Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Systems Biology Approach for miRNA-mRNA Expression Patterns Analysis in Rheumatoid Arthritis

Author(s): Fataneh Tavasolian, Ahmad Zavaran Hosseini*, Sara Soudi, Mahmood Naderi and Amirhossein Sahebkar

Volume 24, Issue 2, 2021

Published on: 05 June, 2020

Page: [195 - 212] Pages: 18

DOI: 10.2174/1386207323666200605150024

Price: $65

conference banner
Abstract

Objective: Considering the molecular complexity and heterogeneity of rheumatoid arthritis (RA), the identification of novel molecular contributors involved in RA initiation and progression using systems biology approaches will open up potential therapeutic strategies. The bioinformatics method allows the detection of associated miRNA-mRNA as both therapeutic and prognostic targets for RA.

Methods: This research used a system biology approach based on a systematic re-analysis of the RA-related microarray datasets in the NCBI Gene Expression Omnibus (GEO) database to find out deregulated miRNAs. We then studied the deregulated miRNA-mRNA using Enrichr and Molecular Signatures Database (MSigDB) to identify novel RA-related markers followed by an overview of miRNA-mRNA interaction networks and RA-related pathways.

Results: This research mainly focused on mRNA and miRNA interactions in all tissues and blood/serum associated with RA to obtain a comprehensive knowledge of RA. Recent systems biology approach analyzed seven independent studies and presented important RA-related deregulated miRNAs (miR-145-5p, miR-146a-5p, miR-155-5p, miR-15a-5p, miR-29c-3p, miR- 103a-3p, miR-125a-5p, miR-125b-5p, miR-218); upregulation of miR-125b is shown in the study (GSE71600). While the findings of the Enrichr showed cytokine and vitamin D receptor pathways and inflammatory pathways. Further analysis revealed a negative correlation between the vitamin D receptor (VDR) and miR-125b in RA-associated gene expression.

Conclusion: Since vitamin D is capable of regulating the immune homeostasis and decreasing the autoimmune process through its receptor (VDR), it is regarded as a potential target for RA. According to the results obtained, a comparative correlation between negative expression of the vitamin D receptor (VDR) and miR-125b was suggested in RA. The increasing miR-125b expression would reduce the VitD uptake through its receptor.

Keywords: Rheumatoid arthritis, microRNA, signaling pathway, systems biology, miRNA, vitamin D.

[1]
Müller-Ladner, U.; Pap, T.; Gay, R.E.; Neidhart, M.; Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol., 2005, 1(2), 102-110.
[http://dx.doi.org/10.1038/ncprheum0047] [PMID: 16932639]
[2]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429-442.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[3]
Hirota, K.; Yoshitomi, H.; Hashimoto, M.; Maeda, S.; Teradaira, S.; Sugimoto, N.; Yamaguchi, T.; Nomura, T.; Ito, H.; Nakamura, T.; Sakaguchi, N.; Sakaguchi, S. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med., 2007, 204(12), 2803-2812.
[http://dx.doi.org/10.1084/jem.20071397] [PMID: 18025126]
[4]
Weyand, C.M.; Fujii, H.; Shao, L.; Goronzy, J.J. Rejuvenating the immune system in rheumatoid arthritis. Nat. Rev. Rheumatol., 2009, 5(10), 583-588.
[http://dx.doi.org/10.1038/nrrheum.2009.180] [PMID: 19798035]
[5]
McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med., 2011, 365(23), 2205-2219.
[http://dx.doi.org/10.1056/NEJMra1004965] [PMID: 22150039]
[6]
Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; Combe, B.; Costenbader, K.H.; Dougados, M.; Emery, P.; Ferraccioli, G.; Hazes, J.M.; Hobbs, K.; Huizinga, T.W.; Kavanaugh, A.; Kay, J.; Kvien, T.K.; Laing, T.; Mease, P.; Ménard, H.A.; Moreland, L.W.; Naden, R.L.; Pincus, T.; Smolen, J.S.; Stanislawska-Biernat, E.; Symmons, D.; Tak, P.P.; Upchurch, K.S.; Vencovský, J.; Wolfe, F.; Hawker, G. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum., 2010, 62(9), 2569-2581.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[7]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[8]
Bushati, N.; Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol., 2007, 23, 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[9]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[10]
Bracken, C.P.; Scott, H.S.; Goodall, G.J. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet., 2016, 17(12), 719-732.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[11]
Mehta, A.; Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol., 2016, 16(5), 279-294.
[http://dx.doi.org/10.1038/nri.2016.40] [PMID: 27121651]
[12]
Tavasolian, F.; Abdollahi, E.; Rezaei, R.; Momtazi-Borojeni, A.A.; Henrotin, Y.; Sahebkar, A. Altered expression of microRNAs in rheumatoid arthritis. J. Cell. Biochem., 2018, 119(1), 478-487.
[http://dx.doi.org/10.1002/jcb.26205] [PMID: 28598026]
[13]
Ergün, A.; Lawrence, C.A.; Kohanski, M.A.; Brennan, T.A.; Collins, J.J. A network biology approach to prostate cancer. Mol. Syst. Biol., 2007, 3(1), 82.
[http://dx.doi.org/10.1038/msb4100125] [PMID: 17299418]
[14]
Firestein, G.S. mmunologic mechanisms in the pathogenesis of rheumatoid arthritis. J. Clin. Rheumatol. 2005, 11(3)((Suppl.),), S39-S44.
[http://dx.doi.org/10.1097/01.rhu.0000166673.34461.33] [PMID: 16357749]
[15]
Choy, E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis.Rheumatology.,, 2012, 51((suppl_5),), v3-v11.
[http://dx.doi.org/10.1093/rheumatology/kes113]
[16]
Criswell, L.A. Gene discovery in rheumatoid arthritis highlights the CD40/NF-kappaB signaling pathway in disease pathogenesis. Immunol. Rev., 2010, 233(1), 55-61.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00862.x] [PMID: 20192992]
[17]
Zhang, R; Luan, M; Shang, Z; Duan, L; Tang, G; Shi, M RADB: a database of rheumatoid arthritis-related polymorphisms.Database.,2014,, 2014.
[http://dx.doi.org/10.1093/database/bau090]
[18]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[19]
Yue, M.; Zhou, D.; Zhi, H.; Wang, P.; Zhang, Y.; Gao, Y.; Guo, M.; Li, X.; Wang, Y.; Zhang, Y.; Ning, S.; Li, X. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases. Nucleic Acids Res., 2018, 46(D1), D181-D185.
[http://dx.doi.org/10.1093/nar/gkx1035] [PMID: 29106642]
[20]
Li, Y.; Qiu, C.; Tu, J.; Geng, B.; Yang, J.; Jiang, T.; Cui, Q. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res., 2014, 42(Database issue), D1070-D1074.
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[21]
Ruepp, A.; Kowarsch, A.; Theis, F. PhenomiR: microRNAs in human diseases and biological processes. Next-Generation MicroRNA Expression Profiling Technology; Springer, 2012, pp. 249-260.
[http://dx.doi.org/10.1007/978-1-61779-427-8_17]
[22]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10)e0206239
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[23]
Chou, C-H.; Chang, N-W.; Shrestha, S.; Hsu, S-D.; Lin, Y-L.; Lee, W-H.; Yang, C.D.; Hong, H.C.; Wei, T.Y.; Tu, S.J.; Tsai, T.R.; Ho, S.Y.; Jian, T.Y.; Wu, H.Y.; Chen, P.R.; Lin, N.C.; Huang, H.T.; Yang, T.L.; Pai, C.Y.; Tai, C.S.; Chen, W.L.; Huang, C.Y.; Liu, C.C.; Weng, S.L.; Liao, K.W.; Hsu, W.L.; Huang, H.D. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res., 2016, 44(D1), D239-D247.
[http://dx.doi.org/10.1093/nar/gkv1258] [PMID: 26590260]
[24]
Wong, N.; Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res., 2015, 43(Database issue), D146-D152.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[25]
Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; McDermott, M.G.; Monteiro, C.D.; Gundersen, G.W.; Ma’ayan, A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 2016, 44(W1), W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[26]
Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011, 27(12), 1739-1740.
[http://dx.doi.org/10.1093/bioinformatics/btr260] [PMID: 21546393]
[27]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[28]
Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; Milacic, M.; Roca, C.D.; Rothfels, K.; Sevilla, C.; Shamovsky, V.; Shorser, S.; Varusai, T.; Viteri, G.; Weiser, J.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The reactome pathway knowledgebase. Nucleic Acids Res., 2018, 46(D1), D649-D655.
[http://dx.doi.org/10.1093/nar/gkx1132] [PMID: 29145629]
[29]
Kutmon, M.; Riutta, A.; Nunes, N.; Hanspers, K.; Willighagen, E.L.; Bohler, A.; Mélius, J.; Waagmeester, A.; Sinha, S.R.; Miller, R.; Coort, S.L.; Cirillo, E.; Smeets, B.; Evelo, C.T.; Pico, A.R. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res., 2016, 44(D1), D488-D494.
[http://dx.doi.org/10.1093/nar/gkv1024] [PMID: 26481357]
[30]
Chen, Y-J.; Chang, W-A.; Wu, L-Y.; Hsu, Y-L.; Chen, C-H.; Kuo, P-L. Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches. Int. J. Med. Sci., 2018, 15(11), 1129-1142.
[http://dx.doi.org/10.7150/ijms.27056] [PMID: 30123050]
[31]
Pomaznoy, M.; Ha, B.; Peters, B. GOnet: a tool for interactive Gene Ontology analysis. BMC Bioinformatics, 2018, 19(1), 470.
[http://dx.doi.org/10.1186/s12859-018-2533-3] [PMID: 30526489]
[32]
Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res., 2019, 47(D1), D590-D595.
[http://dx.doi.org/10.1093/nar/gky962] [PMID: 30321428]
[33]
Jutley, G.; Raza, K.; Buckley, C.D. New pathogenic insights into rheumatoid arthritis. Curr. Opin. Rheumatol., 2015, 27(3), 249-255.
[http://dx.doi.org/10.1097/BOR.0000000000000174] [PMID: 25775189]
[34]
Stanczyk, J.; Pedrioli, D.M.L.; Brentano, F.; Sanchez-Pernaute, O.; Kolling, C.; Gay, R.E.; Detmar, M.; Gay, S.; Kyburz, D. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum., 2008, 58(4), 1001-1009.
[http://dx.doi.org/10.1002/art.23386] [PMID: 18383392]
[35]
Furer, V.; Greenberg, J.D.; Attur, M.; Abramson, S.B.; Pillinger, M.H. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin. Immunol., 2010, 136(1), 1-15.
[http://dx.doi.org/10.1016/j.clim.2010.02.005] [PMID: 20223711]
[36]
Murata, K.; Yoshitomi, H.; Tanida, S.; Ishikawa, M.; Nishitani, K.; Ito, H.; Nakamura, T. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther., 2010, 12(3), R86.
[http://dx.doi.org/10.1186/ar3013] [PMID: 20470394]
[37]
Churov, A.V.; Oleinik, E.K.; Knip, M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun. Rev., 2015, 14(11), 1029-1037.
[http://dx.doi.org/10.1016/j.autrev.2015.07.005] [PMID: 26164649]
[38]
Filková, M.; Jüngel, A.; Gay, R.E.; Gay, S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs, 2012, 26(3), 131-141.
[http://dx.doi.org/10.2165/11631480-000000000-00000] [PMID: 22494429]
[39]
Duroux-Richard, I.; Jorgensen, C.; Apparailly, F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum., 2012, 64(1), 11-20.
[http://dx.doi.org/10.1002/art.30651] [PMID: 21898352]
[40]
Zhu, S.; Pan, W.; Song, X.; Liu, Y.; Shao, X.; Tang, Y.; Liang, D.; He, D.; Wang, H.; Liu, W.; Shi, Y.; Harley, J.B.; Shen, N.; Qian, Y. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med., 2012, 18(7), 1077-1086.
[http://dx.doi.org/10.1038/nm.2815] [PMID: 22660635]
[41]
Lu, L-F.; Boldin, M.P.; Chaudhry, A.; Lin, L-L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 2010, 142(6), 914-929.
[http://dx.doi.org/10.1016/j.cell.2010.08.012] [PMID: 20850013]
[42]
Zhou, Q.; Haupt, S.; Kreuzer, J.T.; Hammitzsch, A.; Proft, F.; Neumann, C.; Leipe, J.; Witt, M.; Schulze-Koops, H.; Skapenko, A. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann. Rheum. Dis., 2015, 74(6), 1265-1274.
[http://dx.doi.org/10.1136/annrheumdis-2013-204377] [PMID: 24562503]
[43]
Mizuno, Y.; Yagi, K.; Tokuzawa, Y.; Kanesaki-Yatsuka, Y.; Suda, T.; Katagiri, T.; Fukuda, T.; Maruyama, M.; Okuda, A.; Amemiya, T.; Kondoh, Y.; Tashiro, H.; Okazaki, Y. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun., 2008, 368(2), 267-272.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.073] [PMID: 18230348]
[44]
Essa, S.; Reichrath, S.; Mahlknecht, U.; Montenarh, M.; Vogt, T.; Reichrath, J. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res., 2012, 32(1), 383-389.
[PMID: 22213330]
[45]
Lee, Y.H.; Bae, S-C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between vitamin D receptor polymorphisms and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol. Biol. Rep., 2011, 38(6), 3643-3651.
[http://dx.doi.org/10.1007/s11033-010-0477-4] [PMID: 21110115]
[46]
Pap, T.; Müller-Ladner, U.; Gay, R.E.; Gay, S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res., 2000, 2(5), 361-367.
[http://dx.doi.org/10.1186/ar113] [PMID: 11094449]
[47]
Lefevre, S.; Meier, F.M.; Neumann, E.; Muller-Ladner, U. Role of synovial fibroblasts in rheumatoid arthritis. Curr. Pharm. Des., 2015, 21(2), 130-141.
[http://dx.doi.org/10.2174/1381612820666140825122036] [PMID: 25163744]
[48]
Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev., 2010, 233(1), 233-255.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00859.x] [PMID: 20193003]
[49]
Hong, B-K.; You, S.; Yoo, S-A.; Park, D.; Hwang, D.; Cho, C-S.; Kim, W.U. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp. Mol. Med., 2017, 49(8)e363
[http://dx.doi.org/10.1038/emm.2017.108] [PMID: 28775366]
[50]
Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol., 2012, 8(11), 656-664.
[http://dx.doi.org/10.1038/nrrheum.2012.153] [PMID: 23007741]
[51]
Pettit, A.R.; Walsh, N.C.; Manning, C.; Goldring, S.R.; Gravallese, E.M. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology (Oxford), 2006, 45(9), 1068-1076.
[http://dx.doi.org/10.1093/rheumatology/kel045] [PMID: 16490750]
[52]
Iwamoto, N.; Fukui, S.; Takatani, A.; Shimizu, T.; Umeda, M.; Nishino, A.; Igawa, T.; Koga, T.; Kawashiri, S.Y.; Ichinose, K.; Tmai, M.; Nakamura, H.; Origuchi, T.; Chiba, K.; Osaki, M.; Jüngel, A.; Gay, S.; Kawakami, A. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res. Ther., 2018, 20(1), 189.
[http://dx.doi.org/10.1186/s13075-018-1703-z] [PMID: 30157923]
[53]
Hu, R.; O’Connell, R.M. MiR-23b is a safeguard against autoimmunity. Nat. Med., 2012, 18(7), 1009-1010.
[http://dx.doi.org/10.1038/nm.2849] [PMID: 22772548]
[54]
Xu, D.; Han, Q.; Hou, Z.; Zhang, C.; Zhang, J. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell. Mol. Immunol., 2017, 14(8), 712-720.
[http://dx.doi.org/10.1038/cmi.2015.113] [PMID: 26996068]
[55]
Pauley, K.M.; Satoh, M.; Chan, A.L.; Bubb, M.R.; Reeves, W.H.; Chan, E.K. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther., 2008, 10(4), R101.
[http://dx.doi.org/10.1186/ar2493] [PMID: 18759964]
[56]
Habibi, F.; Ghadiri Soufi, F.; Ghiasi, R.; Khamaneh, A.M.; Alipour, M.R. Alteration in inflammation-related miR-146a expression in NF-KB signaling pathway in diabetic rat hippocampus. Adv. Pharm. Bull., 2016, 6(1), 99-103.
[http://dx.doi.org/10.15171/apb.2016.015] [PMID: 27123424]
[57]
Rusca, N.; Monticelli, S. MiR-146a in immunity and disease; Mol. Bio. Int., 2011, 2011.
[http://dx.doi.org/10.4061/2011/437301]
[58]
Park, H.; Huang, X.; Lu, C.; Cairo, M.S.; Zhou, X. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J. Biol. Chem., 2015, 290(5), 2831-2841.
[http://dx.doi.org/10.1074/jbc.M114.591420] [PMID: 25505246]
[59]
Baumjohann, D.; Ansel, K.M. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat. Rev. Immunol., 2013, 13(9), 666-678.
[http://dx.doi.org/10.1038/nri3494] [PMID: 23907446]
[60]
Boldin, M.P.; Taganov, K.D.; Rao, D.S.; Yang, L.; Zhao, J.L.; Kalwani, M.; Garcia-Flores, Y.; Luong, M.; Devrekanli, A.; Xu, J.; Sun, G.; Tay, J.; Linsley, P.S.; Baltimore, D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med., 2011, 208(6), 1189-1201.
[http://dx.doi.org/10.1084/jem.20101823] [PMID: 21555486]
[61]
Smigielska-Czepiel, K.; van den Berg, A.; Jellema, P.; van der Lei, R.J.; Bijzet, J.; Kluiver, J.; Boots, A.M.; Brouwer, E.; Kroesen, B.J. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun., 2014, 15(2), 115-125.
[http://dx.doi.org/10.1038/gene.2013.69] [PMID: 24401767]
[62]
Falconer, J.; Murphy, A.N.; Young, S.P.; Clark, A.R.; Tiziani, S.; Guma, M.; Buckley, C.D. Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol., 2018, 70(7), 984-999.
[http://dx.doi.org/10.1002/art.40504] [PMID: 29579371]
[63]
Niimoto, T.; Nakasa, T.; Ishikawa, M.; Okuhara, A.; Izumi, B.; Deie, M.; Suzuki, O.; Adachi, N.; Ochi, M. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet. Disord., 2010, 11(1), 209.
[http://dx.doi.org/10.1186/1471-2474-11-209] [PMID: 20840794]
[64]
Chatzikyriakidou, A.; Voulgari, P.V.; Georgiou, I.; Drosos, A.A. A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint Bone Spine, 2010, 77(5), 411-413.
[http://dx.doi.org/10.1016/j.jbspin.2010.05.013] [PMID: 20870441]
[65]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5(7), 2502-2521.
[http://dx.doi.org/10.3390/nu5072502] [PMID: 23857223]
[66]
Adams, J.S.; Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab., 2008, 4(2), 80-90.
[http://dx.doi.org/10.1038/ncpendmet0716] [PMID: 18212810]
[67]
Mayne, C.G.; Spanier, J.A.; Relland, L.M.; Williams, C.B.; Hayes, C.E. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur. J. Immunol., 2011, 41(3), 822-832.
[http://dx.doi.org/10.1002/eji.201040632] [PMID: 21287548]
[68]
Shoenfeld, N.; Amital, H.; Shoenfeld, Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat. Clin. Pract. Rheumatol., 2009, 5(2), 99-105.
[http://dx.doi.org/10.1038/ncprheum0989] [PMID: 19182816]
[69]
Ishikawa, L.L.W.; Colavite, P.M.; Fraga-Silva, T.F.C.; Mimura, L.A.N.; França, T.G.D.; Zorzella-Pezavento, S.F.G.; Chiuso-Minicucci, F.; Marcolino, L.D.; Penitenti, M.; Ikoma, M.R.V.; Sartori, A. Vitamin D deficiency and rheumatoid arthritis. Clin. Rev. Allergy Immunol., 2017, 52(3), 373-388.
[http://dx.doi.org/10.1007/s12016-016-8577-0] [PMID: 27484684]
[70]
Lin, J.; Liu, J.; Davies, M.L.; Chen, W. Serum vitamin D level and rheumatoid arthritis disease activity: review and meta-analysis. PLoS One, 2016, 11(1)e0146351
[http://dx.doi.org/10.1371/journal.pone.0146351] [PMID: 26751969]
[71]
Raczkiewicz, A.; Kisiel, B.; Kulig, M.; Tłustochowicz, W. Vitamin D status and its association with quality of life, physical activity, and disease activity in rheumatoid arthritis patients. J. Clin. Rheumatol., 2015, 21(3), 126-130.
[http://dx.doi.org/10.1097/RHU.0000000000000233] [PMID: 25807091]
[72]
Anderson, A.E.; Swan, D.J.; Wong, O.Y.; Buck, M.; Eltherington, O.; Harry, R.A.; Patterson, A.M.; Pratt, A.G.; Reynolds, G.; Doran, J.P.; Kirby, J.A.; Isaacs, J.D.; Hilkens, C.M. Tolerogenic dendritic cells generated with dexamethasone and vitamin D3 regulate rheumatoid arthritis CD4+ T cells partly via transforming growth factor-β1. Clin. Exp. Immunol., 2017, 187(1), 113-123.
[http://dx.doi.org/10.1111/cei.12870] [PMID: 27667787]
[73]
Lee, Y.H.; Bae, S.C. Vitamin D level in rheumatoid arthritis and its correlation with the disease activity: a meta-analysis. Clin. Exp. Rheumatol., 2016, 34(5), 827-833.
[PMID: 27049238]
[74]
Buondonno, I.; Rovera, G.; Sassi, F.; Rigoni, M.M.; Lomater, C.; Parisi, S.; Pellerito, R.; Isaia, G.C.; D’Amelio, P. Vitamin D and immunomodulation in early rheumatoid arthritis: A randomized double-blind placebo-controlled study. PLoS One, 2017, 12(6)e0178463
[http://dx.doi.org/10.1371/journal.pone.0178463] [PMID: 28582403]
[75]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[http://dx.doi.org/10.1016/j.coph.2010.04.001] [PMID: 20427238]
[76]
Mohri, T.; Nakajima, M.; Takagi, S.; Komagata, S.; Yokoi, T. MicroRNA regulates human vitamin D receptor. Int. J. Cancer, 2009, 125(6), 1328-1333.
[http://dx.doi.org/10.1002/ijc.24459] [PMID: 19437538]
[77]
Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int. J. Mol. Sci., 2018, 19(9), 2663.
[http://dx.doi.org/10.3390/ijms19092663] [PMID: 30205552]
[78]
Cantorna, M.T.; Snyder, L.; Lin, Y-D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients, 2015, 7(4), 3011-3021.
[http://dx.doi.org/10.3390/nu7043011] [PMID: 25912039]
[79]
Colin, E.M.; Asmawidjaja, P.S.; van Hamburg, J.P.; Mus, A.M.; van Driel, M.; Hazes, J.M.; van Leeuwen, J.P.; Lubberts, E. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum., 2010, 62(1), 132-142.
[http://dx.doi.org/10.1002/art.25043] [PMID: 20039421]
[80]
Jeffery, L.E.; Raza, K.; Hewison, M. Vitamin D in rheumatoid arthritis-towards clinical application. Nat. Rev. Rheumatol., 2016, 12(4), 201-210.
[http://dx.doi.org/10.1038/nrrheum.2015.140] [PMID: 26481434]
[81]
Pahlevan Kakhki, M.; Nikravesh, A.; Shirvani Farsani, Z.; Sahraian, M.A.; Behmanesh, M. HOTAIR but not ANRIL long non-coding RNA contributes to the pathogenesis of multiple sclerosis. Immunology, 2018, 153(4), 479-487.
[http://dx.doi.org/10.1111/imm.12850] [PMID: 29030863]
[82]
Jiang, Y.J.; Bikle, D.D. LncRNA: a new player in 1α, 25(OH)(2) vitamin D(3)/VDR protection against skin cancer formation. Exp. Dermatol., 2014, 23(3), 147-150.
[http://dx.doi.org/10.1111/exd.12341] [PMID: 24499465]
[83]
Song, J.; Kim, D.; Han, J.; Kim, Y.; Lee, M.; Jin, E-J. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med., 2015, 15(1), 121-126.
[http://dx.doi.org/10.1007/s10238-013-0271-4] [PMID: 24722995]
[84]
Zhang, H.J.; Wei, Q.F.; Wang, S.J.; Zhang, H.J.; Zhang, X.Y.; Geng, Q.; Cui, Y.H.; Wang, X.H. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int. Immunopharmacol., 2017, 50, 283-290.
[http://dx.doi.org/10.1016/j.intimp.2017.06.021] [PMID: 28732288]
[85]
Scaria, V. Joining the long shots: emerging evidence on the role of long noncoding RNAs in rheumatoid arthritis. Int. J. Rheum. Dis., 2014, 17(8), 831-833.
[http://dx.doi.org/10.1111/1756-185X.12570] [PMID: 25643729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy