluoroalkyltriazole-appended 2′-deoxyuridines. Bioorg Med Chem Lett 2010; 20(19): 5831-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.126] [PMID: 20732810]
[82]
Yu J-L, Wu Q-P, Zhang Q-S, et al. Synthesis and antitumor activity of novel 2′,3′-diethanethio-2′,3′,5′-trideoxy-5′-triazolonucleoside analogues. Eur J Med Chem 2010; 45(7): 3219-22.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.038] [PMID: 20409617]
[83]
Mahesh Kumar J, Idris MM, Srinivas G, et al. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3′-azido deoxythymidine. PLoS One 2013; 8(8): e70798.
[http://dx.doi.org/10.1371/journal.pone.0070798] [PMID: 23976957]
[84]
Assouline S, Culjkovic B, Cocolakis E, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): A proof-of-principle clinical trial with ribavirin. Blood 2009; 114(2): 257-60.
[http://dx.doi.org/10.1182/blood-2009-02-205153] [PMID: 19433856]
[85]
Sanghvi YS, Bhattacharya BK, Kini GD, et al. Growth inhibition and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 1990; 33(1): 336-44.
[http://dx.doi.org/10.1021/jm00163a054] [PMID: 2296029]
[86]
da Silva FdC, do Carmo Cardoso MF, Ferreira PG, et al. Biological Properties of 1H-1,2,3-and 2H-1,2,3-Triazoles.Chemistry of 1,2,3-triazoles: 1st ed . Berlin: Heidelberg: Springer-Verlag. 2014; pp. 117-165..
[87]
Li X, Lin Y, Wang Q, Yuan Y, Zhang H, Qian X. The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: Synthesis, cytotoxicity, DNA intercalation and photocleavage. Eur J Med Chem 2011; 46(4): 1274-9.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.050] [PMID: 21345546]
[88]
Majeed R, Sangwan PL, Chinthakindi PK, et al. Synthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agents. Eur J Med Chem 2013; 63: 782-92.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.028] [PMID: 23584541]
[89]
Driscoll JS. Quinone structure-antitumor activity relationships. Cancer Chemother Rep 2 1974; 4(4): 3-4.
[PMID: 4475612]
[90]
da Silva Júnior EN, de Moura MAB, Pinto AV. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-β-lapachone-based 1,2,3-triazoles. J Braz Chem Soc 2009; 20(4): 635-43.
[http://dx.doi.org/10.1590/S0103-50532009000400007]
[91]
Duan Y-C, Ma Y-C, Zhang E, et al. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem 2013; 62: 11-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[92]
Duan Y-C, Zheng Y-C, Li X-C, et al. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole-dithiocarbamate-urea hybrids. Eur J Med Chem 2013; 64: 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.058] [PMID: 23644193]
[93]
Reddy DM, Srinivas J, Chashoo G, Saxena AK, Sampath Kumar HM. 4β-[(4-Alkyl)-1,2,3-triazol-1-yl] podophyllotoxins as anticancer compounds: Design, synthesis and biological evaluation. Eur J Med Chem 2011; 46(6): 1983-91.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.016] [PMID: 21477899]
[94]
Canals D, Mormeneo D, Fabriàs G, Llebaria A, Casas J, Delgado A. Synthesis and biological properties of Pachastrissamine (jaspine B) and diastereoisomeric jaspines. Bioorg Med Chem 2009; 17(1): 235-41.
[http://dx.doi.org/10.1016/j.bmc.2008.11.026] [PMID: 19056278]
[95]
Salma Y, Lafont E, Therville N, et al. The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 2009; 78(5): 477-85.
[http://dx.doi.org/10.1016/j.bcp.2009.05.002] [PMID: 19433071]
[96]
Yoshimitsu Y, Oishi S, Miyagaki J, Inuki S, Ohno H, Fujii N. Pachastrissamine (jaspine B) and its stereoisomers inhibit sphingosine kinases and atypical protein kinase C. Bioorg Med Chem 2011; 19(18): 5402-8.
[http://dx.doi.org/10.1016/j.bmc.2011.07.061] [PMID: 21868240]
[97]
Xu J-M, Zhang E, Shi X-J, et al. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur J Med Chem 2014; 80: 593-604.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.022] [PMID: 24835817]
[98]
Scott CW, Sobotka-Briner C, Wilkins DE, et al. Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J Pharmacol Exp Ther 2003; 304(1): 433-40.
[http://dx.doi.org/10.1124/jpet.102.039651] [PMID: 12490620]
[99]
Corredor M, Bujons J, Orzáez M, et al. Optimizing the control of apoptosis by amide/triazole isosteric substitution in a constrained peptoid. Eur J Med Chem 2013; 63: 892-6.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.004] [PMID: 23624308]
[100]
Gregorić T, Sedić M, Grbčić P, et al. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation. Eur J Med Chem 2017; 125: 1247-67.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.028] [PMID: 27875779]
[101]
Kamal A, Shankaraiah N, Devaiah V, et al. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg Med Chem Lett 2008; 18(4): 1468-73.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.063] [PMID: 18207392]
[102]
Saikia B, Barua NC, Saikia PP, et al. 1,2,3-Triazole Containing Artemisinin Compounds and Process for Preparation Thereof. US9006467, 2015.
[103]
Lauria A, Abbate I, Patella C, Martorana A, Dattolo G, Almerico AM. New annelated thieno[2,3-e][1,2,3]triazolo [1,5-a] pyrimidines, with potent anticancer activity, designed through VLAK protocol. Eur J Med Chem 2013; 62: 416-24.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.019] [PMID: 23395722]
[104]
Ramasamy K, Tam R, Averett D. Monocyclic L-nucleosides, analogs and uses thereof. US6642206, 2003.
[105]
Penthala NR, Sonar VN, Horn J, Leggas M, Yadlapalli JSK, Crooks PA. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. MedChemComm 2013; 4(7): 1073-8.
[http://dx.doi.org/10.1039/c3md00130j] [PMID: 23956835]
[106]
Penthala NR, Madadi NR, Janganati V, Crooks PA. L-Proline catalyzed one-step synthesis of 4,5-diaryl-2H-1,2,3-triazoles from heteroaryl cyanostilbenes via [3+2] cycloaddition of azide. Tetrahedron Lett 2014; 55(40): 5562-5.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.027] [PMID: 25267862]
[107]
Cardoso MF, Rodrigues PC, Oliveira MEI, et al. Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines. Eur J Med Chem 2014; 84: 708-17.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.079] [PMID: 25064348]
[108]
Kamal A, Prabhakar S, Janaki Ramaiah M, et al. Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 2011; 46(9): 3820-31.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.050] [PMID: 21676506]
[109]
Carr M, Greene LM, Knox AJ, Lloyd DG, Zisterer DM, Meegan MJ. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur J Med Chem 2010; 45(12): 5752-66.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.033] [PMID: 20933304]
[110]
Singh P, Raj R, Kumar V, et al. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur J Med Chem 2012; 47(1): 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[111]
Salmon AJ, Williams ML, Wu QK, et al. Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J Med Chem 2012; 55(11): 5506-17.
[http://dx.doi.org/10.1021/jm300427m] [PMID: 22540953]
[112]
Winum JY, Poulsen SA, Supuran CT. Therapeutic applications of glycosidic carbonic anhydrase inhibitors. Med Res Rev 2009; 29(3): 419-35.
[http://dx.doi.org/10.1002/med.20141] [PMID: 19058143]
[113]
Lopez M, Salmon AJ, Supuran CT, Poulsen SA. Carbonic anhydrase inhibitors developed through ‘click tailing’. Curr Pharm Des 2010; 16(29): 3277-87.
[http://dx.doi.org/10.2174/138161210793429869] [PMID: 20819066]
[114]
Salmon AJ, Williams ML, Innocenti A, Vullo D, Supuran CT, Poulsen S-A. Inhibition of carbonic anhydrase isozymes I, II and IX with benzenesulfonamides containing an organometallic moiety. Bioorg Med Chem Lett 2007; 17(18): 5032-5.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.024] [PMID: 17681760]
[115]
Singh A, Saha ST, Perumal S, Kaur M, Kumar V. Azide-alkyne cycloaddition en route to 1 H-1,2,3-triazole-tethered isatin-ferrocene, ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: Synthesis and antiproliferative evaluation. ACS Omega 2018; 3(1): 1263-8.
[http://dx.doi.org/10.1021/acsomega.7b01755] [PMID: 30023800]
[116]
Heston , Warren DW, Cramer H. Compounds which bind PSMA and uses thereof. WO2006093991, 2007.
[117]
Beusker PH, De Groot FMH. Triazole-containing releasable linkers, conjugates thereof, and methods of preparation. US8158590, 2012.
[118]
Cheng Z-Y, Li W-J, He F, Zhou J-M, Zhu X-F. Synthesis and biological evaluation of 4-aryl-5-cyano-2H-1,2,3-triazoles as inhibitor of HER2 tyrosine kinase. Bioorg Med Chem 2007; 15(3): 1533-8.
[http://dx.doi.org/10.1016/j.bmc.2006.09.041] [PMID: 17174554]
[119]
Elamari H, Slimi R, Chabot GG, Quentin L, Scherman D, Girard C. Synthesis and in vitro evaluation of potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur J Med Chem 2013; 60: 360-4.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.025] [PMID: 23314049]
[120]
Bollu R, Palem JD, Bantu R, et al. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur J Med Chem 2015; 89: 138-46.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[121]
Tian L, Sun Y, Li H, et al. Synthesis, characterization and biological activity of triorganotin 2-phenyl-1,2,3-triazole-4-carboxylates. J Inorg Biochem 2005; 99(8): 1646-52.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.05.006] [PMID: 15967504]
[122]
Pokhodylo N, Shyyka O, Matiychuk V. Synthesis of 1,2,3-triazole derivatives and evaluation of their anticancer activity. Sci Pharm 2013; 81(3): 663-76.
[http://dx.doi.org/10.3797/scipharm.1302-04] [PMID: 24106665]
[123]
Kallander LS, Lu Q, Chen W, et al. 4-Aryl-1,2,3-triazole: A novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J Med Chem 2005; 48(18): 5644-7.
[http://dx.doi.org/10.1021/jm050408c] [PMID: 16134930]
[124]
Ashwini N, Garg M, Mohan CD, et al. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation. Bioorg Med Chem 2015; 23(18): 6157-65.
[http://dx.doi.org/10.1016/j.bmc.2015.07.069] [PMID: 26299825]
[125]
Nara E. Medicinal compositions having improved absorbability. US20040053972, 2001.
[126]
Miller M J, Moraski G C, Stefely J. Anti-cancer compounds, synthesis thereof, and methods of using same. US8268874, 2012.
[127]
Madadi N R, Penthala N R, Crooks P, Maddukuri L, Eoff R. Disubstituted triazole analogs. US9938246, 2018.
[128]
Kohn E C, Liotta L A, Felder C C. 1,2,3-triazole and imidazole compounds and their antitumor use. CA2136356, 2006.
[129]
Friebe W-G, Reiff U, von Hirschheydt T, Voss E. Triazole derivatives. US7288557B2, 2007.
[130]
Karmali RA. Methods and compositions for enhancing sensitivity of cytotoxic drugs with timely combinatorial therapy with carboxyamidotriazole orotate. US8877785, 2014.
[131]
Cheng H, Cui J J, Hoffman J E, et al. Triazolopyrazine derivatives useful as anti-cancer agents. EA016204, 2012.
[132]
Demko Z, Borella C, Chen S, Sun L. Compounds for the treatment of proliferative disorders. US9175022, 2015.
[133]
Naito K, Furuya S, Tasaka A, Ban T. Compounds for the treatment of proliferative disorders. US9175022, 2004.
[134]
Bossenmaier B, Friebe W-G, Georges G, Rueth M, Voss E. Pentafluorosulfanyl compounds. US7235574, 2005.
[135]
Cogan D, Goldberg D R, Hammach A, Netherton M R, Aungst R. Triazole compounds. US7511042, 2009.
[136]
Do S, Goldsmith R, Heffron T, et al. Benzopyran and benzoxepin PI3K inhibitor compounds and methods of use. US9309265, 2016.
[137]
Frost P, Discafani-Marro C M. Nsaid and efgr kinase inhibitor containing composition for the treatment or inhibition of colonic polyps and colorectal cancer. CA2380904, 2009.
[138]
Wissner A, Tsou H-R, Floyd M, Johnson B, Overbeek-Klumpers E. Overbeek-Klumpers, E. 3-cyanoquinolines as inhibitors of EGF-R and HER2 kinases. US20030149056, 2003.
[139]
Norris D J, DeLucca G V, Gavai A V, Lee F Y, Tokarski J S. Tricyclic compounds as anticancer agents. US10112941, 2018.
[140]
Boman E, Ernst J, Montalban A G, et al. Heteroaryl derivatives as cytokine inhibitors. WO2008021388, 2007.
[141]
Hale M R, Maltais F. Triazole-derived kinase inhibitors and uses thereof. US6962936, 2005.
[142]
Hupe D. 5-amino or substituted amino 1,2,3-triazoles useful as antimetastatic agents. US5045543, 1991.
[143]
Dorsch D, Wucherer-Plietker M, Mueller T J J, Merkul E. 3-(1,2,3-triazol-4-yl)pyrrolo[2,3-b]pyridine derivatives. US8541584, 2013.
[144]
Cogan D A, Hao M-H, Quian K C, Swinamer A D. Cytokine inhibitors. US7569568, 2009.
[145]
Hoekstra W J, Schotzinger R J, Rafferty S W. Metalloenzyme inhibitor compounds. US8623892, 2014.
[146]
Kohn E C, Liotta L A. Therapeutic application of an anti-invasive compound. US5132315, 1992.
[147]
Komeda S, Lutz M, Spek AL, et al. A novel isomerization on interaction of antitumor-active azole-bridged dinuclear platinum(II) complexes with 9-ethylguanine. Platinum(II) atom migration from N2 to N3 on 1,2,3-triazole. J Am Chem Soc 2002; 124(17): 4738-46.
[http://dx.doi.org/10.1021/ja0168559] [PMID: 11971723]
[148]
Bratsos I, Urankar D, Zangrando E, et al. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans 2011; 40(19): 5188-99.
[http://dx.doi.org/10.1039/c0dt01807d] [PMID: 21465046]
[149]
Kim E-M, Joung M-H, Lee C-M, et al. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent. Bioorg Med Chem Lett 2010; 20(14): 4240-3.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.036] [PMID: 20538463]
[150]
Hockey SC, Barbante GJ, Francis PS, et al. A comparison of novel organoiridium(III) complexes and their ligands as a potential treatment for prostate cancer. Eur J Med Chem 2016; 109: 305-13.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.035] [PMID: 26802546]
[151]
Pages BJ, Sakoff J, Gilbert J, et al. Investigating the cytotoxicity of platinum(II) complexes incorporating bidentate pyridyl-1,2,3-triazole “click” ligands. J Inorg Biochem 2016; 165: 92-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.06.017] [PMID: 27389828]
[152]
Riedl CA, Flocke LS, Hejl M, et al. Introducing the 4-phenyl-1,2,3-triazole moiety as a versatile scaffold for the development of cytotoxic ruthenium (II) and osmium (II) arene cyclometalates. Inorg Chem 2017; 56(1): 528-41.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02430] [PMID: 27996251]
[153]
Riedl CA, Hejl M, Klose MHM, et al. N- and S-donor leaving groups in triazole-based ruthena(ii)cycles: Potent anticancer activity, selective activation, and mode of action studies. Dalton Trans 2018; 47(13): 4625-38.
[http://dx.doi.org/10.1039/C8DT00449H] [PMID: 29520401]
[154]
Maisonial A, Serafin P, Traïkia M, et al. Click chelators for platinum-based anticancer drugs. Eur J Inorg Chem 2008; 2008(2): 298-305.
[http://dx.doi.org/10.1002/ejic.200700849]
[155]
Singh K, Gangrade A, Jana A, Mandal BB, Das N. Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1, 2, 3-triazole ring. ACS Omega 2019; 4(1): 835-41.
[http://dx.doi.org/10.1021/acsomega.8b02849] [PMID: 31459480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy