Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Effect of Stachy sieboldii MIQ. Supplementation on Modulating Gut Microflora and Cytokine Expression in Mice

Author(s): Eun Na, Ki Hwan Moon and Sun Young Lim*

Volume 24, Issue 2, 2021

Published on: 15 June, 2020

Page: [177 - 186] Pages: 10

DOI: 10.2174/1386207323666200615143627

Price: $65

conference banner
Abstract

Aims and Objectives: The intake of Stachys sieboldii MIQ. has been associated with relieving inflammation and maintaining optimal gut health function. We investigated the diversity and composition of microflora in feces of S. sieboldii MIQ.-fed mice. In addition, we evaluated the production of major cytokines (Interleukin-6 and -10) related to inflammation and fatty acid composition of several tissues.

Materials and Methods: 16S ribosomal DNA sequencing-based microbiome taxonomic profiling analysis was performed using EzBioCloud data base. The total RNA from the mesenteric lymph node was isolated and then synthesized with prime script 1st strand cDNA synthesis kit. Quantitative real-time PCR was performed on cDNA samples using the SYBR™ Green PCR Master Mix.

Results: Mice fed on S. sieboldii MIQ. showed significantly reduced counts of aerobic and coliform in the feces compared with control. 16S rDNA sequencing analysis of fecal samples showed that supplementation with S. sieboldii MIQ. increased beneficial intestinal microflora (Ruminococcaceae and Akkermansia muciniphila) and decreased the community of harmful microflora (Enterobacteriaceae, including Escherichia coli and Bacteroides sp.) in feces compared with that in the control (P<0.05 for all). Mice showed a significantly lower mRNA expression of cytokines IL-6 and IL-10 in mesenteric lymph node compared with that in control (P<0.05). The fecal fatty acid composition in the S. sieboldii MIQ. group showed a higher percentage of 6:0 and 18:2n-6 compared with that in the control group (P<0.05). The percentages of 6:0 and 20:3n-6 fatty acids were also significantly higher in the intestines of S. sieboldii MIQ. group (P<0.05). No differences were revealed between the two groups in terms of the percentages of total saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids found in feces and tissues.

Conclusion: The present results showed that supplementation of mice with S. sieboldii MIQ. increased beneficial gut microflora and decreased harmful microflora. Moreover, lower mRNA expression of pro-inflammatory cytokine IL-6, and anti-inflammatory cytokine IL-10 in the mesenteric lymph node of supplemented mice might be associated with the lower abundances of harmful fecal microflora.

Keywords: Stachys sieboldii MIQ., intestinal microflora, 16S rDNA sequencing, Pro- and anti-inflammatory cytokines, fatty acid composition, coliforms.

[1]
Ryu, B.H.; Kim, S.O. Effects of methanol extract of Stachys sieboldii MIQ on acetylcholine esterase and monoamine oxidase in rat brain. Kor. J. Food Nutr., 2004, 17(4), 347-355.
[2]
Lee, J.E.; Jin, Y.J.; Han, Y.S. Antioxidant activities and quality characteristics of tofu supplemented with Chinese artichoke powder. Kor. J. Food Nutr., 2014, 27(1), 10-21.
[http://dx.doi.org/10.9799/ksfan.2014.27.1.010]
[3]
Kim, Y.K.; Son, H.K.; Lee, J.J. Nutritional components and antioxidant activities of various Stachys sieboldii MIQ parts. Kor. J. Community Living Sci., 2017, 28(2), 203-215.
[http://dx.doi.org/10.7856/kjcls.2017.28.2.203]
[4]
Hayashi, K.; Nagamatsu, T.; Ito, M.; Hattori, T.; Suzuki, Y. Acetoside, a component of Stachys sieboldii MIQ, may be a promising antinephritic agent: effect of acteoside on crescentic-type anti-GBM nephritis in rats. Jpn. J. Pharmacol., 1994, 65(2), 143-151.
[http://dx.doi.org/10.1254/jjp.65.143] [PMID: 7526020]
[5]
Yin, J.; Yang, G.; Wang, S.; Chen, Y. Purification and determination of stachyose in Chinese artichoke (Stachys sieboldii MIQ.) by high-performance liquid chromatography with evaporative light scattering detection. Talanta, 2006, 70(1), 208-212.
[http://dx.doi.org/10.1016/j.talanta.2006.03.027] [PMID: 18970754]
[6]
Feng, K.; Chen, W.; Sun, L.; Liu, J.; Zhao, Y.; Li, L.; Wang, Y.; Zhang, W. Optimization extraction, preliminary characterization and antioxidant activity in vitro of polysaccharides from Stachys sieboldii Miq. tubers. Carbohydr. Polym., 2015, 125, 45-52.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.026] [PMID: 25857958]
[7]
Chen, R.; Liu, Z.; Zhao, J.; Chen, R.; Meng, F.; Zhang, M.; Ge, W. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chem., 2011, 127(2), 434-440.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.143] [PMID: 23140683]
[8]
Zhao, T.; Mao, G.; Mao, R.; Zou, Y.; Zheng, D.; Feng, W.; Ren, Y.; Wang, W.; Zheng, W.; Song, J.; Chen, Y.; Yang, L.; Wu, X. Antitumor and immunomodulatory activity of a water-soluble low molecular weight polysaccharide from Schisandra chinensis (Turcz.). Baill. Food Chem. Toxicol., 2013, 55, 609-616.
[http://dx.doi.org/10.1016/j.fct.2013.01.041] [PMID: 23416131]
[9]
Wang, Z.; Wang, C.; Quan, Y. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro. Carbohydr. Polym., 2014, 99, 110-115.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.073] [PMID: 24274486]
[10]
Wang, Z.; Wang, C.; Su, T.; Zhang, J. Antioxidant and immunological activities of polysaccharides from Gentiana scabra Bunge roots. Carbohydr. Polym., 2014, 112, 114-118.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.077] [PMID: 25129724]
[11]
Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res., 2013, 69(1), 52-60.
[http://dx.doi.org/10.1016/j.phrs.2012.10.020] [PMID: 23147033]
[12]
Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Joossens, M.; Raes, J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65(1), 57-62.
[http://dx.doi.org/10.1136/gutjnl-2015-309618] [PMID: 26069274]
[13]
Nie, Q.; Hu, J.; Gao, L.; Fan, L.; Chen, H.; Nie, S. Polysaccharide from Planntago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll., 2019, 86, 34-43.
[http://dx.doi.org/10.1016/j.foodhyd.2017.12.026]
[14]
Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; Yu, L.; Xu, C.; Ren, Z.; Xu, Y.; Xu, S.; Shen, H.; Zhu, X.; Shi, Y.; Shen, Q.; Dong, W.; Liu, R.; Ling, Y.; Zeng, Y.; Wang, X.; Zhang, Q.; Wang, J.; Wang, L.; Wu, Y.; Zeng, B.; Wei, H.; Zhang, M.; Peng, Y.; Zhang, C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359(6380), 1151-1156.
[http://dx.doi.org/10.1126/science.aao5774] [PMID: 29590046]
[15]
Zimmer, J.; Lange, B.; Frick, J.S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr., 2012, 66(1), 53-60.
[http://dx.doi.org/10.1038/ejcn.2011.141] [PMID: 21811294]
[16]
Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[17]
Tung, D.; Cheung, P.H.; Tudor, G.; Booth, C.; Saha, S. In vivo effects of immunomodulators in a murine model of Fluorouracil-induced mucositis. Curr. Ther. Res. Clin. Exp., 2011, 72(6), 262-272.
[http://dx.doi.org/10.1016/j.curtheres.2011.11.003] [PMID: 24648594]
[18]
Goldsmith, J.R.; Sartor, R.B. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol., 2014, 49(5), 785-798.
[http://dx.doi.org/10.1007/s00535-014-0953-z] [PMID: 24652102]
[19]
Li, H.L.; Lu, L.; Wang, X.S.; Qin, L.Y.; Wang, P.; Qiu, S.P.; Wu, H.; Huang, F.; Zhang, B.B.; Shi, H.L.; Wu, X.J. Alteration of gut microbiota and inflammatory cytokine/chemokine profiles in 5-fluorouracil induced intestinal mucositis. Front. Cell. Infect. Microbiol., 2017, 7, 455.
[http://dx.doi.org/10.3389/fcimb.2017.00455] [PMID: 29124041]
[20]
Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951.
[http://dx.doi.org/10.1093/jn/123.11.1939] [PMID: 8229312]
[21]
Park, Y.H.; Seo, K.S.; Ahn, J.S.; Yoo, H.S.; Kim, S.P. Evaluation of the petrifilm plate method for the enumeration of aerobic microorganisms and coliforms in retailed meat samples. J. Food Prot., 2001, 64(11), 1841-1843.
[http://dx.doi.org/10.4315/0362-028X-64.11.1841] [PMID: 11726171]
[22]
Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol., 2017, 67(5), 1613-1617.
[http://dx.doi.org/10.1099/ijsem.0.001755] [PMID: 28005526]
[23]
Kim, J.Y.; Cho, M.K.; Choi, S.H.; Lee, K.H.; Ahn, S.C.; Kim, D.H.; Yu, H.S. Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-β production by galectin-9 homologues isolated from intestinal parasites. Mol. Biochem. Parasitol., 2010, 174(1), 53-61.
[http://dx.doi.org/10.1016/j.molbiopara.2010.06.014] [PMID: 20603157]
[24]
Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[PMID: 13428781]
[25]
Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res., 1964, 5(4), 600-608.
[PMID: 14221106]
[26]
Salem, N;Jr;; Reyzer, M.; Karanian, J. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids, 1996, 31(1part2)(Suppl.), S153-S156.
[http://dx.doi.org/10.1007/BF02637068] [PMID: 8729111]
[27]
Candela, M.; Turroni, S.; Biagi, E.; Carbonero, F.; Rampelli, S.; Fiorentini, C.; Brigidi, P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol., 2014, 20(4), 908-922.
[http://dx.doi.org/10.3748/wjg.v20.i4.908] [PMID: 24574765]
[28]
Galdeano, C.M.; de Moreno de LeBlanc, A.; Vinderola, G.; Bonet, M.E.; Perdigón, G. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clin. Vaccine Immunol., 2007, 14(5), 485-492.
[http://dx.doi.org/10.1128/CVI.00406-06] [PMID: 17360855]
[29]
Li, T.; Lu, X.; Yang, X. Evaluation of clinical safety and beneficial effects of stachyose-enriched α-galacto-oligosaccharides on gut microbiota and bowel function in humans. Food Funct., 2017, 8(1), 262-269.
[http://dx.doi.org/10.1039/C6FO01290F] [PMID: 28001151]
[30]
Johnson, R.W. Inhibition of growth by pro-inflammatory cytokines: an integrated view. J. Anim. Sci., 1997, 75(5), 1244-1255.
[http://dx.doi.org/10.2527/1997.7551244x] [PMID: 9159271]
[31]
McCurry, K.R.; Campbell, D.A., Jr; Scales, W.E.; Warren, J.S.; Remick, D.G. Tumor necrosis factor, interleukin 6, and the acute phase response following hepatic ischemia/reperfusion. J. Surg. Res., 1993, 55(1), 49-54.
[http://dx.doi.org/10.1006/jsre.1993.1107] [PMID: 7692134]
[32]
Mosmann, T.R. Properties and functions of interleukin-10. Adv. Immunol., 1994, 56, 1-26.
[http://dx.doi.org/10.1016/S0065-2776(08)60449-6] [PMID: 8073945]
[33]
Liu, G.; Bei, J.; Liang, L.; Yu, G.; Li, L.; Li, Q. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type-2 diabetes in rats. Mol. Nutr. Food Res., 2018, 62(6)e1700954
[http://dx.doi.org/10.1002/mnfr.201700954] [PMID: 29341443]
[34]
Qian, Y.; Zhao, X.; Song, J.L.; Zhu, K.; Sun, P.; Li, G.J.; Wang, R.; Kan, J.Q. Inhibitory effects of resistant starch (RS3) as a carrier for stachyose on dextran sulfate sodium-induced ulcerative colitis in C57BL/6 mice. Exp. Ther. Med., 2013, 6(5), 1312-1316.
[http://dx.doi.org/10.3892/etm.2013.1280] [PMID: 24223664]
[35]
van den Bogert, B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One, 2014, 9(12)e114277
[http://dx.doi.org/10.1371/journal.pone.0114277] [PMID: 25479553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy